
Real-Time Scheduling
for Multi-Processors Systems

Frank Singhoff
Laurent Pautet

strec.wp.mines-telecom.fr

Version 1.0

Architecture Issues
No Mono-Processor Architecture Anymore

!  Historically … mono-processors
!  platform = a dedicated processor, a clock and a

common memory …
!  predictable but expensive and technologically

limited power.

!  Trends … multi-processors
!  More powerful, but less predictable (cache, pipeline)
!  Use COTS (not dedicated) processors (FAA, 2011).
!  Several identical processors (or not).
!  Shar resources: cache, memory, bus, crossbar,

network-on-chip => +interferences ; -predictable

Laurent Pautet

Architecture Issues
Interferences with Multi-Processors

!  Let’s have task T1 (resp T2) running on core
C1 (resp C2) ; C1 and C2 share a common
cache L2 or an interconnection bus

!  T1 and T2 are functionally independent ... but
finally dependent because of shared
hardware resources inducing interferences

!  A task can be delayed due to contention /
interference on shared hardware

!  This can be an even more important problem
in multi-processors than in mono-processor

Laurent Pautet

Multi-Processors Architecture
Processors

!  Identical processors: processors all executing
the same units of work during the same units
of time

!  Uniform processors: processor j with speed sj
executes sj.t units of work for t units of time.

!  Heterogeneous processors: processor j
executes si, j. t units of work of job i for t
units of time.

!  Heterogenous processors : no shared
memory, nor migration (a distributed system)

Laurent Pautet

Multi-Processors Architecture
Scheduling

!  Mono-Processor scheduling : 1 problem
!  Time Allocation – when to execute a task

!  Multi-Processors scheduling : 2 problems
!  Processor Allocation – where to execute a task
!  Time Allocation – when to execute a task

As a consequence, most results from
mono-processor real-time scheduling theory

are no longer true for
multi-processors real-time scheduling theory

Laurent Pautet

Multi-Processors Scheduling
Different Approaches

!  Partitioned scheduling (offline approach)
!  Handle separately processor and time allocations

!  Map all tasks on processors
!  Schedule tasks on each processor.

!  Possible end-to-end delay verification

!  Global scheduling (online approach)
!  Handle globally processor and time allocations
!  Pick a task from a global ready list
!  Map it on one of the idle processors

!  Hybrid scheduling (mixed approach)
!  Predefine a tree of Virtual Processes (servers)
!  Schedule tasks and the tree of Virtual Processes

Laurent Pautet

Scheduling Approaches
Partitioned Scheduling Approach

Laurent Pautet

τ5 τ4 τ3 τ2 τ1

τ2 τ1

τ4 τ3

τ5

τ1

τ2

τ3

τ1

τ3

τ5

Ready Lists Partitioned Scheduling

Global Scheduling

Ready List

CPU1

CPU2

CPU3

CPU1

CPU2

CPU3

Partitioned Scheduling
Task Assignment

!  How to statically assign tasks to processors
!  Bin-packing problem: minimize the number of bags to

pack bins of different volumes
!  NP-hard problem => partitioning heuristics

!  Different parameters:
!  Processors (identical or not), tasks (periods, budgets), etc.
!  Task communications, shared resources, etc.

!  Different objective function:
!  Minimize processors, communications, latencies, etc.

!  Difficult to compare heuristics
!  especially when the final objective is actually schedulability

Laurent Pautet

Partitioned Scheduling
Assignment and Scheduling Variants

!  Sort tasks before packing
!  Ascending/descending order of utilization/period

!  Select a mono-processor scheduling
!  RM or DM, EDF or LLF
!  Schedulability test to allocate a task to a processor

!  Select a bin-packing heuristic
!  First-Fit, Next-Fit, Worst-Fit or Best-Fit

Laurent Pautet

Partitioned Scheduling
Rate-Monotonic Next-Fit

!  List tasks in ascending order of their
utilization/period.

!  Processor p=0
!  For task t=0 to n

!  Assign task t to processor p if the feasibility test is
met (eg: U ≤ 0.69 or response time computation)

!  Stop when no processor found
!  Loop to next processor p = (p+1) mod m

Laurent Pautet

Partitioned Scheduling
Limitations

!  Partitioned Scheduling cannot be optimal
!  m processors
!  (m+1) tasks of parameters (C, T), C=T/2+ε
!  Exercice : Prove that for periodic tasksets

with implicit deadlines, the largest worst-case
utilization bound for any partitioning
algorithm is (m+1)/2.

Laurent Pautet

Partitioned Scheduling
Pros and Cons

!  Pros
!  Better suitability for heterogeneous systems
!  Inherit from mature mono-processor scheduling
!  Time and space isolation (major safety property)

!  Failures / anomalies limited to one processor

!  Cons
!  2 problems both being NP-hard

!  Processor allocation (mapping)
!  Time allocation (scheduling)

!  Less optimal use of resources (idle processors)

Laurent Pautet

Partitioned Scheduling
Other resources (memory, bus, …)

!  Similar benefits/limitations for other resources
!  resource partitioning and
!  resource sharing

!  Resource partitioning : great predictability …
but resources less efficiently used

!  Global resource sharing: poor predictability ...
but resources more efficiently used

!  Example: partitioned cache vs shared cache
!  Partition too small: time to reload data
!  Partition too large: waste of resource

Laurent Pautet

Scheduling Approaches
Global Scheduling

Laurent Pautet

τ5 τ4 τ3 τ2 τ1

τ2 τ1

τ4 τ3

τ5

τ1

τ2

τ3

τ1

τ3

τ5

Ready Lists Partitioned Scheduling

Global Scheduling

Ready List

CPU1

CPU2

CPU3

CPU1

CPU2

CPU3

Global Scheduling
Pros and Cons

!  Pros
!  Optimal scheduling exist
!  Better suited for homogeneous multi-core

architectures
!  Better resource optimization : busy cores, less

preemptions ... but migrations

!  Cons
!  Not well suited at all to heterogeneous systems
!  More recent and less numerous results of

scheduling theory
!  … for simple architectures and task models

Laurent Pautet

Global scheduling
Sharing resources

!  A global scheduler deals with two problems:
!  When and how to assign task / job priorities.
!  Choose a processor on which to run the task.

!  Sharing time
!  Preemption (same as mono-processor)
!  A job starts its execution in a time interval and

ends in another time interval

!  Sharing processors
!  Migration
!  A job starts its execution on a processor and ends

on another processor
Laurent Pautet

Global Scheduling
Migrations and Priorities

Migration strategies
!  No task migration: All its jobs are assigned to a given

processor => partitioning
!  Task migration: Jobs can start executing on different

processors but complete on their selected processor
!  Job migration: A job can migrate during its execution.

Priority assignments
!  Fixed priority associated to a task (eg: RM).
!  Fixed priority associated to a job (eg: EDF).
!  Dynamic priority associated to a job (ex: LLF).

Laurent Pautet

Global Scheduling
Two general approaches

Mono-processor based global scheduling:
!  Global RM, Global DM, Global EDF, Global LLF, ...

!  Variants depending on migration level (task or job)

!  Globally apply a mono-processor scheduling strategy
on all processors. Assign the m highest priority tasks
or jobs to the m processors at any time.

!  Task or job preemption when all processors are busy

New algorithms: PFair, RUN, ...
Different and fewer results and properties

compared to mono-processor scheduling

Laurent Pautet

Mono-Processor based Global Scheduling
Different response times

!  Use of Global Deadline Monotonic scheduling
!  Priority assignment: τ1 > τ2 > τ3

!  Task can migrate, jobs cannot

Laurent Pautet

C T D

τ1 2 4 4

τ2 3 5 5

τ3 7 20 20

P1 τ1 τ3 τ2 τ3 τ1 τ1

P2 τ2 τ1 τ1 τ2 τ2

Mono-Processor based Global Scheduling
Different response times

!  Use of Global Deadline Monotonic scheduling
!  Priority assignment: τ1 > τ2 > τ3

!  Jobs can migrate
!  Not the same response time for τ3

Laurent Pautet

C T D

τ1 2 4 4

τ2 3 5 5

τ3 7 20 20

P1 τ1 τ3 τ2 τ1 τ2 τ1

P2 τ2 τ1 τ3 τ1 τ2

Mono-Processor based Global Scheduling
No Critical Instant

!  In a mono-processor, the critical instant is the
worst case scenario for periodic tasks

!  All tasks are released at the same instant
!  Used to compute the worst response time
!  But not the worst scenario in multi-processors.
!  Here, R4=8 but with critical instant R4=6

Laurent Pautet

C D T

τ1 2 2 8

τ2 2 4 10

τ3 4 6 8

τ4 4 7 8

P1 τ1 τ3 τ1 τ2

P2 τ2 τ4 τ3 τ4

Mono-Processor based Global Scheduling
Different feasibility interval

!  In mono-processor, the feasibility interval is
used to check schedulability of independent
asynchronous / synchronous periodic tasks,
∀i: Di ≤ Pi with a fixed priority scheduling
[0, 2 * LCM (∀i: Pi) + max (∀i: Si)]

!  In multi-processors, a similar result:
[0, LCM (∀i: Pi)]
but for a set of independent synchronous
periodic tasks only

Laurent Pautet

Mono-Processor based Global Scheduling
Scheduling anomalies

!  Anomaly: intuitively positive change in a
schedulable set of tasks that leads to a non-
schedulable set of tasks

!  In mono-processor, when a tasks set is
schedulable, it is still schedulable if we lower
its utilisation (reduce Ci or increase Ti)

!  In multi-processor, this is no longer true

Laurent Pautet

Mono-Processor based Global Scheduling
Scheduling anomalies

!  Use of Global Deadline Monotonic Scheduling
!  Jobs can migrate
!  U1=1/4
!  Tasks set is schedulable

Laurent Pautet

C T D

τ1 1 4 2

τ2 3 5 3

τ3 7 20 8

P1 τ1 τ3 τ1 τ1 τ1

P2 τ2 τ1 τ2 τ2 τ2

Mono-Processor based Global Scheduling
Scheduling anomalies

!  Use of Global Deadline Monotonic Scheduling
!  Task τ1 has a larger period
!  Task set with a lower utilisation (1/4 -> 1/5)
!  Tasks set is non-schedulable (R3=9 > D3)

Laurent Pautet

C T D

τ1 1 5 2

τ2 3 5 3

τ3 7 20 8

P1 τ1 τ3 τ1 τ1 τ1

P2 τ2 τ2 τ2 τ2

Mono-Processor based Global Scheduling
Limitations

!  m processors
!  (m+1) tasks of parameters (C, T), C=T/2+ε
!  Exercice : Prove that the maximum utiliza-

tion bound for any global fixed job priority
algorithm is (m+1)/2.

Laurent Pautet

Global Scheduling
Pfair Algorithms : Principles

!  The proportion of time units allocated at
instant t to a task must remain as close as
possible to its utilisation

!  Optimal algorithm for identical processors and
synchronous deadline implicit periodic tasks

!  Lots of context switches and migrations

Laurent Pautet

C T

τ1 1 2

τ2 1 3

τ3 2 9

τ3

Global Scheduling
Pfair Algorithms : Modelling

!  Execute tasks at a constant rate (fluid model)
such as ∀i: workload(τi, t) = t * Ci / Ti

!  Can be approximated by sched(τi, t) where
sched(τi, t) = 1 when τi is scheduled in
interval [t, t + 1[, sched(τi, t) = 0 otherwise

!  A schedule is said to be Pfair if and only if
lag(τi, t) = workload(τi, t) – Σk≤ t sched(τi, k)
where ∀i, ∀t: -1 ≤ lag(τi, t) ≤ 1

!  A Pfair scheduling is feasible on m processors
as long as U ≤ m (full utilization !)

Laurent Pautet

Global Scheduling
Pfair Algorithms : Implementation

!  Split each task i into Ci subtasks (1 time unit)
!  Assign a pseudo deadline d(τi, j) and a

pseudo release r(τi, j) to subtask j in [1..Ci]:
!  d(τi, j) = ︎ ⎡j * Ti / Ci⎤ ⎡j * Ti / Ci⎤
!  r(τi, j) = ⎣(︎j − 1) ︎* Ti / Ci⎦ * Ti / Ci⎦

!  Schedule subtask j according to d(τi, j) (EDF)
!  Improve Pfair with non-arbitrary tie breaks to

reduce context switches and migrations in
case of identical pseudo-deadlines

Laurent Pautet

Global Scheduling
Pfair Algorithms : Example

!  r(τi, j) = ⎣(︎j-1) ︎* Ti/Ci⎦ and d(τi, j) = ︎⎡j * Ti/Ci⎤ * Ti/Ci⎦ and d(τi, j) = ︎⎡j * Ti/Ci⎤ ⎡j * Ti/Ci⎤
!  r(τ1,1) = 0 ; d(τ1,1) = 2 ; U1=1/2
!  r(τ2,1) = 0 ; d(τ2,1) = 3 ; U2=1/3
!  r(τ3,1) = 0 ; d(τ3,1) = 5 ; U3=2/9
!  r(τ3,2) = 4 ; d(τ3,2) = 9 ; U3=2/9

Laurent Pautet

C T

τ1 1 2

τ2 1 3

τ3 2 9

P1 τ1 τ3 τ1 τ1 τ3 τ1 τ1 τ3 τ1 τ1 τ3 τ1 τ1

P2 τ2 τ2 τ2 τ2 τ2 τ2

Global Scheduling
Conclusions

!  Global multi-processor scheduling has different
properties compared to mono-processor scheduling
(optimality, critical instant, feasibility interval,
anomalies, ...).

!  Additional parameters : migration, task / processor
assignment, ...

!  We limited architecture to identical processors,
without shared resources

!  We have limited task model to a simplified task one
!  We have not discussed dependencies between tasks

(shared resources, precedence constraints), nor
communications.

Laurent Pautet

Scheduling Approaches
Hybrid Scheduling

Laurent Pautet

τ5 τ4 τ3 τ2 τ1

τ2 τ1

τ4 τ3

τ5

τ1

τ2

τ3

τ1

τ3

τ5

Ready Lists Partitioned Scheduling

Global Scheduling

Ready List

CPU1

CPU2

CPU3

CPU1

CPU2

CPU3

Hybrid Scheduling
Principles

!  A mixed solution between partitioned (offline)
and global scheduling (online)

!  Example: RUN (Reduction to Uniprocessor)
!  Optimal, less preemptions compared to PFair

!  Offline: build a reduction tree (PACK & DUAL steps)
!  Partition tasks on a min nbr of virtual processors (PACK)
!  Regroup the processors idle time as tasks (DUAL)
!  Pack new tasks to build idle virtual processors (PACK)
!  Stop when schedule on a single processor

!  Online: schedule on each (virtual) processor with
EDF by reading the reduction tree.

Laurent Pautet

RUN
Offline : PACK (first and initial layer)

!  Pack tasks on a minimum number of virtual
processors (servers) S1 to S3. Use First-Fit.

!  So, we cannot merge 2 virtual processors (VP)
!  3 idle time intervals : S*

1 to S*
3

Laurent Pautet

C T

τ1 2 7

τ2 2 7

τ3 2 7

τ4 4 14

τ5 4 14

τ6 4 14

τ7 2 7

τ1 τ2 τ3 S*
1 τ1 τ2 τ3 S*

1

τ4 τ5 τ6 S*
2

τ7 S*
3 τ7 S*

3

U=2

RUN
Offline : DUAL + PACK (second layer)

!  Define S*
1 to S*

3 as (dual) tasks
!  They model the idle time left on VPs
!  Pack and schedule S*

1 to S*
3 on 1 VP

!  This new VP schedules « idle tasks » : we free a
processor as the idle time is packed on 1 processor

!  While #processors > 1, loop DUAL+PACK steps

Laurent Pautet

C T

S*
1 1 7

S*
2 2 14

S*
3 5 7

S*
1 S*

3 S*
2 S*

1 S*
3 S*

2

RUN
Online: Schedule Reduction Tree

!  We have a tree of servers (or a hierarchy of
servers) that schedules tasks and servers
!  We start scheduling the root server in the tree
!  When we schedule a dual server, we do not

schedule its tasks or servers. We schedule the
remaining tasks or servers according EDF.

!  When we schedule a primary server, we do
schedule its tasks or servers according EDF

!  In the example, we start executing S*
1. Thus,

we do not execute S1 but S2 ou S3. According
EDF, S2 will execute τ1 and S3 will execute τ1

Laurent Pautet

RUN
Online: Scheduling a dual server

Laurent Pautet

C T

τ1 2 7

τ2 2 7

τ3 2 7

τ4 4 14

τ5 4 14

τ6 4 14

τ7 2 7

τ4 τ5 τ7 τ6 τ7

τ7 τ1 τ2 τ3 τ7 τ1 τ2 τ3

U=2

C T

S*
1 1 7

S*
2 2 14

S*
3 5 7

S*
1 S*

3 S*
2 S*

1 S*
3 S*

2

Schedule S*
1=> schedule all but S1,

=> schedule S2 or S3

Schedule T4, T5 or T6 on P1 and
T7 on P2 both using EDF

Real-Time Scheduling
for Distributed Systems

!  Tasks exchange messages
1.  Tasks are dependant and assigned to procs

!  The task input is the output of its predecessors

2.  Model and schedule messages as tasks

3.  Schedule messages on bus or network
!  Use non-preemptive tasks scheduling

Laurent Pautet

Non-preemptive task Message

(Mono) Processor Communication medium

Capacity / Budget Communication delay
(buffer, access, propagation)

Distributed Real-Time Scheduling
Step 1: Dependant Tasks on Mono-Processors

!  Dependant tasks on a mono-processor
!  Modify task parameters to have independant tasks
!  A*

i = max (Ai, maxj in pred(i) A*
j + Cj)

!  D*
i = min(Di, minj in succ(i) D*

j - Cj)

!  For a static priority scheduling, give higher
priority to predecessors than to task (DMS)
!  We can compute response time

!  For a dynamic priority scheduling, use new
deadlines (EDF)

Laurent Pautet

Distributed Real-Time Scheduling
Step 2 : Dependant tasks on Distributed Systems

!  Holistic Method
!  Compute response time with jitter …
!  defined as the max response time of predecessors

!  Iterative method (as for mono-processors)
!  For task

!  Ri
n+1= Ji + Ci + Σk in pred(i) Ck * ⎡(Jk + Ri

n) / Tk⎤

!  For message
!  Ri= Ji + Mi

Laurent Pautet

Distributed Real-Time Scheduling
Step 3 : Message Scheduling on (CAN) Bus

!  Messages modeled as non-preemptive tasks
!  Compute response time for static priority

scheduling of non-preemptive tasks
!  Ri

n+1= Ji + Ci + Σk in hp(i) Ck * ⎡(Jk + Ri
n) / Tk⎤

+ max l in lp(i) (Cl)
!  The last term represents the blocking time

induced by a lower priority non-preemptive task

Laurent Pautet

Distributed Real-Time Systems

M1 M3 T1 T2 T3 T4 T5

J 0 0 0 0 0 0 0

R 6 1 4 5 2 9 12

Laurent Pautet

Step 2 : Ri
n+1= Ji + Ci + Σk in pred(i) Ck * ⎡(Jk + Ri

n) / Tk⎤

M1 M3 T1 T2 T3 T4 T5

J 4 2 0 6 0 1 0

R 10 3 4 11 2 10 12

T1

T4

T5

T3

T2 M1

M3

T C Pri

T1 100 4 HI

T2 100 3 ME

T3 60 2 HI

T4 60 5 ME

T5 90 3 LO

M1 100 6 LO

M3 60 1 HI

M1 M3 T1 T2 T3 T4 T5

J 4 2 0 10 0 3 0

R 10 3 4 15 2 12 12

Step 1 : T1 (resp T3) has higher priority than successor T2 (resp T4)

Step 3 : M1 and M3 are schedulable on network (ytivial)

Conclusions

!  Less mono-processors, more multi-processors or
heterogeneous systems on the market

!  Very active research domain to design new
scheduling approaches

!  Less predictive processors on the market ;
approximate WCET due to many interferences

!  Define modes and change mode when overloaded
!  The low criticality mode includes all the tasks
!  The high criticality one only high criticality tasks
!  Active research domain : mixed criticality Systems

Laurent Pautet

Laurent Pautet

