


# LOW POWER TECHNIQUES OVERVIEW – FOR SOC

Master 2 – SETI | Paris-Saclay University

Farhat THABET, CEA LIST, Saclay | 14/12/2021



# System Power = Dynamic Power + Static Power

**Note:** Static Power part is not important compared to Dynamic Power part.



# **POWER OVERVIEW** : DYNAMIC POWER – SWITCHING PART

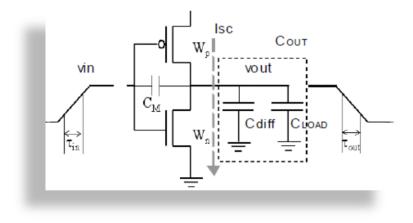
Power generated due to output/signal changes, thus charging and discharging the load capacitance.

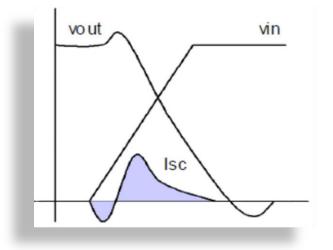
Switching power dissipates mainly depend on the :

- System Clock Frequency
- Activity Switching Frequency

Switching Power Calculation depends on the three factors

- C Load Capacitance
- *f Switching Freqency*
- V Voltage


$$P_S = C * V^2 * f$$




# **POWER OVERVIEW** : DYNAMIC POWER – INTERNAL PART

- Short circuit path has been created between power and ground at the transition stage
- Thus the **short circuit current** is generated
- Power dissipation due to this temporary short circuit path and the internal capacitance is Internal Power
- Depends on some factors,
  - Input edge time
  - Slew Rate
  - Internal Capacitances

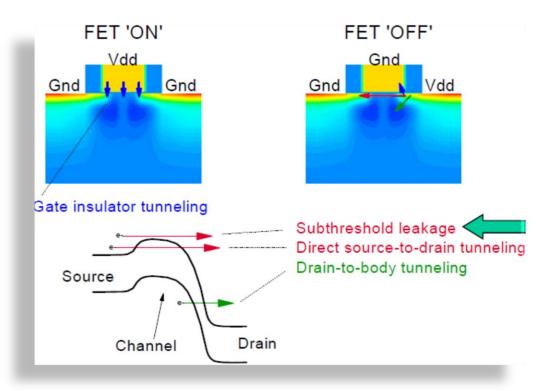
$$P_I = V * I_{SC}$$







**Dynamic power** is the sum of **switching power** and **internal power** 


$$P_{D} = P_{S} + P_{I}$$

$$P_{D} = C * V^{2} * f + V * I_{SC}$$

$$P_{D} \stackrel{\sim}{=} C_{eff} * V^{2} * f_{switch}$$

# **STATIC POWER**

- Due to non-idle characteristic of the transistor the leakages can be taken place
- **Static power** is nothing, but **leakage power**
- There are two main types of leakages and their subsidiaries
  - *I*<sub>OFF</sub> Sub-threshold leakage (Drain Leakage Current)
    - I<sub>D,weak</sub> Sub threshold Drain Current
    - *I<sub>inv</sub> Reverse Biased Current*
    - I<sub>GIDL</sub> Gate Induced Drain Leakage
  - I<sub>GATE</sub> Gate Leakage Current
    - I<sub>TUNNEL</sub> Gate Tunneling
    - *I<sub>HC</sub>* Hot Carrier Injection





### **POWER ESTIMATION**

Mostly based on the tech libraries

Based on two major calculations

- Activity
  - The number of toggles per clock cycle on the signal, averaged over many cycles
- **Probability**, and **Percentage** of the time that the signal will be high

| 0 10ns 20 30 40 | Activity | Probability |
|-----------------|----------|-------------|
|                 | 2.0      | 0.5         |
| N1              | 0.5      | 0.9         |
| N2              | 1.0      | 0.5         |

P = (time at logic 1) total time Clock cycle boundaries do not matter

- DVFS Dynamic Voltage Frequency Scaling
- DPM, Clock Gating, Power Gating
- ☐ Multi VDD, Voltage Islands
- Device Level
  - Multi Threshold Devices
  - Low Capacitance in device
  - High k Hf based MOS

# DVFS – Dynamic Voltage Frequency Scaling

- DPM, Clock Gating, Power Gating
- Multi VDD, Voltage Islands

Device Level

- Multi Threshold Devices
- Low Capacitance in device
- High k Hf based MOS

## LOW POWER TECHNIQUES : DVFS - DYNAMIC VOLTAGE AND FREQUENCY SCALING (1/3)

DVFS is a method to provide variable amount of energy for a task by scaling the operating voltage/frequency.

Power consumption of a CMOS-based circuit is :

 $\boldsymbol{P}_{\boldsymbol{D}} \doteq \boldsymbol{\alpha} \ast \boldsymbol{C}_{eff} \ast \boldsymbol{V}^2 \ast \boldsymbol{f}$ 

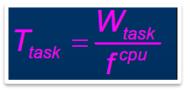
α : switching factor
 C<sub>eff</sub> : effective capacitance
 V : operating voltage
 f : operating frequency

**Energy** required to run a task during T is :


 $E = P \cdot T \propto V2$ 

(assuming  $V \propto f$ ,  $T \propto f-1$ )

By **lowering** CPU frequency, CPU energy can be saved.


# LOW POWER TECHNIQUES : DVFS - DYNAMIC VOLTAGE AND FREQUENCY SCALING (2/3)

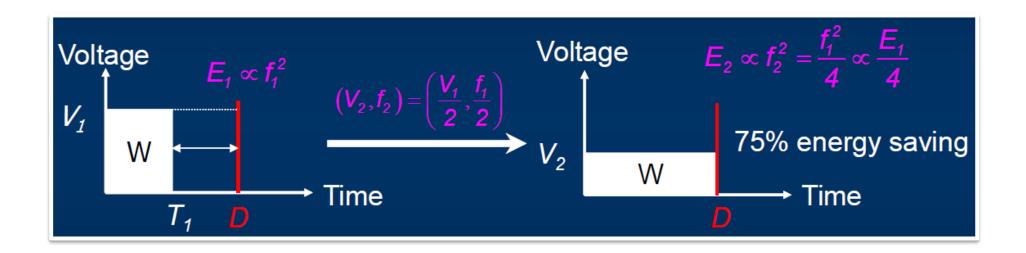
- Choosing a frequency in DVFS
  - Workload of a task, W<sub>task</sub>, is defined as the total number of CPU clock cycles required to finish the task :



N : total number of instructions in a task CPI : clock cycles per instruction

Task execution time,  $T_{task}$ , is a function of the CPU frequency,  $f^{cpu}$ 




• Given a deadline of D,  $f_{target}$  denotes the CPU frequency that results in  $T_{task}$  closest to D

$$f_{target} = rac{W_{task}}{D} \implies T_{task} = D$$

## list <sup>Ceatech</sup>

# LOW POWER TECHNIQUES : DVFS - DYNAMIC VOLTAGE AND FREQUENCY SCALING (3/3)

Example : a task with workload W should be completed by a deadline, D.



DVFS is an effective way of reducing the CPU energy consumption by providing "justenough" computation power.

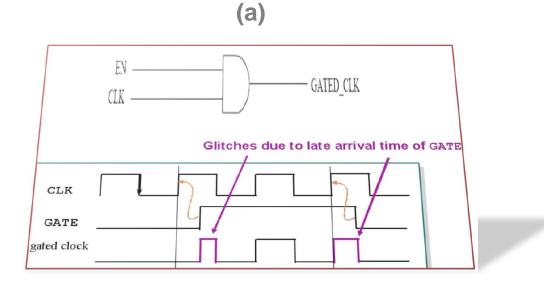
# DVFS – Dynamic Voltage Frequency Scaling

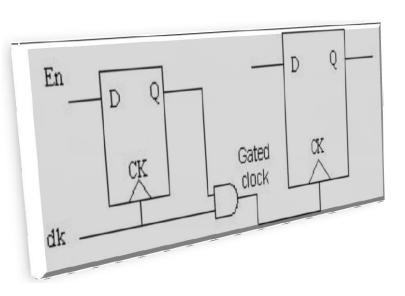
- DPM, Clock Gating, Power Gating
- Multi VDD, Voltage Islands
- Device Level
  - Multi Threshold Devices
  - Low Capacitance in device
  - High k Hf based MOS

#### LOW POWER TECHNIQUES : DPM, CLOCK GATING, POWER GATING (1/5)

- Clock Circuitry Power Consumption
  - 15 to 45% of **Total Power**
  - P (clock circuitry) ∝ Frequency
- Clock tree consume more than 50 % of dynamic power. The components of this power are:
  - Power consumed by **combinatorial logic** whose values are changing on each clock edge, and
  - Power consumed by flip-flops

Activity of Functional Units


A (units) < 50% in Execution Time</p>


#### list <sup>Ceatech</sup>

## LOW POWER TECHNIQUES : DPM, CLOCK GATING, POWER GATING (2/5)

Clock Gating and Power Reduction : two types :

- a. Latch-free clock gating
- b. Latch-based clock gating



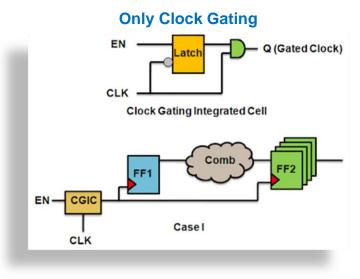


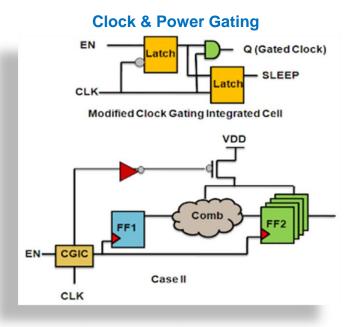




# LOW POWER TECHNIQUES : DPM, CLOCK GATING, POWER GATING (3/5)

# Clock Main Idea


- Clock Circuitry Gating (Case I)
- Shutting/Power down Unused Partitions (Case II)


# Implementation

- Creating Local Clocks
- Buffers or Flip-Flops with enable or/and Sleep signal

# Net Effects

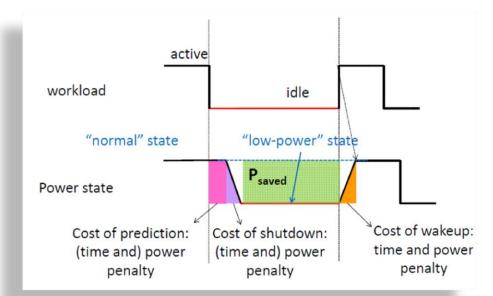
- Reduction of Unnecessary Switching
  - Reduction of Clock Circuitry
- Power Consumption Reduction



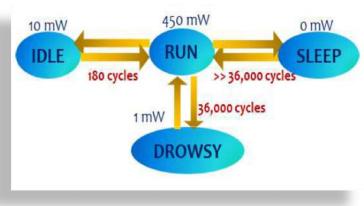


# LOW POWER TECHNIQUES : DPM, CLOCK GATING, POWER GATING (4/5)

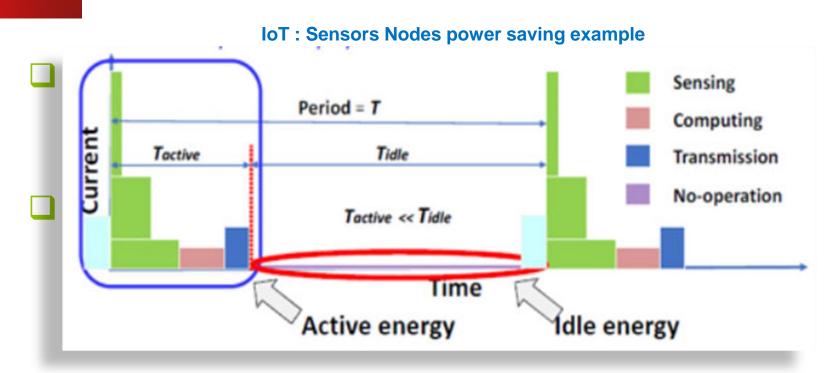
Dynamic Power Management Main Idea


- Active the good power mode of each system component
- Shutting/Idle/Sleep down unused components

Implementation


- Inactivity period prediction and/or calculation depending in workload
- Optimal power states definition and activation

# Component Effects


- Power down unused/inactive components
- Power Consumption Reduction







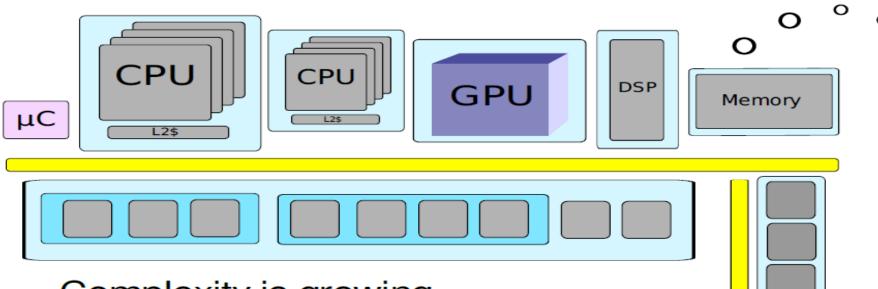
# LOW POWER TECHNIQUES : DPM, CLOCK GATING, POWER GATING (5/5)



**Architecture** 

Component Effects

list


Ceatech

- Power down unused/inactive components
- Power Consumption Reduction

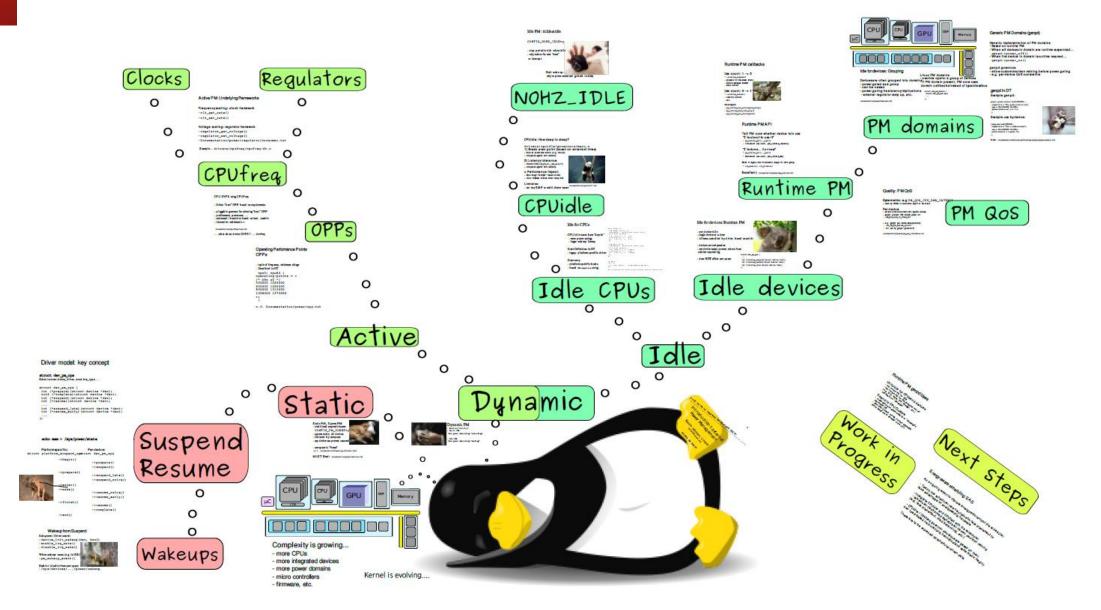




# LOW POWER TECHNIQUES : RUNTIME SUPPORT (1/2)



Complexity is growing...


- more CPUs
- more integrated devices
- more power domains
- micro controllers
- firmware, etc.

Kernel is evolving....

To support several power management techniques

#### list <sup>Ceatech</sup>

# LOW POWER TECHNIQUES : RUNTIME SUPPORT (2/2)



DVFS – Dynamic Voltage Frequency Scaling

DPM, Clock Gating, Power Gating

# ☐ Multi VDD, Voltage Islands

Device Level

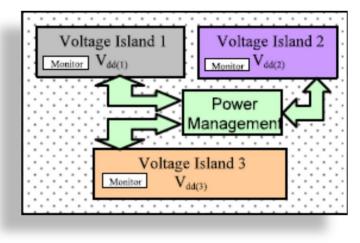
- Multi Threshold Devices
- Low Capacitance in device
- High k Hf based MOS



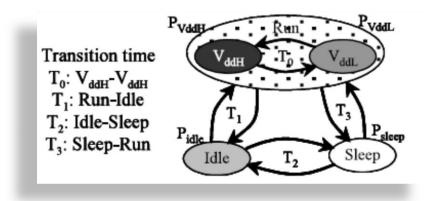
# LOW POWER TECHNIQUES : MULTI VDD, VOLTAGE ISLAND

# Multi-VDD design Main Idea

- Allows a finite number of supply voltages depending on power requirements of the system.
- Dynamic change of voltage supply depending on the workload


# Implementation

- Multi-VDD design sectors
- Advanced optimal power states definition and activation


# Component Effects

- Fine Grain Power management
- Power Consumption Reduction

#### Multiple Voltage Island Design



#### Power State Machine (PSM) with Multi-VDD

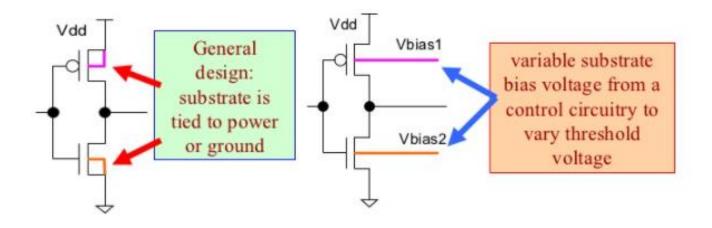


DVFS – Dynamic Voltage Frequency Scaling

- DPM, Clock Gating, Power Gating
- Multi VDD, Voltage Islands

Device Level

- Multi Threshold Devices
- Low Capacitance in device
- High k Hf based MOS


# LOW POWER TECHNIQUES : MULTI-THRESHOLD DEVICES (CMOS)

list

Ceatech

Multi-threshold is one kind of CMOS which is a deviation in the chip technology.

- It has transistor with **multiple threshold voltages** in order to optimize delay or power.
- It can achieve a lower threshold voltage, and therefore, higher performance as well as smaller standby leakage current.
- Simple threshold of making MOS with multiple threshold voltages is to apply different bias voltage to the body or substrate terminal of the transistors.
- It enables high performance and low power operation, but requires sequential circuit structures that can retain state during standby modes.





# Thank you Any Question ?

#### LOW POWER TECHNIQUES OVERVIEW - SOC DESIGN

Master 2 – SETI | Paris-Saclay University

Farhat THABET, CEA LIST, Saclay | 14/12/2021