TELECOM
ParisTech

Critical Embedded Real-Time Systems

Systéemes Temps Réel Embarqués Critiques

STREC - WCET - Introduction

Florian Brandner
Télécom ParisTech

Outline

Sub-Module Outline

1. Static Program Analysis

e Program Representation
e Program Semantics
o Data-Flow Analysis

2. Worst-Case Execution Time Analysis

TELECOM
ParisTech

3/60 =524 i |

Program Representation

Reason About Program Behavior

Goals:
e We would like to reason about the behavior of a program
e We would like to make definitive statements about a program
Examples:

The code that is actually executed by the program
Global data/memory cells accessed by the program
Size of the stack used by the program

Questions:
e What does a program actually do?
e What is the semantics of the program?
e How can a program be represented (in order to reason about it)?

TELECOM
ParisTech

5/60 =524 i |

Example: A Simple Program
C Source Code

6/60

int count_str (char

int ¢ = 0;

if (!'x)
return -1;

while (*x) {
if (»x !'="_")

c++;

X++;

return c;

*X)

MIPS Assembly

count_str:
beqz
nop

continue:
1b
nop
beqgz
move

loop-start:

addiu
xori
1b
sltu
bnez
addu
loop—end:
jr
nop
exit:
jr
1i

a0, 38 exit

al,0(a0)

al,30 loop-end
v0, zero

a0,al0,1
vl,al,0x20
al,0(a0)
vl,zero,vl

al,18 loop-start
v0,v0,vl

ra
ra
v0, -1 mHEH

Compiler

From C source to assembly: (somewhat simplified)

e Textual representation of the program (C source code)
— The compiler parses of the source code

¢ Data structure representing code (Abstract Syntax Tree)
= The compiler translates the program to machine code

e Machine code representation (Control-Flow Graph)
— The compiler generates the final executable

TELECOM
ParisTech

7/60 =524 i |

Compiler

From C source to assembly: (somewhat simplified)

e Textual representation of the program (C source code)
— The compiler parses of the source code

¢ Data structure representing code (Abstract Syntax Tree)
= The compiler translates the program to machine code

e Machine code representation (Control-Flow Graph)
— The compiler generates the final executable

What is a control-flow graph (CFG)?

TELECOM
ParisTech

7/60 =524 i |

Control-Flow Graph

Data structure to represent code:

e Represented as a form of graph
e Graph nodes:

¢ Individual instructions or
e Sequences of instructions called basic block

e Graph edges:
¢ Link from a graph node (instruction) to another
¢ Instructions that might execute after executing aninstruction
(Basic blocks that might execute after executing a basic block)

e This allows to represent all possible executions of a
program from start to end

TELECOM
ParisTech

8/60 =524 i |

Example: Control-Flow Graph
®

beqz 20,38 exit
nop

T S

1b al,0(a0)

nop

beqz al,30 loop-end
move v0,zero

T S

addiu a0,a0,1
xori v1,al,0x20

1b al,0(a0)

sltu vl,zero,vl

bnez al,18 loop-start
addu v0,v0, vl

jr ra
1i v0,-1

TELECUE

9/60 >@

Program Semantics

Control-flow graphs are merely a program representation:

e A CFG only indicates which instructions may
succeed/proceed other instructions (or basic blocks)

e A CFG does not say anything about program semantics
(What is the program doing?)

e The semantics depends on the instructions within the CFG

TELECOM
ParisTech

10/60 =524 i |

Program Semantics

Control-flow graphs are merely a program representation:

e A CFG only indicates which instructions may
succeed/proceed other instructions (or basic blocks)

e A CFG does not say anything about program semantics
(What is the program doing?)

e The semantics depends on the instructions within the CFG

We need something in addition to reason about programs ...

TELECOM
ParisTech

10/60 =524 i |

Data-Flow Analysis
aka. Abstract Interpretation

Data-Flow Analysis

One technique to reason about programs:
e This is often called static analysis
¢ Model the flow of information through a program
e Based on a generic framework

o Abstractions (aka. Domain)
¢ Transformation functions (Domain — Domain)
¢ Meet/join operator (Domain x Domain — Domain)

e Given an instance of a framework

¢ Build and solve data-flow equations
¢ Obtain over- or under-approximation of program behavior

TELECOM
ParisTech

12/60 =524 i |

Example: Constant Propagation

Determine whether a variable always has a constant value:

x =17
x = 7;
if (...)
y = 6;
else [v = = x]
y = X%
print (y);
(a) Program source (b) Machine-level control-flow graph

TELECOM
ParisTech

13/60 =524 i |

Example: Constant Propagation

Associate each instruction with information on variable values:

e Take information before instruction (Domain)

¢ Transform (check for constants)

¢ Propagate result to successors (forward analysis)
? {=T), 6T}

{1, T}
{&=T), 6T}

{&=T), 6T}
), (v, T}

TELECOM
ParisTech

14/60 =524 i |

Example: Constant Propagation

Associate each instruction with information on variable values:
e Take information before instruction (Domain)
¢ Transform (check for constants)
¢ Propagate result to successors (forward analysis)

? {7, 1}
(x-7])

. >
{7, M}

TELECOM
ParisTech

14/60 =524 i |

Example: Constant Propagation

Associate each instruction with information on variable values:

e Take information before instruction (Domain)
¢ Transform (check for constants)
¢ Propagate result to successors (forward analysis)

TELECOM
ParisTech

14/60 =524 i |

Example: Constant Propagation

Associate each instruction with information on variable values:

e Take information before instruction (Domain)
¢ Transform (check for constants)
¢ Propagate result to successors (forward analysis)

{(X, 7)7 (Y7 T)})
{7, 0,7}

TELECOM
ParisTech

14/60 =524 i |

Example: Constant Propagation

Associate each instruction with information on variable values:

e Take information before instruction (Domain)
¢ Transform (check for constants)
¢ Propagate result to successors (forward analysis)

{(x7 7)’ (y’ 7)} \)

2\ 2
(pring] {(x,7), (3 1)}

TELECOM
ParisTech

14/60 =524 i |

Example: Constant Propagation

Associate each instruction with information on variable values:

e Take information before instruction (Domain)
¢ Transform (check for constants)
¢ Propagate result to successors (forward analysis)

<{(X7 7, T}

TELECOM
ParisTech

14/60 =524 i |

Example: Constant Propagation

Associate each instruction with information on variable values:

e Take information before instruction (Domain)
¢ Transform (check for constants)
¢ Propagate result to successors (forward analysis)

</{(x’ 7)’ (y’ T)}
{=7),(,6)}

TELECOM
ParisTech

14/60 =524 i |

Example: Constant Propagation

Associate each instruction with information on variable values:

e Take information before instruction (Domain)
¢ Transform (check for constants)
¢ Propagate result to successors (forward analysis)

{67, (,6))
(

TELECOM
ParisTech

14/60 =524 i |

Abstract Domain

Represents information known about the program:
e Based on partial orders (lattices)
¢ Information is refined by descending the lattice
e Special elements:
o T (Top):

The top-most element in the lattice, representing that no
information is yet available

e | (Bottom):
The least element, representing contradicting information

e Example: constant propagation

\\\///

15/60 =524 i |

Transfer Functions

Transform the information Domain — Domain

o Capture the effect of instructions on the analysis
information

e Can be almost freely defined

e Example: constant propagation

I\ A(v,x)|(v,x) e U {(v,C)} Jifiisv==2e

) DAl e BU{vlw.x) €y itiis v =

(D=9 1\ {(v.x)l(v.x) € FU{(v, 1)} ifiisv—...
/ , otherwise.

TELECOM
ParisTech

16/60 =524 i |

Meet/Join Operation

Combine information at control-flow joins:
e Find least upper/greatest lower bound of two values

¢ Need to satisfy certain properties

e Monotonicity ensures termination
o Distributivity ensures optimal solution using iterative solving

e Notation:

e arl b (meet operator):
smallest common ancestor of aand b

e allb (join operator):
greatest common descendent of aand b

TELECOM
ParisTech

17/60 =524 i |

Example: Join of Constant Propagation

The lattice for constant propagation is shown below:
e 12 =1:
The variable is either 1 or 2 depending on the predecessor.
After a join we know that it is not constant, i.e., L.

e TLI2=2:
The variable is 2 at one predecessor. No information is
available for the other predecessor. After a join the variable
could still be constant, i.e., 2.

—00 —

—al

o0

TELECOM
ParisTech

18/60 =524 i |

Static Analysis Contexts

Two problems:

e The behavior of an instruction might depend on call nesting
— Possibly resulting in different information

¢ An instruction might be executed several times
— Possibly resulting in different information

TELECOM
ParisTech

19/60 =524 i |

Static Analysis Contexts

Two problems:

e The behavior of an instruction might depend on call nesting
— Possibly resulting in different information

¢ An instruction might be executed several times
— Possibly resulting in different information

e Contexts:

e Associate one or more contexts with each instruction
¢ Allows to differentiate between diverging information

TELECOM
ParisTech

19/60 =524 i |

Example: Loop Contexts

e Duplicate basic blocks

e Each copy represents a set
of loop iterations
e BB4: Iteration 1
3 loop contexts « BB4’: lteration 2
e BB4”: Iteration 3 — n

e Each copy might represent
different information

TELECOM
ParisTech

20/60 =51 fii |

Value Range Analysis

Value Range Analysis

Determine for each variable the range of possible values:
e Extension of constant propagation (from before)
e Find constant lower- and upper-bounds for each variable
e We will only consider a simplified analysis here

e What is done with it?

¢ Needed for cache analysis (access addresses)
e Used in loop bounds analysis (loop bounds)
o Used to detect infeasible conditions (flow-facts)

TELECOM
ParisTech

22/60 =524 i |

Value Range Analysis in a Nutshell

Domain:
e Set of triples over all program variables
e Variable xN x N

Transfer functions:
e Perform arithmetic on value ranges (interval arithmetic)

e Example: Addition
[a, b] + [c,d]=[a+c, b+ d]

Join operator:
« [a,b]Uc, d] = [min(a, ¢), max(b, d)]

TELECOM
ParisTech

23/60 =524 i |

Group Exercise: Range Analysis

Determine the range of memory addresses accessed by x[i]:
¢ Assume that x is a global variable at address 0x100
e Each element of x is 4 bytes large

What are the initial states of the analysis?

Which role plays the condition i£ (i <10)?

for(i = 0; 1 < 10; i++)

YV
xli) = 0; :

(if G < 1) goto L1)

Ie
®

(a) Program source (b) Machine-level control-flow graph gtz
24/60 mEET

Example: Range Analysis

{& T, M}
Ll:

{(@x,T,T),(1,T,T)} .
{@,T,T)}
(if (i < 10) goto L1]

{(T, M} {(, T, T}

F

TELECOM
ParisTech

25/60 =51 fii |

Example: Range Analysis

{& T, M}
Ll:

{(@x,T,T),(1,T,T)} .
{@,T,T)}
(if (i < 10) goto L1]

{(T, M} {(, T, T}

F

TELECOM
ParisTech

25/60 =51 fii |

Example: Range Analysis

{(1,0,0)}

L1:
{(@x,T,T),(1,T,T)} .
{GT,M)}

(if (i < 10) goto L1]

{(T, M} {(, T, T}

F

TELECOM
ParisTech

25/60 =51 fii |

Example: Range Analysis

{(1,0,0)}

Ll:

{(@x,256,259), (,0,0)}
{GE, T, T}

(if (i < 10) goto L1]

{(T, M} {(, T, T}

F

TELECOM
ParisTech

25/60 =51 fii |

Example: Range Analysis

{(1,0,0)}

Ll:

{(@x,256,259), (,0,0)}
{E,1,1)}
(if (i < 10) goto L1]

{(T, M} {(, T, T}

F

TELECOM
ParisTech

25/60 =51 fii |

Example: Range Analysis

{(1,0,0)}

Ll:

{(@x,256,259), (,0,0)}
{E,1,1)}
(if (i < 10) goto L1]

{(T, M} {G, 1,1}

F

TELECOM
ParisTech

25/60 =51 fii |

Example: Range Analysis

{@1,0,1)}

Ll:

{(@x,256,259), (,0,0)}
{E,1,1)}
(if (i < 10) goto L1]

{(T, M} {1, 1)}

F

TELECOM
ParisTech

25/60 =51 fii |

Example: Range Analysis

{@1,0,1)}

Ll:

{(@x,256,263), (i,0,1)}
{E,1,1)}

(if (i < 10) goto L1]

{(T, M} {1, 1)}

F

TELECOM
ParisTech

25/60 =51 fii |

Example: Range Analysis

{(1,0,9)}

L1:
{(@x, 256,296), (i,0,9)}

{(i,1,10)}

(if (i < 10) goto L1]

{(i,10,10)} {(i,1,9)}

F

TELECOM
ParisTech

25/60 =51 fii |

Outline

Sub-Module Outline

1. Static Program Analysis
2. Worst-Case Execution Time Analysis

o Definitions
¢ Static analysis vs. measurements
o Implicit Path Enumeration

TELECOM
ParisTech

27/60 =524 i |

Worst-Case Execution Time

Worst-Case Execution Time

Real-time systems:
e So farin this course:
Scheduling of real-time tasks
Each task 7; has a Worst-Case Execution Time C; (WCET)
Each task 7; has a deadlines (D;)
Can we schedule the whole system?

e Next few sessions:
¢ How can we define the WCET ?
e How can we determine the WCET (C;)?
e How long does it take to finish a computation?
— We need to analyze (reason about) the program!

TELECOM
ParisTech

29/60 =524 i |

Worst-Case Execution Time (2)

Some definitions related to timing analysis:

AN
Worst-Case Execution Time Bound
. Worst-Case Execution Time
8
E; Best-Case Execution Time
%
W Average Execution Time
I
Overestimation
—
' ' >
Execution Time
Assume we could observe all possible inputs/executions. -
TELECOM
ParisTech

30/60 =524 i |

Worst-Case Execution Time Bound

Actually, we search for a WCET bound

o Safety:
A bound is safe when it is larger than any observable actual WCET
— How can we ensure that the obtained bound is safe?

¢ Overestimation:
Imprecision in the analysis lead to overestimation
— How can we ensure that the bound is tight?

e From now on: WCET denotes the WCET bound
WCET ... WCET bound actual WCET ... WCET

TELECOM
ParisTech

31/60 =524 i |

Factors Impacting the WCET

Factors that may impact the WCET:
The program source (algorithm)
The program input (data)
The compiler (generating machine-level code)
The hardware platform

e Processor pipeline
Computational units
Branch prediction
Caches
Buffers
Main memory

Bus arbitration
e ...

Other tasks in the system (preemption, competition)

TELECOM
ParisTech

32/60 =524 i |

WCET Challenges

What is so difficult with that?
e What is the program doing?

¢ Or: which instructions are executed?

¢ Depends on algorithms/programing languages/
compilers/. ..

o Often also dependent on program inputs

e What are the possible inputs?
o Usually too many options to explore them all

e How long do the instructions take?
o Highly dependent on hardware design

TELECOM
ParisTech

33/60 =524 i |

WCET Analysis Approaches

Three main approaches:
e Measurements: (no guarantee)
Simply run the program many times (testing)
Covering all classes of inputs
Covering all execution paths
Take maximum (multiplied by x)

¢ Probabilistic Analysis: (requires preconditions)
¢ Take measurements (as above)
o Fit a probabilistic distribution
o Select WCET subject to a threshold using the distribution

e Static Program Analysis: (generally safe)
¢ Analyze code by abstractions, e.g., data-flow analysis
o Extract and annotate information from/to code
o Safe WCET when abstractions are safe

TELECOM
ParisTech

34/60 =524 i |

Example: Static WCET Analysis

Three analysis phases:

35/60

Example: Static WCET Analysis

Three analysis phases:

(1) Loop bounds &
flow facts

TELECOM
ParisTech

35/60 =524 i |

Example: Static WCET Analysis

Three analysis phases:

X @ /X
W(BB1) = 3 [BB1 J [BB2 J W(BB2) =7 (1) Loop bounds &
/ \4 b/\b) N flow facts
< x <

[BB3 j [BB4 j (2) Pipeline & caches
W(BB3) =1

W(BB4) = 5

W(BB5) = 1

TELECOM
ParisTech

35/60 =51 fii |

Example: Static WCET Analysis

Three analysis phases:

(1) Loop bounds &
flow facts

(2) Pipeline & caches

(3) Longest path search
(IPET)

TELECOM
ParisTech

35/60 =i b |

What’s next?

e Today:
¢ Loop bounds and flow-facts analysis (Step 1)
¢ Pipeline analysis (Step 2)
¢ Implicit path enumeration (Step 3)

TELECOM
ParisTech

36/60 =524 i |

Loop Bounds and Flow Facts

Flow Facts

38/60

Information on infeasible program executions:
¢ Loop bounds:

The number of iterations of a loop can not exceed a given
constant k.

Recursion bounds:
May refer to recursion depth (depth of call tree) or number
of total recursive calls (number of nodes in the call tree).

Mutual exclusion:
Two branch conditions a and b are mutually exclusive, i.e.,
a= —b.

Generic flow facts:
Relate the execution frequencies of two program points to

each other.
TELECOM
ParisTech

57 {i |

Simple Loop Bounds

Trivial analysis for counting loops:
e Easily recognizable patterns (covers most loops)
e Simply take results from range analysis
o Example:
for (int i = 0; 1 < n; i++) {

}

TELECOM
ParisTech

39/60 =51 fii |

Complex Loop Bounds

Beyond the scope of this course:
¢ Two major sources of complexity:

o Complex conditions
¢ Nested loops where inner bounds depend on outer loops

e Great challenge for analysis (manual annotations)

e Former case is equivalent to the halting problem (NP-hard)
e The later case is well understood

¢ Loops in real-time software are typically well-behaved

TELECOM
ParisTech

40/60 =524 i |

Example: Complex Loops Bounds

Construct linear equations describing iteration space

e Equations specify a (parametric) polytope

¢ Count the number of integer points within the polytope

3 q

8 + ¢

for(int i = 0; i < n; i++) 7+
{ 6T 9
for(int j = i; J < 2%n; J+2) 5+

{ 4+ e

} 24
} 1+

(a) Program code

41/60

(b) Corresponding polytope

TELECOM
ParisTech

57 {i |

Pipeline Analysis

Pipeline Analysis

Compute potential states of the processor pipeline:
e Hardware utilization captured using state machines

e Abstract interpretation:

Brute force enumeration of all possible states

Sets of pipeline states (Domaine)
Compute all potential successor states (Transfer functions)
Take union of all states on joins (Meet)
Abstractions are difficult due to dynamic pipeline behavior
= Interaction with caches, branch prediction, ...

— Predictable processors have been proposed!

"http:/patmos.compute.dtu.dk/

TELECOM
ParisTech

43/60 =524 i |

http://patmos.compute.dtu.dk/

Instruction Timing

How do we obtain the instruction timing?
e Consider all states involving a given instruction

o From the first attempt to fetch the instruction ...
¢ To its completion in the pipeline

e Problem:

¢ Execution of instructions may overlap
e Same time instant is counted several times

e Solution:

¢ Consider basic blocks (sequences of instructions) at once

o Consider states in the middle of control-flow edges

¢ Find longest sequence from incoming to outgoing edge
(longest path search on an acyclic graph)

TELECOM
ParisTech

44/60 =524 i |

Example: Pipeline Analysis

Assume a pipelined MIPS processor

e With 5-stages (IF, ID, EX, MEM, WB)
Branches execute in EX (2 branch delay slots)
Instruction and data caches with 16 byte blocks
IF/MEM are stalled on cache misses for a cycle
We consider all possible cache states

0x14 addi $2, $0, 3
Ll:

0x18 1w $3, 0x200($2)

0x1C add $4, $4, $3

0x20 bne $2, $0, L1

0x24 addi $2, s$2, -1

0x2C nop

TELECOM
ParisTech

45/60 =524 i |

Example: Pipeline Analysis States

46/60

addi 52, 50 3
nop
mop
nop
WE | nop.
I
TF [Tw 83 0x200(52)
addi 52, 50, 3
nop
nop
nop
add 51, 51, 53 add ST, 51, 53
Tw 53, 0x200(52) TD [Tw 93, 0x200(52)
addi 52, 50, 3 EX | nop.
nop TEM | addi 82,52, —T
nop WE | bue 52, 50, LT
[nop (stall] [nop (stall]
D | add 5154, 83 D [add 51,54, 53
EX [Tw 53, 0x200(52) EX [Tw 53, 0x200(52)
EM | addi 52, 50, 3 VEM | nop
WE | nop. V5 | addi 52, 52, 1
[bno 52, 50, LT TF hncim, S0, L1 T [bne 52,50, LT TF [bne 52,50, L1
TD | add 51,51, 53 0 | nop 0 | nop D [add i, 54,53
EX [Tw 53, 0x200(52) EX [add ST, 51,53 EX [add ST, 51, 53 EX [Tw 53, 0x200(52)
TEN | addi 52, 50, 3 HEM | Tw 53, 0x200(52) Tw 53, 0x200(52) | [1EM | nop
WE | nop. WE [addi 52,50, 3 mop WE | addi 52,52, 1
e 52,50, LT
0 [nop
X [add 5151, 53
Tw 53, 0x200(52) (stall)
nop
addi 52,52, 1 TF [addi 52,52 1 addi 52,52, 15
be 52, 50, LT D hnc 52,50, L1 be 52, 50, L1
add 51, 54, 53 EX | noj add 51, 54, 53
Tw 53, oxzon(w FE eSS 200(52)
addi 5 WE | Tw 53 mzomn) WE
TF [addis2, 52, 1
T [bne 8250, T
EX | add 51, 54, 53 1
VEM | Tw 53, 0x200(32) (stall]
W5 | nop.
[nop TF [mop
D [addis? 52 1 D [addi 52, 52 1
EX [bne 52, 50, L1 EX [bne 52, 50, L1
WEN | add 51, 54, 53 WEN | nop.
WE | Tw 53, 0x200(52) WE | add ST, 54, 53
T I

TELECOM
ParisTech

I

Example: Pipeline Analysis Critical Path

addi 52, 50 3
nop
nop
nop
nop

I |
T [Tw 53, 0220005 T iw 55, 0:20052)
addi 52, 50, 3 0 [mop

nop EX | addi 52,52,
nop TEN | bne 52, 50, L1
nop WE | add 51,51

I
add 1, 51, 53
Tw 53, 0x200(52)
addi 52,50, 3

[nop (stall]
D | add 5154, 83
EX [Tw 53, 0x200(52)

EM | addi 52, 50, 3

WE | nop.
]

[bno 52, 50, LT TF [bne 52,50, LT TF [bne 52,50, LT
TD | add 51,51, 53 0 | nop TD [add 51,51, 53
EX [Tw 53, 0x200(52) EX [add ST, 51,53 EX [Tw 53, 0x200(52)

TEN | addi 52, 50, 3 HEM | Tw 53, 0x200(52) EN | nop.
WE | nop. addi $2, 50, 5 WE | addi 52,52, 1

addi 52,52, 1
bne 52, §0. LT
51,54, 53

TF [addi 52,82, 15
O [bne 82, 50, LT
EX | add 51, 54, 53

TF [addis2, 52, 1

T [bne 8250, T

EX | add 51, 54, 53
VEN | Tw 33, 0x200(52) (stall]
W5 | nop.

addi 52,52, 1

bne 52, 50, LT

WEN | add 51, 54, 53

WE | Tw 53, 0x200(52)
T

g

; i
TF [Tw 83 05200052 TF | Tw $3. 05200052 TELECOM
D | mop 1D | nop ParisTech
EX | addi52. 57, 1 FX | addiSZ 531

TEN | bne 52, 50, L1 VEN | bne 82, 50, L1

47/60 W5 [add 51,54, 53 we

Limitations

Which cases are covered by the analysis?
e Contiguous execution of the program

No interrupts (perturbation of pipeline state)
No preemption (requires interrupts)
No faults (electric glitches)

)

No operating system calls (often excluded from analysis
No interference in multi-core architectures

e Software correctness

¢ Analysis considers all cases right or wrong
¢ But does not distinguish between them
e That is somebody else’s problem

TELECOM
ParisTech

48/60 =524 i |

Implicit Path Enumeration Technique
(aka. IPET)

Bounding the WCET

What have we got so far?
¢ Analysis of program semantics: (Step 1)

¢ Range analysis of program variables
o Analysis of loop bounds
¢ Analysis of generic flow constraints

¢ Analysis of hardware behavior: (Step 2)

¢ Analysis of pipeline states
¢ Missing: Caches and branch predictors

TELECOM
ParisTech

50/60 =524 i |

Bounding the WCET

What is left to do?
e Actually bounding the WCET

¢ Problem statement:
¢ Find longest execution from program start to its termination
e Variants: find longest execution of a loop/function/. . .

o Equivalent to the longest paths in the control-flow graph

o Nodes of the graph represent basic blocks
e Edge weights represent basic block execution times
(cf. pipeline analysis)

TELECOM
ParisTech

51/60 =524 i |

Longest Paths in Directed Acyclic Graphs

Apply dynamic programming to weighted DAG G = (V, E, W):

1. Compute a topological order

2. Visit each node n according to the topological order
Compute:

dist(n) = max _dist(m)+ W(m, n)

(m,n)eE

Simple algorithm in linear time O(|V| + |E]).

TELECOM
ParisTech

52/60 =524 i |

Limitations

Dynamic programming can not cope with:
e Cyclic graphs (loops)
¢ Flow facts (infeasible paths)

Realistic programs cannot be handled.

TELECOM
ParisTech

53/60 =524 i |

Implict Path Enumeration Technique (IPET)

Build linear equations modeling execution flow:
e Control-flow edges are represented by flow variables

e Flow variables indicate the number of times code executes

¢ Build a huge linear equation system

¢ Solved using standard software (e.g., CPLEX, Gurobi, Ipsolve)
o Maximize execution flows according to edge weights

¢ Kirchhoff’s law:
The sum of the flow entering a control-flow node has to
match the flow leaving the node.

TELECOM
ParisTech

54/60 =524 i |

IPET Base Equations

Given a weighted control-flow graph G = (V, E, W) and a
mapping of edges to flow variables F:
e Flow for program entry r:

Z F(r,n) =1

(r,n)eE

e Flow for program exit f:

> F(nt)=

(n,t)eE

e Flow equations of node n € V:

vneVv: > F(kny= > F(n,m)

(k,meE (n,meE
¢ Maximizing:

max. > F(m,n)-W(m,n)

TELECOM
(m,n) 6 E

55/60 =524 i |

Loop Bounds in IPET

Given a reducible loop L with bound b and loop header h:

> F(n.h)y<b- Y F(nh)

(n,h)eE (n,h)gL

Example:

Loop: L= {h,....h, b} (red)

n) Cm
DR

. . e Header: h (darker node)
® Pre-entries: ny,n. ¢ L
y e Equations:
Cn) (e) e1+e+es+e<b-(e+e)

56/60

TELECOM
ParisTech

57 {i |

Group Exercise: Infeasible Paths in IPET

Determine the equations to exclude the highlighted path:

e Assume that the in-flow of
ify might be larger than 1
e Hint:
Think about the flows
related to node ifs

TELECOM
ParisTech

57/60 =524 i |

Group Exercise: Infeasible Paths in IPET

Determine the equations to exclude the highlighted path:

e Assume that the in-flow of
ify might be larger than 1

e Hint:
Think about the flows
related to node ifs

e Solution:

€ < €4

TELECOM
ParisTech

57/60 =524 i |

Example: IPET

x

58/60

€1
(oo) (e
10 N2 6N, x =7

W) =1

e =
e =62+ 63
€2 = €4+ 65
€3 = €5
€4 = €7
€5+ €5 + €10 = €3 + €10
€7+ e =69
e =1

€5+ 6 + €10 < 10 - (&5 + &)

Maximize : 2e> + 2e3 + 3e4 + 3es+
7es + €7 + 5es + e9 + 5eqp

TELECOM
ParisTech

57 {i |

Example: IPET (2)

1=1
=0+1
0=0+0
W(BBO) = 2 1=1
x := 10 x =7 O:O
W(BB1) = 3 W(BB2) =7 0+14+9=1+9
0+1=1
1=1

W(BB4) = 5

W(BBS) = 1
0+1+9<10-(0+1)

Maximize:2-0+2-1+3-0+3-0+

7-1+0+5-1+1+5-9

TELECOM
ParisTech

59/60 EHETN

Summary

e Worst-case execution time

e Bounds vs. actual WCET
e Overestimation

e Obtaining WCET estimations

e Static program analysis (guaranteed safe)
o Measurements (safety not guaranteed)
¢ Probabilistic analysis (some prerequisites)

e Static WCET analysis
¢ Based on data-flow analysis/abstract interpretation

¢ Value range analysis (software behavior)
¢ Pipeline analysis (hardware behavior)
¢ Implicit path enumeration (compute WCET)

TELECOM
ParisTech

60/60 =524 i |

