
Critical Embedded Real-Time Systems
Systèmes Temps Réel Embarqués Critiques

STREC - WCET - Introduction

Florian Brandner
Télécom ParisTech

x
Outline

Sub-Module Outline

1. Static Program Analysis
• Program Representation
• Program Semantics
• Data-Flow Analysis

2. Worst-Case Execution Time Analysis

3/60

x
Program Representation

Reason About Program Behavior

Goals:
• We would like to reason about the behavior of a program
• We would like to make definitive statements about a program

Examples:
• The code that is actually executed by the program
• Global data/memory cells accessed by the program
• Size of the stack used by the program
• . . .

Questions:
• What does a program actually do?
• What is the semantics of the program?
• How can a program be represented (in order to reason about it)?

5/60

Example: A Simple Program
C Source Code MIPS Assembly

int count_str(char *x) {
int c = 0;

if (!x)
return -1;

while(*x) {
if (*x != ’ ’)
c++;

x++;
}

return c;
}

count_str:
beqz a0,38 exit
nop

continue:
lb a1,0(a0)
nop
beqz a1,30 loop-end
move v0,zero

loop-start:
addiu a0,a0,1
xori v1,a1,0x20
lb a1,0(a0)
sltu v1,zero,v1
bnez a1,18 loop-start
addu v0,v0,v1

loop-end:
jr ra
nop

exit:
jr ra
li v0,-16/60

Compiler

From C source to assembly: (somewhat simplified)

• Textual representation of the program (C source code)
=⇒ The compiler parses of the source code

• Data structure representing code (Abstract Syntax Tree)
=⇒ The compiler translates the program to machine code

• Machine code representation (Control-Flow Graph)
=⇒ The compiler generates the final executable

What is a control-flow graph (CFG)?

7/60

Compiler

From C source to assembly: (somewhat simplified)

• Textual representation of the program (C source code)
=⇒ The compiler parses of the source code

• Data structure representing code (Abstract Syntax Tree)
=⇒ The compiler translates the program to machine code

• Machine code representation (Control-Flow Graph)
=⇒ The compiler generates the final executable

What is a control-flow graph (CFG)?

7/60

Control-Flow Graph

Data structure to represent code:
• Represented as a form of graph
• Graph nodes:

• Individual instructions or
• Sequences of instructions called basic block

• Graph edges:
• Link from a graph node (instruction) to another
• Instructions that might execute after executing an instruction

(Basic blocks that might execute after executing a basic block)

• This allows to represent all possible executions of a
program from start to end

8/60

Example: Control-Flow Graph
r

beqz a0,38 exit
nop

lb a1,0(a0)
nop
beqz a1,30 loop-end
move v0,zero

addiu a0,a0,1
xori v1,a1,0x20
lb a1,0(a0)
sltu v1,zero,v1
bnez a1,18 loop-start
addu v0,v0,v1

jr ra
nop

jr ra
li v0,-1

t9/60

Program Semantics

Control-flow graphs are merely a program representation:
• A CFG only indicates which instructions may

succeed/proceed other instructions (or basic blocks)

• A CFG does not say anything about program semantics
(What is the program doing?)

• The semantics depends on the instructions within the CFG

We need something in addition to reason about programs . . .

10/60

Program Semantics

Control-flow graphs are merely a program representation:
• A CFG only indicates which instructions may

succeed/proceed other instructions (or basic blocks)

• A CFG does not say anything about program semantics
(What is the program doing?)

• The semantics depends on the instructions within the CFG

We need something in addition to reason about programs . . .

10/60

x
Data-Flow Analysis

aka. Abstract Interpretation

Data-Flow Analysis

One technique to reason about programs:
• This is often called static analysis
• Model the flow of information through a program
• Based on a generic framework

• Abstractions (aka. Domain)
• Transformation functions (Domain→ Domain)
• Meet/join operator (Domain × Domain→ Domain)

• Given an instance of a framework
• Build and solve data-flow equations
• Obtain over- or under-approximation of program behavior

12/60

Example: Constant Propagation

Determine whether a variable always has a constant value:

x = 7;
if (...)

y = 6;
else

y = x;
print(y);

(a) Program source
myMIPS morekeywords=add,sub,jr,addi,addu,or,ori,sll,sllv,div,slt,slti,lw,sw,beq,bne,nop,mul,subi,j,jal,

sensitive=true, morecomment=[s]//,

r

x = 7

if (...)

y = 6 y = x

print(y)

t

T F

(b) Machine-level control-flow graph

13/60

Example: Constant Propagation
Associate each instruction with information on variable values:
• Take information before instruction (Domain)
• Transform (check for constants)
• Propagate result to successors (forward analysis)

r

x = 7

if (...)

y = 6 y = x

print(y)

t

T F

{(x,>), (y,>)}

{(x,>), (y,>)}

{(x,>), (y,>)}

{(x,>), (y,>)}

{(x,>), (y,>)}

{(x,>), (y,>)}
{(x,>), (y,>)}

14/60

Example: Constant Propagation
Associate each instruction with information on variable values:
• Take information before instruction (Domain)
• Transform (check for constants)
• Propagate result to successors (forward analysis)

r

x = 7

if (...)

y = 6 y = x

print(y)

t

T F

{(x,>), (y,>)}

{(x, 7), (y,>)}

{(x,>), (y,>)}

{(x,>), (y,>)}

{(x,>), (y,>)}

{(x,>), (y,>)}
{(x,>), (y,>)}

14/60

Example: Constant Propagation
Associate each instruction with information on variable values:
• Take information before instruction (Domain)
• Transform (check for constants)
• Propagate result to successors (forward analysis)

r

x = 7

if (...)

y = 6 y = x

print(y)

t

T F

{(x,>), (y,>)}

{(x, 7), (y,>)}

{(x,>), (y,>)}

{(x,>), (y,>)}

{(x, 7), (y,>)}

{(x,>), (y,>)}
{(x,>), (y,>)}

14/60

Example: Constant Propagation
Associate each instruction with information on variable values:
• Take information before instruction (Domain)
• Transform (check for constants)
• Propagate result to successors (forward analysis)

r

x = 7

if (...)

y = 6 y = x

print(y)

t

T F

{(x,>), (y,>)}

{(x, 7), (y,>)}

{(x,>), (y,>)}

{(x,>), (y,>)}

{(x, 7), (y,>)}

{(x, 7), (y, 7)}
{(x,>), (y,>)}

14/60

Example: Constant Propagation
Associate each instruction with information on variable values:
• Take information before instruction (Domain)
• Transform (check for constants)
• Propagate result to successors (forward analysis)

r

x = 7

if (...)

y = 6 y = x

print(y)

t

T F

{(x,>), (y,>)}

{(x, 7), (y,>)}

{(x,>), (y,>)}

{(x,>), (y,>)}

{(x, 7), (y,>)}

{(x, 7), (y, 7)}
{(x, 7), (y, 7)}

14/60

Example: Constant Propagation
Associate each instruction with information on variable values:
• Take information before instruction (Domain)
• Transform (check for constants)
• Propagate result to successors (forward analysis)

r

x = 7

if (...)

y = 6 y = x

print(y)

t

T F

{(x,>), (y,>)}

{(x, 7), (y,>)}

{(x, 7), (y,>)}

{(x,>), (y,>)}

{(x, 7), (y,>)}

{(x, 7), (y, 7)}
{(x, 7), (y, 7)}

14/60

Example: Constant Propagation
Associate each instruction with information on variable values:
• Take information before instruction (Domain)
• Transform (check for constants)
• Propagate result to successors (forward analysis)

r

x = 7

if (...)

y = 6 y = x

print(y)

t

T F

{(x,>), (y,>)}

{(x, 7), (y,>)}

{(x, 7), (y,>)}

{(x, 7), (y, 6)}

{(x, 7), (y,>)}

{(x, 7), (y, 7)}
{(x, 7), (y, 7)}

14/60

Example: Constant Propagation
Associate each instruction with information on variable values:
• Take information before instruction (Domain)
• Transform (check for constants)
• Propagate result to successors (forward analysis)

r

x = 7

if (...)

y = 6 y = x

print(y)

t

T F

{(x,>), (y,>)}

{(x, 7), (y,>)}

{(x, 7), (y,>)}

{(x, 7), (y, 6)}

{(x, 7), (y,>)}

{(x, 7), (y, 7)}
{(x, 7), (y,⊥)}

14/60

Abstract Domain

Represents information known about the program:
• Based on partial orders (lattices)
• Information is refined by descending the lattice

• Special elements:
• > (Top):

The top-most element in the lattice, representing that no
information is yet available

• ⊥ (Bottom):
The least element, representing contradicting information

• Example: constant propagation
>

⊥

−∞ . . . −1 0 1 . . . ∞

15/60

Transfer Functions

Transform the information Domain→ Domain
• Capture the effect of instructions on the analysis

information
• Can be almost freely defined

• Example: constant propagation

t(i, I) =


I \ {(v , x)|(v , x) ∈ I} ∪ {(v , ĉ)} , if i is v = ĉ
I \ {(v , x)|(v , x) ∈ I} ∪ {(v , x)|(w , x) ∈ I} , if i is v = w
I \ {(v , x)|(v , x) ∈ I} ∪ {(v ,⊥)} , if i is v = . . .
I , otherwise.

16/60

Meet/Join Operation

Combine information at control-flow joins:
• Find least upper/greatest lower bound of two values
• Need to satisfy certain properties

• Monotonicity ensures termination
• Distributivity ensures optimal solution using iterative solving

• Notation:
• a u b (meet operator):

smallest common ancestor of a and b

• a t b (join operator):
greatest common descendent of a and b

17/60

Example: Join of Constant Propagation

The lattice for constant propagation is shown below:
• 1 t 2 = ⊥:

The variable is either 1 or 2 depending on the predecessor.
After a join we know that it is not constant, i.e., ⊥.

• > t 2 = 2:
The variable is 2 at one predecessor. No information is
available for the other predecessor. After a join the variable
could still be constant, i.e., 2.

>

⊥

−∞ . . . −1 0 1 . . . ∞

18/60

Static Analysis Contexts

Two problems:
• The behavior of an instruction might depend on call nesting
=⇒ Possibly resulting in different information

• An instruction might be executed several times
=⇒ Possibly resulting in different information

• Contexts:
• Associate one or more contexts with each instruction
• Allows to differentiate between diverging information

19/60

Static Analysis Contexts

Two problems:
• The behavior of an instruction might depend on call nesting
=⇒ Possibly resulting in different information

• An instruction might be executed several times
=⇒ Possibly resulting in different information

• Contexts:
• Associate one or more contexts with each instruction
• Allows to differentiate between diverging information

19/60

Example: Loop Contexts

r

BB0

BB1 BB2

BB3 BB4

BB4’

BB4”

BB5

t

3 loop contexts

• Duplicate basic blocks

• Each copy represents a set
of loop iterations

• BB4: Iteration 1
• BB4’: Iteration 2
• BB4”: Iteration 3− n

• Each copy might represent
different information

20/60

x
Value Range Analysis

Value Range Analysis

Determine for each variable the range of possible values:
• Extension of constant propagation (from before)
• Find constant lower- and upper-bounds for each variable
• We will only consider a simplified analysis here

• What is done with it?
• Needed for cache analysis (access addresses)
• Used in loop bounds analysis (loop bounds)
• Used to detect infeasible conditions (flow-facts)

22/60

Value Range Analysis in a Nutshell

Domain:
• Set of triples over all program variables
• Variable ×N× N

Transfer functions:
• Perform arithmetic on value ranges (interval arithmetic)
• Example: Addition
[a,b] + [c,d] = [a + c,b + d]

Join operator:
• [a,b] t [c,d] = [min(a, c),max(b,d)]

23/60

Group Exercise: Range Analysis
Determine the range of memory addresses accessed by x[i]:
• Assume that x is a global variable at address 0x100
• Each element of x is 4 bytes large
• What are the initial states of the analysis?
• Which role plays the condition if (i <10)?

for(i = 0; i < 10; i++)
x[i] = 0;

(a) Program source

r

i = 0

x[i] = 0L1:

i = i + 1

if (i < 10) goto L1

t

T

F

(b) Machine-level control-flow graph

24/60

Example: Range Analysis

r

i = 0

x[i] = 0L1:

i = i + 1

if (i < 10) goto L1

t

T

F

{(i,>,>)}

{(i,>,>)}

{(@x,>,>), (i,>,>)}

{(i,>,>)}

{(i,>,>)}{(i,>,>)}

25/60

Example: Range Analysis

r

i = 0

x[i] = 0L1:

i = i + 1

if (i < 10) goto L1

t

T

F

{(i, 0, 0)}

{(i,>,>)}

{(@x,>,>), (i,>,>)}

{(i,>,>)}

{(i,>,>)}{(i,>,>)}

25/60

Example: Range Analysis

r

i = 0

x[i] = 0L1:

i = i + 1

if (i < 10) goto L1

t

T

F

{(i, 0, 0)}

{(i, 0, 0)}

{(@x,>,>), (i,>,>)}

{(i,>,>)}

{(i,>,>)}{(i,>,>)}

25/60

Example: Range Analysis

r

i = 0

x[i] = 0L1:

i = i + 1

if (i < 10) goto L1

t

T

F

{(i, 0, 0)}

{(i, 0, 0)}

{(@x, 256, 259), (i, 0, 0)}

{(i,>,>)}

{(i,>,>)}{(i,>,>)}

25/60

Example: Range Analysis

r

i = 0

x[i] = 0L1:

i = i + 1

if (i < 10) goto L1

t

T

F

{(i, 0, 0)}

{(i, 0, 0)}

{(@x, 256, 259), (i, 0, 0)}

{(i, 1, 1)}

{(i,>,>)}{(i,>,>)}

25/60

Example: Range Analysis

r

i = 0

x[i] = 0L1:

i = i + 1

if (i < 10) goto L1

t

T

F

{(i, 0, 0)}

{(i, 0, 0)}

{(@x, 256, 259), (i, 0, 0)}

{(i, 1, 1)}

{(i, 1, 1)}{(i,>,>)}

25/60

Example: Range Analysis

r

i = 0

x[i] = 0L1:

i = i + 1

if (i < 10) goto L1

t

T

F

{(i, 0, 0)}

{(i, 0, 1)}

{(@x, 256, 259), (i, 0, 0)}

{(i, 1, 1)}

{(i, 1, 1)}{(i,>,>)}

25/60

Example: Range Analysis

r

i = 0

x[i] = 0L1:

i = i + 1

if (i < 10) goto L1

t

T

F

{(i, 0, 0)}

{(i, 0, 1)}

{(@x, 256, 263), (i, 0, 1)}

{(i, 1, 1)}

{(i, 1, 1)}{(i,>,>)}

25/60

Example: Range Analysis

r

i = 0

x[i] = 0L1:

i = i + 1

if (i < 10) goto L1

t

T

F

{(i, 0, 0)}

{(i, 0, 9)}

{(@x, 256, 296), (i, 0, 9)}

{(i, 1, 10)}

{(i, 1, 9)}{(i, 10, 10)}

25/60

x
Outline

Sub-Module Outline

1. Static Program Analysis
2. Worst-Case Execution Time Analysis

• Definitions
• Static analysis vs. measurements
• Implicit Path Enumeration

27/60

x
Worst-Case Execution Time

Worst-Case Execution Time

Real-time systems:
• So far in this course:

• Scheduling of real-time tasks
• Each task τi has a Worst-Case Execution Time Ci (WCET)
• Each task τi has a deadlines (Di)
• Can we schedule the whole system?

• Next few sessions:
• How can we define the WCET ?
• How can we determine the WCET (Ci)?
• How long does it take to finish a computation?

=⇒We need to analyze (reason about) the program!

29/60

Worst-Case Execution Time (2)

Some definitions related to timing analysis:

Execution Time

#
E
xe
cu

ti
o
n
s

Average Execution Time

Best-Case Execution Time

Worst-Case Execution Time

Worst-Case Execution Time Bound

Overestimation

Assume we could observe all possible inputs/executions.

30/60

Worst-Case Execution Time Bound

Actually, we search for a WCET bound
• Safety:

A bound is safe when it is larger than any observable actual WCET
=⇒ How can we ensure that the obtained bound is safe?

• Overestimation:
Imprecision in the analysis lead to overestimation
=⇒ How can we ensure that the bound is tight?

• From now on: WCET denotes the WCET bound
WCET . . . WCET bound actual WCET . . . WCET

31/60

Factors Impacting the WCET

Factors that may impact the WCET:
• The program source (algorithm)
• The program input (data)
• The compiler (generating machine-level code)
• The hardware platform

• Processor pipeline
• Computational units
• Branch prediction
• Caches
• Buffers
• Main memory
• Bus arbitration
• . . .

• Other tasks in the system (preemption, competition)

32/60

WCET Challenges

What is so difficult with that?
• What is the program doing?

• Or: which instructions are executed?
• Depends on algorithms/programing languages/

compilers/. . .
• Often also dependent on program inputs

• What are the possible inputs?
• Usually too many options to explore them all

• How long do the instructions take?
• Highly dependent on hardware design

33/60

WCET Analysis Approaches

Three main approaches:
• Measurements: (no guarantee)

• Simply run the program many times (testing)
• Covering all classes of inputs
• Covering all execution paths
• Take maximum (multiplied by x)

• Probabilistic Analysis: (requires preconditions)
• Take measurements (as above)
• Fit a probabilistic distribution
• Select WCET subject to a threshold using the distribution

• Static Program Analysis: (generally safe)
• Analyze code by abstractions, e.g., data-flow analysis
• Extract and annotate information from/to code
• Safe WCET when abstractions are safe

34/60

Example: Static WCET Analysis

r

BB0

BB1 BB2

BB3 BB4

BB5

t

W(BB0) = 2

W(BB1) = 3 W(BB2) = 7

W(BB3) = 1

W(BB4) = 5

W(BB5) = 1

x := 7 x := 10

< x < 10

WCET = 2 + 7 + 5 + 1 = 15

Three analysis phases:

(1) Loop bounds &
flow facts

(2) Pipeline & caches

(3) Longest path search
(IPET)

35/60

Example: Static WCET Analysis

r

BB0

BB1 BB2

BB3 BB4

BB5

t

W(BB0) = 2

W(BB1) = 3 W(BB2) = 7

W(BB3) = 1

W(BB4) = 5

W(BB5) = 1

x := 10 x := 7

< x < 10

WCET = 2 + 7 + 5 + 1 = 15

Three analysis phases:

(1) Loop bounds &
flow facts

(2) Pipeline & caches

(3) Longest path search
(IPET)

35/60

Example: Static WCET Analysis

r

BB0

BB1 BB2

BB3 BB4

BB5

t

W(BB0) = 2

W(BB1) = 3 W(BB2) = 7

W(BB3) = 1
W(BB4) = 5

W(BB5) = 1

x := 10 x := 7

< x < 10

WCET = 2 + 7 + 10 · 5 + 1 = 60

Three analysis phases:

(1) Loop bounds &
flow facts

(2) Pipeline & caches

(3) Longest path search
(IPET)

35/60

Example: Static WCET Analysis

r

BB0

BB1 BB2

BB3 BB4

BB5

t

W(BB0) = 2

W(BB1) = 3 W(BB2) = 7

W(BB3) = 1
W(BB4) = 5

W(BB5) = 1

x := 10 x := 7

< x < 10

WCET = 2 + 7 + 10 · 5 + 1 = 60

Three analysis phases:

(1) Loop bounds &
flow facts

(2) Pipeline & caches

(3) Longest path search
(IPET)

35/60

What’s next?

• Today:
• Loop bounds and flow-facts analysis (Step 1)
• Pipeline analysis (Step 2)
• Implicit path enumeration (Step 3)

36/60

x
Loop Bounds and Flow Facts

Flow Facts
Information on infeasible program executions:
• Loop bounds:

The number of iterations of a loop can not exceed a given
constant k .

• Recursion bounds:
May refer to recursion depth (depth of call tree) or number
of total recursive calls (number of nodes in the call tree).

• Mutual exclusion:
Two branch conditions a and b are mutually exclusive, i.e.,
a⇒ ¬b.

• Generic flow facts:
Relate the execution frequencies of two program points to
each other.

38/60

Simple Loop Bounds

Trivial analysis for counting loops:
• Easily recognizable patterns (covers most loops)
• Simply take results from range analysis

• Example:

for (int i = 0; i < n; i++) {
...

}

39/60

Complex Loop Bounds

Beyond the scope of this course:
• Two major sources of complexity:

• Complex conditions
• Nested loops where inner bounds depend on outer loops

• Great challenge for analysis (manual annotations)
• Former case is equivalent to the halting problem (NP-hard)
• The later case is well understood

• Loops in real-time software are typically well-behaved

40/60

Example: Complex Loops Bounds

Construct linear equations describing iteration space
• Equations specify a (parametric) polytope
• Count the number of integer points within the polytope

for(int i = 0; i < n; i++)
{
for(int j = i; j < 2*n; j+2)
{

...
}

}

(a) Program code

i

j

0 1 2 3 4
0
1
2
3
4
5
6
7
8
9

(b) Corresponding polytope

41/60

x
Pipeline Analysis

Pipeline Analysis

Compute potential states of the processor pipeline:
• Hardware utilization captured using state machines

• Abstract interpretation:
• Brute force enumeration of all possible states
• Sets of pipeline states (Domaine)
• Compute all potential successor states (Transfer functions)
• Take union of all states on joins (Meet)
• Abstractions are difficult due to dynamic pipeline behavior

=⇒ Interaction with caches, branch prediction, . . .
=⇒ Predictable processors have been proposed1

1http://patmos.compute.dtu.dk/

43/60

http://patmos.compute.dtu.dk/

Instruction Timing

How do we obtain the instruction timing?
• Consider all states involving a given instruction

• From the first attempt to fetch the instruction . . .
• To its completion in the pipeline

• Problem:
• Execution of instructions may overlap
• Same time instant is counted several times

• Solution:
• Consider basic blocks (sequences of instructions) at once
• Consider states in the middle of control-flow edges
• Find longest sequence from incoming to outgoing edge

(longest path search on an acyclic graph)

44/60

Example: Pipeline Analysis

Assume a pipelined MIPS processor
• With 5-stages (IF, ID, EX, MEM, WB)
• Branches execute in EX (2 branch delay slots)
• Instruction and data caches with 16 byte blocks
• IF/MEM are stalled on cache misses for a cycle
• We consider all possible cache states

0x14 addi $2, $0, 3
L1:

0x18 lw $3, 0x200($2)
0x1C add $4, $4, $3
0x20 bne $2, $0, L1
0x24 addi $2, $2, -1
0x2C nop

45/60

Example: Pipeline Analysis States
IF addi $2, $0, 3
ID nop
EX nop

MEM nop
WB nop

IF lw $3, 0x200($2)
ID addi $2, $0, 3
EX nop
MEM nop
WB nop

IF add $4, $4, $3
ID lw $3, 0x200($2)
EX addi $2, $0, 3
MEM nop
WB nop

IF nop (stall)
ID add $4, $4, $3
EX lw $3, 0x200($2)

MEM addi $2, $0, 3
WB nop

IF bne $2, $0, L1
ID nop
EX add $4, $4, $3

MEM lw $3, 0x200($2)
WB addi $2, $0, 3

IF bne $2, $0, L1
ID nop
EX add $4, $4, $3
MEM lw $3, 0x200($2) (stall)
WB nop

IF bne $2, $0, L1
ID add $4, $4, $3
EX lw $3, 0x200($2)
MEM addi $2, $0, 3
WB nop

IF addi $2, $2, −1
ID bne $2, $0, L1
EX nop

MEM add $4, $4, $3
WB lw $3, 0x200($2)

IF addi $2, $2, −1
ID bne $2, $0, L1
EX add $4, $4, $3
MEM lw $3, 0x200($2)
WB addi $2, $0, 3

IF addi $2, $2, −1
ID bne $2, $0, L1
EX add $4, $4, $3

MEM lw $3, 0x200($2) (stall)
WB nop

IF nop
ID addi $2, $2, −1
EX bne $2, $0, L1
MEM add $4, $4, $3
WB lw $3, 0x200($2)

IF nop
ID addi $2, $2, −1
EX bne $2, $0, L1

MEM nop
WB add $4, $4, $3

IF lw $3, 0x200($2)
ID nop
EX addi $2, $2, −1
MEM bne $2, $0, L1
WB add $4, $4, $3

IF lw $3, 0x200($2)
ID nop
EX addi $2, $2, −1

MEM bne $2, $0, L1
WB nop

IF lw $3, 0x200($2)
ID nop
EX addi $2, $2, −1
MEM bne $2, $0, L1
WB add $4, $4, $3

IF lw $3, 0x200($2)
ID nop
EX addi $2, $2, −1

MEM bne $2, $0, L1
WB nop

IF add $4, $4, $3
ID lw $3, 0x200($2)
EX nop

MEM addi $2, $2, −1
WB bne $2, $0, L1

IF nop (stall)
ID add $4, $4, $3
EX lw $3, 0x200($2)
MEM nop
WB addi $2, $2, −1

IF bne $2, $0, L1
ID nop
EX add $4, $4, $3

MEM lw $3, 0x200($2)
WB nop

IF bne $2, $0, L1
ID add $4, $4, $3
EX lw $3, 0x200($2)

MEM nop
WB addi $2, $2, −1

IF addi $2, $2, −1s
ID bne $2, $0, L1
EX add $4, $4, $3

MEM lw $3, 0x200($2)
WB nop

46/60

Example: Pipeline Analysis Critical Path
IF addi $2, $0, 3
ID nop
EX nop

MEM nop
WB nop

IF lw $3, 0x200($2)
ID addi $2, $0, 3
EX nop
MEM nop
WB nop

IF add $4, $4, $3
ID lw $3, 0x200($2)
EX addi $2, $0, 3
MEM nop
WB nop

IF nop (stall)
ID add $4, $4, $3
EX lw $3, 0x200($2)

MEM addi $2, $0, 3
WB nop

IF bne $2, $0, L1
ID nop
EX add $4, $4, $3

MEM lw $3, 0x200($2)
WB addi $2, $0, 3

IF bne $2, $0, L1
ID nop
EX add $4, $4, $3
MEM lw $3, 0x200($2) (stall)
WB nop

IF bne $2, $0, L1
ID add $4, $4, $3
EX lw $3, 0x200($2)
MEM addi $2, $0, 3
WB nop

IF addi $2, $2, −1
ID bne $2, $0, L1
EX nop

MEM add $4, $4, $3
WB lw $3, 0x200($2)

IF addi $2, $2, −1
ID bne $2, $0, L1
EX add $4, $4, $3
MEM lw $3, 0x200($2)
WB addi $2, $0, 3

IF addi $2, $2, −1
ID bne $2, $0, L1
EX add $4, $4, $3

MEM lw $3, 0x200($2) (stall)
WB nop

IF nop
ID addi $2, $2, −1
EX bne $2, $0, L1
MEM add $4, $4, $3
WB lw $3, 0x200($2)

IF nop
ID addi $2, $2, −1
EX bne $2, $0, L1

MEM nop
WB add $4, $4, $3

IF lw $3, 0x200($2)
ID nop
EX addi $2, $2, −1
MEM bne $2, $0, L1
WB add $4, $4, $3

IF lw $3, 0x200($2)
ID nop
EX addi $2, $2, −1

MEM bne $2, $0, L1
WB nop

IF lw $3, 0x200($2)
ID nop
EX addi $2, $2, −1
MEM bne $2, $0, L1
WB add $4, $4, $3

IF lw $3, 0x200($2)
ID nop
EX addi $2, $2, −1

MEM bne $2, $0, L1
WB nop

IF add $4, $4, $3
ID lw $3, 0x200($2)
EX nop

MEM addi $2, $2, −1
WB bne $2, $0, L1

IF nop (stall)
ID add $4, $4, $3
EX lw $3, 0x200($2)
MEM nop
WB addi $2, $2, −1

IF bne $2, $0, L1
ID nop
EX add $4, $4, $3

MEM lw $3, 0x200($2)
WB nop

IF bne $2, $0, L1
ID add $4, $4, $3
EX lw $3, 0x200($2)

MEM nop
WB addi $2, $2, −1

IF addi $2, $2, −1s
ID bne $2, $0, L1
EX add $4, $4, $3

MEM lw $3, 0x200($2)
WB nop

47/60

Limitations

Which cases are covered by the analysis?
• Contiguous execution of the program

• No interrupts (perturbation of pipeline state)
• No preemption (requires interrupts)
• No faults (electric glitches)
• No operating system calls (often excluded from analysis)
• No interference in multi-core architectures

• Software correctness
• Analysis considers all cases right or wrong
• But does not distinguish between them
• That is somebody else’s problem

48/60

x
Implicit Path Enumeration Technique

(aka. IPET)

Bounding the WCET

What have we got so far?
• Analysis of program semantics: (Step 1)

• Range analysis of program variables
• Analysis of loop bounds
• Analysis of generic flow constraints

• Analysis of hardware behavior: (Step 2)
• Analysis of pipeline states
• Missing: Caches and branch predictors

50/60

Bounding the WCET

What is left to do?
• Actually bounding the WCET

• Problem statement:
• Find longest execution from program start to its termination

• Variants: find longest execution of a loop/function/. . .

• Equivalent to the longest paths in the control-flow graph
• Nodes of the graph represent basic blocks
• Edge weights represent basic block execution times

(cf. pipeline analysis)

51/60

Longest Paths in Directed Acyclic Graphs

Apply dynamic programming to weighted DAG G = (V ,E ,W):

1. Compute a topological order

2. Visit each node n according to the topological order
Compute:

dist(n) = max
(m,n)∈E

dist(m) +W(m,n)

Simple algorithm in linear time O(|V |+ |E |).

52/60

Limitations

Dynamic programming can not cope with:
• Cyclic graphs (loops)
• Flow facts (infeasible paths)

Realistic programs cannot be handled.

53/60

Implict Path Enumeration Technique (IPET)

Build linear equations modeling execution flow:
• Control-flow edges are represented by flow variables

• Flow variables indicate the number of times code executes

• Build a huge linear equation system
• Solved using standard software (e.g., CPLEX, Gurobi, lpsolve)
• Maximize execution flows according to edge weights

• Kirchhoff’s law:
The sum of the flow entering a control-flow node has to
match the flow leaving the node.

54/60

IPET Base Equations

Given a weighted control-flow graph G = (V ,E ,W) and a
mapping of edges to flow variables F :
• Flow for program entry r : ∑

(r,n)∈E

F(r , n) = 1

• Flow for program exit t : ∑
(n,t)∈E

F(n, t) = 1

• Flow equations of node n ∈ V :

∀n ∈ V :
∑

(k,n)∈E

F(k , n) =
∑

(n,m)∈E

F(n,m)

• Maximizing:

max .
∑

(m,n)∈E

F(m, n) · W(m, n)

55/60

Loop Bounds in IPET
Given a reducible loop L with bound b̂ and loop header h:∑

(n,h)∈E

F(n,h) ≤ b̂ ·
∑

(n,h)/∈L

F(n,h)

Example:

h

n1 n2

l1 l2

e1 e2

e3 e4

• Loop: L = {h, . . . , l1, l2} (red)

• Header: h (darker node)

• Pre-entries: n1, n2 /∈ L

• Equations:

e1 + e2 + e3 + e4 ≤ b̂ · (e1 + e2)

56/60

Group Exercise: Infeasible Paths in IPET

Determine the equations to exclude the highlighted path:

if1

t1 f1

if2

t2 f2

e

e1
T e2

F

e3 e4

e5
T e6

F

e7 e8

• Assume that the in-flow of
if1 might be larger than 1

• Hint:
Think about the flows
related to node if2

• Solution:

e6 ≤ e4

57/60

Group Exercise: Infeasible Paths in IPET

Determine the equations to exclude the highlighted path:

if1

t1 f1

if2

t2 f2

e

e1
T e2

F

e3 e4

e5
T e6

F

e7 e8

• Assume that the in-flow of
if1 might be larger than 1

• Hint:
Think about the flows
related to node if2

• Solution:

e6 ≤ e4

57/60

Example: IPET

r

BB0

BB1 BB2

BB3 BB4

BB5

t

W(BB0) = 2

W(BB1) = 3 W(BB2) = 7

W(BB3) = 1 W(BB4) = 5

W(BB5) = 1

x := 10 x := 7

e1

e2 e3

e4 e5 e6

e7 e8

e9

< x < 10
e10

WCET = 2 + 7 + 10 · 5 + 1 = 60

e1 = 1

e1 = e2 + e3

e2 = e4 + e5

e3 = e6

e4 = e7

e5 + e6 + e10 = e8 + e10

e7 + e8 = e9

e9 = 1

e5 + e6 + e10 ≤ 10 · (e5 + e6)

Maximize : 2e2 + 2e3 + 3e4 + 3e5+

7e6 + e7 + 5e8 + e9 + 5e10

58/60

Example: IPET (2)

r

BB0

BB1 BB2

BB3 BB4

BB5

t

W(BB0) = 2

W(BB1) = 3 W(BB2) = 7

W(BB3) = 1 W(BB4) = 5

W(BB5) = 1

x := 10 x := 7

e1

e2 e3

e4 e5 e6

e7 e8

e9

< x < 10
e10

WCET = 2 + 7 + 10 · 5 + 1 = 60

1 = 1

1 = 0 + 1

0 = 0 + 0

1 = 1

0 = 0

0 + 1 + 9 = 1 + 9

0 + 1 = 1

1 = 1

0 + 1 + 9 ≤ 10 · (0 + 1)

Maximize : 2 · 0 + 2 · 1 + 3 · 0 + 3 · 0+
7 · 1 + 0 + 5 · 1 + 1 + 5 · 9

59/60

Summary

• Worst-case execution time
• Bounds vs. actual WCET
• Overestimation

• Obtaining WCET estimations
• Static program analysis (guaranteed safe)
• Measurements (safety not guaranteed)
• Probabilistic analysis (some prerequisites)

• Static WCET analysis
• Based on data-flow analysis/abstract interpretation
• Value range analysis (software behavior)
• Pipeline analysis (hardware behavior)
• Implicit path enumeration (compute WCET)

60/60

