Critical Embedded Real-Time Systems
Systèmes Temps Réel Embarqués Critiques

STREC - WCET - Introduction

Florian Brandner
Télécom ParisTech

Outline

Sub-Module Outline

1. Static Program Analysis

- Program Representation
- Program Semantics
- Data-Flow Analysis

2. Worst-Case Execution Time Analysis

Program Representation

Reason About Program Behavior

Goals:

- We would like to reason about the behavior of a program
- We would like to make definitive statements about a program

Examples:

- The code that is actually executed by the program
- Global data/memory cells accessed by the program
- Size of the stack used by the program
- ...

Questions:

- What does a program actually do?
- What is the semantics of the program?
- How can a program be represented (in order to reason about it)?

Example: A Simple Program

C Source Code

MIPS Assembly

```
int count_str(char *x) {
    int c = 0;
    if (!x)
        return -1;
    while(*x) {
        if (*x != '`')
            C++;
        x++;
    }
    return c;
}
```

```
count_str:
    beqz a0,38 exit
    nop
continue:
    lb a1,0(a0)
    nop
    beqz
move
loop-start:
    addiu a0,a0,1
    xori v1,a1,0x20
    lb a1,0(a0)
    sltu v1,zero,v1
    bnez al,18 loop-start
    addu v0,v0,v1
loop-end:
    jr ra
    nop
exit:
    jr
                            ra
    li

\section*{Compiler}

From C source to assembly:
- Textual representation of the program
(somewhat simplified) \(\Longrightarrow\) The compiler parses of the source code
- Data structure representing code
(Abstract Syntax Tree) \(\Longrightarrow\) The compiler translates the program to machine code
- Machine code representation (Control-Flow Graph) \(\Longrightarrow\) The compiler generates the final executable

\section*{Compiler}

From C source to assembly:
- Textual representation of the program
(somewhat simplified) \(\Longrightarrow\) The compiler parses of the source code
- Data structure representing code
(Abstract Syntax Tree) \(\Longrightarrow\) The compiler translates the program to machine code
- Machine code representation (Control-Flow Graph)
\(\Longrightarrow\) The compiler generates the final executable

What is a control-flow graph (CFG)?

\section*{Control-Flow Graph}

Data structure to represent code:
- Represented as a form of graph
- Graph nodes:
- Individual instructions or
- Sequences of instructions called basic block
- Graph edges:
- Link from a graph node (instruction) to another
- Instructions that might execute after executing an instruction (Basic blocks that might execute after executing a basic block)
- This allows to represent all possible executions of a program from start to end

\section*{Example: Control-Flow Graph}


\section*{Program Semantics}

Control-flow graphs are merely a program representation:
- A CFG only indicates which instructions may succeed/proceed other instructions (or basic blocks)
- A CFG does not say anything about program semantics (What is the program doing?)
- The semantics depends on the instructions within the CFG

\section*{Program Semantics}

Control-flow graphs are merely a program representation:
- A CFG only indicates which instructions may succeed/proceed other instructions (or basic blocks)
- A CFG does not say anything about program semantics (What is the program doing?)
- The semantics depends on the instructions within the CFG

We need something in addition to reason about programs ...

\section*{Data-Flow Analysis \\ aka. Abstract Interpretation}

\section*{Data-Flow Analysis}

One technique to reason about programs:
- This is often called static analysis
- Model the flow of information through a program
- Based on a generic framework
- Abstractions
- Transformation functions
- Meet/join operator

\author{
(aka. Domain) \\ (Domain \(\rightarrow\) Domain) \\ (Domain \(\times\) Domain \(\rightarrow\) Domain)
}
- Given an instance of a framework
- Build and solve data-flow equations
- Obtain over- or under-approximation of program behavior

\section*{Example: Constant Propagation}

Determine whether a variable always has a constant value:
\[
\begin{aligned}
& x=7 ; \\
& \text { if }(\ldots) \\
& y=6 ; \\
& \text { else } \\
& y=x ; \\
& \text { print }(y) ;
\end{aligned}
\]

(a) Program source
(b) Machine-level control-flow graph

\section*{Example: Constant Propagation}

Associate each instruction with information on variable values:
- Take information before instruction
- Transform
- Propagate result to successors
(Domain)
(check for constants) (forward analysis)


\section*{Example: Constant Propagation}

Associate each instruction with information on variable values:
- Take information before instruction
- Transform
- Propagate result to successors
(Domain)
(check for constants) (forward analysis)


\section*{Example: Constant Propagation}

Associate each instruction with information on variable values:
- Take information before instruction
- Transform
- Propagate result to successors
(Domain) (check for constants) (forward analysis)


\section*{Example: Constant Propagation}

Associate each instruction with information on variable values:
- Take information before instruction
- Transform
- Propagate result to successors
(Domain) (check for constants) (forward analysis)


\section*{Example: Constant Propagation}

Associate each instruction with information on variable values:
- Take information before instruction
- Transform
- Propagate result to successors
(Domain)
(check for constants) (forward analysis)


\section*{Example: Constant Propagation}

Associate each instruction with information on variable values:
- Take information before instruction
- Transform
- Propagate result to successors
(Domain)
(check for constants) (forward analysis)


\section*{Example: Constant Propagation}

Associate each instruction with information on variable values:
- Take information before instruction
- Transform
- Propagate result to successors
(Domain)
(check for constants) (forward analysis)


\section*{Example: Constant Propagation}

Associate each instruction with information on variable values:
- Take information before instruction
- Transform
- Propagate result to successors
(Domain)
(check for constants) (forward analysis)


\section*{Abstract Domain}

Represents information known about the program:
- Based on partial orders (lattices)
- Information is refined by descending the lattice
- Special elements:
- T (Top):

The top-most element in the lattice, representing that no information is yet available
- \(\perp\) (Bottom):

The least element, representing contradicting information
- Example: constant propagation


\section*{Transfer Functions}

Transform the information Domain \(\rightarrow\) Domain
- Capture the effect of instructions on the analysis information
- Can be almost freely defined
- Example: constant propagation
\[
t(i, I)= \begin{cases}J \backslash\{(v, x) \mid(v, x) \in I\} \cup\{(v, \hat{c})\} & , \text { if } i \text { is } v=\hat{c} \\ J \backslash\{(v, x) \mid(v, x) \in I\} \cup\{(v, x) \mid(w, x) \in I\} & , \text { if } i \text { is } v=w \\ I \backslash\{(v, x) \mid(v, x) \in I\} \cup\{(v, \perp)\} & , \text { if } i \text { is } v=\ldots \\ I & , \text { otherwise. }\end{cases}
\]

\section*{Meet/Join Operation}

Combine information at control-flow joins:
- Find least upper/greatest lower bound of two values
- Need to satisfy certain properties
- Monotonicity ensures termination
- Distributivity ensures optimal solution using iterative solving
- Notation:
- \(a \sqcap b\) (meet operator): smallest common ancestor of \(a\) and \(b\)
- \(a \sqcup b\) (join operator): greatest common descendent of \(a\) and \(b\)

\section*{Example: Join of Constant Propagation}

The lattice for constant propagation is shown below:
- 1 ப \(2=\perp\) :

The variable is either 1 or 2 depending on the predecessor. After a join we know that it is not constant, i.e., \(\perp\).
- \(\top \sqcup 2=2\) :

The variable is 2 at one predecessor. No information is available for the other predecessor. After a join the variable could still be constant, i.e., 2.


\section*{Static Analysis Contexts}

Two problems:
- The behavior of an instruction might depend on call nesting \(\Longrightarrow\) Possibly resulting in different information
- An instruction might be executed several times \(\Longrightarrow\) Possibly resulting in different information

\section*{Static Analysis Contexts}

Two problems：
－The behavior of an instruction might depend on call nesting \(\Longrightarrow\) Possibly resulting in different information
－An instruction might be executed several times
\(\Longrightarrow\) Possibly resulting in different information
－Contexts：
－Associate one or more contexts with each instruction
－Allows to differentiate between diverging information

\section*{Example: Loop Contexts}

- Duplicate basic blocks
- Each copy represents a set of loop iterations
- BB4: Iteration 1
- BB4': Iteration 2
- BB4": Iteration 3 - \(n\)
- Each copy might represent different information

Value Range Analysis

\section*{Value Range Analysis}

Determine for each variable the range of possible values:
- Extension of constant propagation (from before)
- Find constant lower- and upper-bounds for each variable
- We will only consider a simplified analysis here
- What is done with it?
- Needed for cache analysis
- Used in loop bounds analysis
- Used to detect infeasible conditions
(access addresses)
(loop bounds)
(flow-facts)

\section*{Value Range Analysis in a Nutshell}

\section*{Domain:}
- Set of triples over all program variables
- Variable \(\times \mathbb{N} \times \mathbb{N}\)

Transfer functions:
- Perform arithmetic on value ranges
(interval arithmetic)
- Example: Addition \([a, b]+[c, d]=[a+c, b+d]\)

Join operator:
- \([a, b] \sqcup[c, d]=[\min (a, c), \max (b, d)]\)

\section*{Group Exercise: Range Analysis}

Determine the range of memory addresses accessed by x[i]:
- Assume that x is a global variable at address \(0 \times 100\)
- Each element of \(x\) is 4 bytes large
- What are the initial states of the analysis?
- Which role plays the condition if (i<10)?
\[
\begin{aligned}
& \text { for }(i=0 ; i<10 ; i++) \\
& \quad \times[i]=0 ;
\end{aligned}
\]

(a) Program source
(b) Machine-level control-flow graph

\section*{Example: Range Analysis}


\section*{Outline}

\section*{Sub-Module Outline}
1. Static Program Analysis
2. Worst-Case Execution Time Analysis
- Definitions
- Static analysis vs. measurements
- Implicit Path Enumeration

\section*{Worst-Case Execution Time}

\section*{Worst-Case Execution Time}

Real-time systems:
- So far in this course:
- Scheduling of real-time tasks
- Each task \(\tau_{i}\) has a Worst-Case Execution Time \(C_{i}\) (WCET)
- Each task \(\tau_{i}\) has a deadlines \(\left(D_{i}\right)\)
- Can we schedule the whole system?
- Next few sessions:
- How can we define the WCET ?
- How can we determine the WCET \(\left(C_{i}\right)\) ?
- How long does it take to finish a computation? \(\Longrightarrow\) We need to analyze (reason about) the program!

\section*{Worst-Case Execution Time (2)}

Some definitions related to timing analysis:


Assume we could observe all possible inputs/executions.

\section*{Worst-Case Execution Time Bound}

Actually, we search for a WCET bound
- Safety:

A bound is safe when it is larger than any observable actual WCET \(\Longrightarrow\) How can we ensure that the obtained bound is safe?
- Overestimation:

Imprecision in the analysis lead to overestimation \(\Longrightarrow\) How can we ensure that the bound is tight?
- From now on: WCET denotes the WCET bound WCET ... WCET bound actual WCET ... WCET

\section*{Factors Impacting the WCET}

Factors that may impact the WCET:
- The program source (algorithm)
- The program input (data)
- The compiler (generating machine-level code)
- The hardware platform
- Processor pipeline
- Computational units
- Branch prediction
- Caches
- Buffers
- Main memory
- Bus arbitration
- ...
- Other tasks in the system (preemption, competition)

\section*{WCET Challenges}

What is so difficult with that?
- What is the program doing?
- Or: which instructions are executed?
- Depends on algorithms/programing languages/ compilers/...
- Often also dependent on program inputs
- What are the possible inputs?
- Usually too many options to explore them all
- How long do the instructions take?
- Highly dependent on hardware design

\section*{WCET Analysis Approaches}

Three main approaches:
- Measurements:
- Simply run the program many times (testing)
- Covering all classes of inputs
- Covering all execution paths
- Take maximum (multiplied by \(x\) )
- Probabilistic Analysis:
(requires preconditions)
- Take measurements (as above)
- Fit a probabilistic distribution
- Select WCET subject to a threshold using the distribution
- Static Program Analysis:
(generally safe)
- Analyze code by abstractions, e.g., data-flow analysis
- Extract and annotate information from/to code
- Safe WCET when abstractions are safe

\section*{Example: Static WCET Analysis}


Three analysis phases:

\section*{Example: Static WCET Analysis}


Three analysis phases:
(1) Loop bounds \& flow facts

\section*{Example: Static WCET Analysis}


Three analysis phases:
(1) Loop bounds \& flow facts
(2) Pipeline \& caches

\section*{Example: Static WCET Analysis}


Three analysis phases:
(1) Loop bounds \& flow facts
(2) Pipeline \& caches
(3) Longest path search (IPET)

\section*{What's next?}
- Today:
- Loop bounds and flow-facts analysis
(Step 1)
- Pipeline analysis
- Implicit path enumeration
(Step 2)
(Step 3)

\section*{Loop Bounds and Flow Facts}

\section*{Flow Facts}

Information on infeasible program executions:
- Loop bounds:

The number of iterations of a loop can not exceed a given constant \(k\).
- Recursion bounds:

May refer to recursion depth (depth of call tree) or number of total recursive calls (number of nodes in the call tree).
- Mutual exclusion:

Two branch conditions \(a\) and \(b\) are mutually exclusive, i.e., \(a \Rightarrow \neg b\).
- Generic flow facts:

Relate the execution frequencies of two program points to each other.

\section*{Simple Loop Bounds}

Trivial analysis for counting loops:
- Easily recognizable patterns
- Simply take results from range analysis
- Example:
```

for (int i = 0; i < n; i++) {
}

```

\section*{Complex Loop Bounds}

Beyond the scope of this course:
- Two major sources of complexity:
- Complex conditions
- Nested loops where inner bounds depend on outer loops
- Great challenge for analysis
(manual annotations)
- Former case is equivalent to the halting problem (NP-hard)
- The later case is well understood
- Loops in real-time software are typically well-behaved

\section*{Example: Complex Loops Bounds}

Construct linear equations describing iteration space
- Equations specify a (parametric) polytope
- Count the number of integer points within the polytope
```

for(int i = 0; i < n; i++)
for(int j = i; j < 2*n; j+2)

```

(a) Program code
(b) Corresponding polytope

Pipeline Analysis

\section*{Pipeline Analysis}

Compute potential states of the processor pipeline:
- Hardware utilization captured using state machines
- Abstract interpretation:
- Brute force enumeration of all possible states
- Sets of pipeline states
- Compute all potential successor states (Transfer functions)
- Take union of all states on joins
- Abstractions are difficult due to dynamic pipeline behavior \(\Longrightarrow\) Interaction with caches, branch prediction, ... \(\Longrightarrow\) Predictable processors have been proposed \({ }^{1}\)

\footnotetext{
\({ }^{1}\) http://patmos.compute.dtu.dk/
}

\section*{Instruction Timing}

How do we obtain the instruction timing?
- Consider all states involving a given instruction
- From the first attempt to fetch the instruction ...
- To its completion in the pipeline
- Problem:
- Execution of instructions may overlap
- Same time instant is counted several times
- Solution:
- Consider basic blocks (sequences of instructions) at once
- Consider states in the middle of control-flow edges
- Find longest sequence from incoming to outgoing edge (longest path search on an acyclic graph)

\section*{Example: Pipeline Analysis}

Assume a pipelined MIPS processor
- With 5-stages (IF, ID, EX, MEM, WB)
- Branches execute in EX (2 branch delay slots)
- Instruction and data caches with 16 byte blocks
- IF/MEM are stalled on cache misses for a cycle
- We consider all possible cache states
```

0x14 addi \$2, \$0, 3
L1:
0x18 lw \$3, 0x200(\$2)
0x1C add \$4, \$4, \$3
0x20 bne \$2, \$0, L1
0x24 addi \$2, \$2, -1
0x2C nop

```

\section*{Example: Pipeline Analysis States}
\begin{tabular}{|r|l|}
\hline IF & addi \(\$ 2, \$ 0,3\) \\
\hline ID & nop \\
\hline EX & nop \\
\hline MEM & nop \\
\hline WB & nop \\
\hline
\end{tabular}


\section*{Example: Pipeline Analysis Critical Path}
\begin{tabular}{|r|l|}
\hline IF & addi \(\$ 2, \$ 0,3\) \\
\hline ID & nop \\
\hline EX & nop \\
\hline MEM & nop \\
\hline WB & nop \\
\hline
\end{tabular}


\section*{Limitations}

Which cases are covered by the analysis?
- Contiguous execution of the program
- No interrupts
- No preemption
(perturbation of pipeline state) (requires interrupts)
- No faults (electric glitches)
- No operating system calls (often excluded from analysis)
- No interference in multi-core architectures
- Software correctness
- Analysis considers all cases right or wrong
- But does not distinguish between them
- That is somebody else's problem

\title{
Implicit Path Enumeration Technique (aka. IPET)
}

\section*{Bounding the WCET}

What have we got so far?
- Analysis of program semantics:
(Step 1)
- Range analysis of program variables
- Analysis of loop bounds
- Analysis of generic flow constraints
- Analysis of hardware behavior:
(Step 2)
- Analysis of pipeline states
- Missing: Caches and branch predictors

\section*{Bounding the WCET}

What is left to do?
- Actually bounding the WCET
- Problem statement:
- Find longest execution from program start to its termination
- Variants: find longest execution of a loop/function/...
- Equivalent to the longest paths in the control-flow graph
- Nodes of the graph represent basic blocks
- Edge weights represent basic block execution times (cf. pipeline analysis)

\section*{Longest Paths in Directed Acyclic Graphs}

Apply dynamic programming to weighted DAG \(G=(V, E, \mathcal{W})\) :
1. Compute a topological order
2. Visit each node \(n\) according to the topological order Compute:
\[
\operatorname{dist}(n)=\max _{(m, n) \in E} \operatorname{dist}(m)+\mathcal{W}(m, n)
\]

\section*{Simple algorithm in linear time \(O(|V|+|E|)\).}

\section*{Limitations}

Dynamic programming can not cope with:
- Cyclic graphs
- Flow facts
(loops)
(infeasible paths)

\section*{Realistic programs cannot be handled.}

\section*{Implict Path Enumeration Technique (IPET)}

Build linear equations modeling execution flow:
- Control-flow edges are represented by flow variables
- Flow variables indicate the number of times code executes
- Build a huge linear equation system
- Solved using standard software (e.g., CPLEX, Gurobi, Ipsolve)
- Maximize execution flows according to edge weights
- Kirchhoff's law:

The sum of the flow entering a control-flow node has to match the flow leaving the node.

\section*{IPET Base Equations}

Given a weighted control-flow graph \(G=(V, E, \mathcal{W})\) and a mapping of edges to flow variables \(\mathcal{F}\) :
- Flow for program entry \(r\) :
\[
\sum_{(r, n) \in E} \mathcal{F}(r, n)=1
\]
- Flow for program exit \(t\) :
\[
\sum_{(n, t) \in E} \mathcal{F}(n, t)=1
\]
- Flow equations of node \(n \in V\) :
\[
\forall n \in V: \sum_{(k, n) \in E} \mathcal{F}(k, n)=\sum_{(n, m) \in E} \mathcal{F}(n, m)
\]
- Maximizing:
\[
\max . \sum_{(m, n) \in E} \mathcal{F}(m, n) \cdot \mathcal{W}(m, n)
\]

\section*{Loop Bounds in IPET}

Given a reducible loop \(L\) with bound \(\hat{b}\) and loop header \(h\) :
\[
\sum_{(n, h) \in E} \mathcal{F}(n, h) \leq \hat{b} \cdot \sum_{(n, h) \notin L} \mathcal{F}(n, h)
\]

Example:

- Loop: \(L=\left\{h, \ldots, h_{1}, l_{2}\right\} \quad\) (red)
- Header: \(h\) (darker node)
- Pre-entries: \(n_{1}, n_{2} \notin L\)
- Equations:
\[
e_{1}+e_{2}+e_{3}+e_{4} \leq \hat{b} \cdot\left(e_{1}+e_{2}\right)
\]

\section*{Group Exercise: Infeasible Paths in IPET}

Determine the equations to exclude the highlighted path:

- Assume that the in-flow of \(i f_{1}\) might be larger than 1
- Hint:

Think about the flows related to node \(i f_{2}\)

\section*{Group Exercise: Infeasible Paths in IPET}

Determine the equations to exclude the highlighted path:

- Assume that the in-flow of \(i f_{1}\) might be larger than 1
- Hint:

Think about the flows related to node \(i f_{2}\)
- Solution:
\[
e_{6} \leq e_{4}
\]

\section*{Example: IPET}


\section*{Example: IPET (2)}


Maximize : \(2 \cdot 0+2 \cdot 1+3 \cdot 0+3 \cdot 0+\)
\[
7 \cdot 1+0+5 \cdot 1+1+5 \cdot 9
\]

\section*{Summary}
－Worst－case execution time
－Bounds vs．actual WCET
－Overestimation
－Obtaining WCET estimations
－Static program analysis
－Measurements
－Probabilistic analysis
（guaranteed safe）
（safety not guaranteed）
（some prerequisites）
－Static WCET analysis
－Based on data－flow analysis／abstract interpretation
－Value range analysis
－Pipeline analysis
－Implicit path enumeration
（software behavior） （hardware behavior）
（compute WCET）```

