{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Formal verification of deep neural networks: a tutorial\n", "\n", "The aim of this tutorial is to give a glimpse on the practical side of Formal Verification for Deep Neural Networks.\n", "This tutorial is divided in four part:\n", "1. Verification by hand\n", "2. Small problem verification\n", "3. Real use case application\n", "4. Image classification\n", "\n", "The tutorial material was written by Augustin Lemesle (CEA List) with material provided by Serge Durand (CEA) based on a previous tutorial created by Julien Girard-Satabin (CEA LIST/INRIA), Zakaria Chihani (CEA LIST) and Guillaume Charpiat (INRIA)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Part 1: Verification by hand\n", "\n", "This first part aims to give a rough overview of the challenges posed by the verification of a neural network. In the first part of the lesson you should have seen a technique called Abstract Interpretation which can leverages intervals to estimate the output of a network. You should have seen an example by hand of this method. In this part, we will developp a small class that will calculate the output automatically with intervals.\n", "\n", "### Step 1: Encode the network\n", "\n", "![image](imgs/network.png)\n", "\n", "With the above network create a function `network(x1, x2)` which reproduces its comportement. It must pass the tests created in `test_network`. For the relu layer, its function is already implemented here." ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "def relu(x):\n", " return max(0, x)\n", "\n", "def network(x1, x2):\n", " # apply all the operations\n", " x3 = 2*x1 + x2 + 1\n", " x4 = -x1 + x2\n", " x3p = relu(x3)\n", " x4p = relu(x4)\n", " x5 = 2*x4p - 0.5*x3p - 1\n", " x6 = x4p - x3p + 2\n", " y = x5 - x6\n", " return y" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "scrolled": true }, "outputs": [], "source": [ "def test_network():\n", " assert network(0, 0) == -2.5\n", " assert network(0, -1) == -3\n", " assert network(0, 1) == -1\n", " assert network(-1, 1) == -1\n", " assert network(-1, 0) == -2\n", " assert network(-1, -1) == -3\n", " assert network(1, 0) == -1.5\n", " assert network(1, -1) == -2\n", " assert network(1, 1) == -1\n", " \n", "test_network()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Step 2: Create an Interval\n", "\n", "Following the rules of interval arithmetic write a class representing an Interval by overriding Python operators. A skeleton is avalaible below.\n", "\n", "Intervals rules:\n", "- $[l, u] + \\lambda = [l + \\lambda, u + \\lambda]$\n", "- $[l, u] + [l', u'] = [l + l', u + u']$\n", "- $-[l, u] = [-u, -l]$\n", "-$[l, u] - [l', u'] = [l - u', u - l']$\n", "- $[l, u] * \\lambda =$\n", " - si $\\lambda >= 0$ -> $[\\lambda * l, \\lambda * u]$\n", " - si $\\lambda < 0$ -> $[\\lambda * u, \\lambda * l]$\n", " \n", "We will also need to update the relu for it to work on intervals.\n", "\n", "Some tests are available for you to check if the class implementation is correct." ] }, { "cell_type": "code", "execution_count": 64, "metadata": {}, "outputs": [], "source": [ "class Interval:\n", " def __init__(self, lower, upper):\n", " self.lower = lower\n", " self.upper = upper\n", " \n", " def __add__(self, other):\n", " if isinstance(other, Interval):\n", " return Interval(self.lower + other.lower, self.upper + other.upper)\n", " else:\n", " return Interval(self.lower + other, self.upper + other)\n", " \n", " def __sub__(self, other):\n", " if isinstance(other, Interval):\n", " return self.__add__(other.__neg__())\n", " else:\n", " return Interval(self.lower - other, self.upper - other)\n", " \n", " \n", " def __neg__(self):\n", " return Interval(-self.upper,-self.lower)\n", " \n", " def __mul__(self, other):\n", " if isinstance(other, Interval):\n", " return Interval(self.lower, self.upper)\n", " else:\n", " if(other < 0):\n", " return Interval(self.upper * other,self.lower * other)\n", " else:\n", " return Interval(self.lower * other, self.upper * other)\n", " \n", " \n", " def __rmul__(self, other):\n", " return self.__mul__(other)\n", " \n", " def __str__(self):\n", " return f\"[{self.lower}, {self.upper}]\"\n", "\n", " def __repr__(self):\n", " return self.__str__()\n", "\n", " def __eq__(self, other):\n", " return self.lower == other.lower and self.upper == other.upper" ] }, { "cell_type": "code", "execution_count": 65, "metadata": {}, "outputs": [], "source": [ "def relu(x):\n", " if isinstance(x, Interval):\n", " lower = max(0, x.lower)\n", " upper = max(0, x.upper)\n", " return Interval(lower, upper)\n", " else:\n", " return max(0, x)" ] }, { "cell_type": "code", "execution_count": 66, "metadata": {}, "outputs": [], "source": [ "def test_interval():\n", " assert Interval(0, 1) == Interval(0, 1)\n", " assert -Interval(0, 1) == Interval(-1, 0)\n", " assert Interval(0, 1) + Interval(1, 2) == Interval(1, 3)\n", " assert Interval(0, 1) - Interval(1, 2) == Interval(-2, 0)\n", " assert Interval(-1, 2) * 3 == Interval(-3, 6)\n", " assert Interval(-1, 2) * -3 == Interval(-6, 3)\n", " assert relu(Interval(-2, 3)) == Interval(0, 3)\n", " \n", "test_interval()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Step 3: Run the network with intervals\n", "\n", "At this point you should be able to run the network using the interval class and see the output reached." ] }, { "cell_type": "code", "execution_count": 67, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[-7.0, 5.0]\n" ] } ], "source": [ "print(network(Interval(-1, 1), Interval(-1, 1)))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Bonus step: To go further\n", "\n", "- Reproduce the first neural network from the slides to confirm the results\n", "- Implement a class for an AffineForm to compute more precise outputs" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "*****\n", "\n", "## Part 2: Small problem verification\n", "\n", "We provided a toy problem representative of current challenges in neural network verification. We also trained a deep neural network to answer this problem.\n", "\n", "The goal of this section for the participants is to formally verify that the neural network is _safe_, using the bundled tools." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Problem definition\n", "\n", "This toy problem is inspired by the Airborne Collision Avoidance System for Unmanned vehicles (ACAS-Xu) specification and threat model. \n", "\n", "![problem formulation](imgs/problem_small.png)\n", "\n", "Let A be a Guardian, and B a Threat.\n", "The goal for the Guardian is to send an ALARM when the Threat arrives too close.\n", "\n", "The Guardian has access to the following data:\n", "* The distance from B to A, $d = ||\\vec{d}||$\n", "* the speed of B, $v =||\\vec{v} ||$\n", "* the angle $\\theta$ between $\\vec{d}$ and $\\vec{v}$\n", "\n", "All values are normalized in $\\left[0,1\\right]$, the angle is not oriented.\n", "\n", "We want to define three main ”zones”:\n", "1. a **”safe”** zone: when B is in this zone, it is not considered a threat for any $||\\vec{d}|| > \\delta_2$, no ALARM is issued.\n", "2. a **”suspicious”** zone: when B is in this zone, if $||\\vec{v}|| > \\alpha$ and $\\theta < \\beta$\n", " then a ALARM should be issued. Else, no ALARM is issued.\n", "3. a **”danger”** zone: when B is in this zone, a ALARM is issued no matter what. When $||\\vec{d}|| < \\delta_1$, B is in the danger zone.\n", "\n", " \n", "### Solving this problem with a neural network\n", "\n", "A neural network was pre-trained to solve this task (all files used to this end are available). \n", "It has 5 fully connected layers, the first layer takes 3 inputs and the last layer has 1 output. There are four hidden layers: first and second hidden layers are of size 10, the third is size 5 and the fourth is size 2. We used ReLUs as activation functions. \n", "\n", "The network was trained to output a positive value if there is an alarm, and a negative value if there is no alarm. For a detailed summary of hyperparameters, you may check the defaults in `train.py`. It achieved 99.9% accuracy on the test set, with a total training set of 100000 samples.\n", "\n", "The specification used to train the network is based on :\n", "- $\\alpha = 0.5$\n", "- $\\beta = 0.25$\n", "- $\\delta_1 = 0.3$\n", "- $\\delta_2 = 0.7$\n", "\n", "We will aim to prouve that it respects these values.\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Create the safety property\n", "\n", "The trained network is in the repository, under the filename `network.onnx`. Your goal is to learn how to write a safety property and launch different tools on the network.\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Step 1: Visualization \n", "\n", "You can first visualize the network answer on the output space by sampling inputs,\n", "using the function below (**careful, it may take time if you input a big number of samples!**).\n", "\n", "`sample2d` is faster but sample only on a 2d slice, `sample3d` gives a full representation of the output space.\n", "\n", "Blue color denotes no alert, red color denotes an alert.\n" ] }, { "cell_type": "code", "execution_count": 68, "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "e8da9a4d8fc34662a3ec0b9c451ce959", "version_major": 2, "version_minor": 0 }, "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAYAAAA10dzkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAACgZklEQVR4nO29f5BlRZnn/VRf7ALD/kH9ALvrFnTAoG7ouIZjFCHaC6gRxijSbsvCitG27+6AM3aHlDrlMlIzTc2ouMpYMIBj6CzDzBZNvVVUoztKiFNu9zutKLs7C7MGzbirNGPTdrc/B9hBCm+R7x9nTvepU+dkPk/mkz/Ovc8n4kbB7XvvyZPnycxvPvnkk31KKQWCIAiCIAhCz7AmdgEEQRAEQRCEsIgAFARBEARB6DFEAAqCIAiCIPQYIgAFQRAEQRB6DBGAgiAIgiAIPYYIQEEQBEEQhB5DBKAgCIIgCEKPIQJQEARBEAShxxABKAiCIAiC0GOIABQEQRAEQegxRAAKgiAIgiD0GCIABUEQBEEQegwRgIIgCIIgCD2GCEBBEARBEIQeQwSgIAiCIAhCjyECUBAEQRAEoccQASgIgiAIgtBjiAAUBEEQBEHoMUQACoIgCIIg9BgiAAVBEARBEHoMEYCCIAiCIAg9hghAQRAEQRCEHkMEoCAIgiAIQo8hAlAQBEEQBKHHEAEoCIIgCILQY4gAFARBEARB6DFEAAqCIAiCIPQYIgAFQRAEQRB6DBGAgiAIgiAIPYYIQEEQBEEQhB5DBKAgCIIgCEKPIQJQEARBEAShxxABKAiCIAiC0GOIABQEQRAEQegxRAAKgiAIgiD0GCIABUEQBEEQegwRgIIgCIIgCD2GCEBBEARBEIQeQwSgIAiCIAhCjyECUBAEQRAEoccQASgIgiAIgtBjiAAUBEEQBEHoMUQACoIgCIIg9BgiAAVBEARBEHoMEYCCIAiCIAg9hghAQRAEQRCEHkMEoCAIgiAIQo8hAlAQBEEQBKHHEAEoCIIgCILQY4gAFARBEARB6DFEAAqCIAiCIPQYIgAFQRAEQRB6DBGAgiAIgiAIPYYIQEEQBEEQhB5DBKAgCIIgCEKPIQJQEARBEAShxzgtdgGazAsvvAA/+tGPYN26ddDX1xe7OIIgCIIgIFBKwTPPPAObN2+GNWt60xcmAtCBH/3oRzA6Ohq7GIIgCIIgWHDkyBFot9uxixEFEYAOrFu3DgAyA1q/fn3k0giCIAiCgOHpp5+G0dHRk+N4LyIC0IF82Xf9+vUiAAVBEAShYfRy+FZvLnwLgiAIgiD0MCIABUEQBEEQegwRgIIgCIIgCD2GCEBBEARBEIQeQwSgIAiCIAhCjyECUBAEQRAEoccQASgIgiAIgtBjiAAUBEEQBEHoMSQRtNAYlpcBDh4EOHYMYNMmgK1bAVqt2KUSBEEQhObRNR7Av/mbv4F3vOMdsHnzZujr64MvfelLxu8cOHAAXvva10J/fz/82q/9Gtx1113eyynYsW8fwJYtAJdeCnD11dnfLVuy94UwLC8DHDgAcM892d/l5d4sgw+69b4EQUiXrhGA//RP/wT/8l/+S7jjjjtQnz98+DC8/e1vh0svvRQeeeQRGB8fh9/6rd+CBx54wHNJBSr79gFccQXAk0+ufP/o0ez9XhSBoQVDCgI8hTL4ILX7EjHaHORZCU6oLgQA1H333af9zEc/+lH1yle+csV7V111lXrrW9+Kvs5TTz2lAEA99dRTNsUUEHQ6SrXbSgFUv/r6lBodzT5X/M7+/Urt3Zv9Lf5bN7CwsLpO2u3sfV/X6+urrvu+Pn/XTa0MWCj2l9p9hbYtwR55Vm7I+K1UzwrArVu3quuuu27Fe3feeadav3597Xeee+459dRTT518HTlypOcNyDf799eLv+Jr//7s893eKYYWDDYCnJsUyoCFYn+p3VcqYrTbJ3Ac1D2r/NUt/Z1PRAAq1TVLwFSOHz8OZ5999or3zj77bHj66afhl7/8ZeV3brrpJtiwYcPJ1+joaIiiJo3vJYhjx/Cf6/al4uVlgOuuy7r4Mvl74+O8z+DgwdX1Wb7ukSPZ53yRQhkwUO0vpfuKYVtVmJbDZclT/6xyrr22N+tGoNGzAtCG3/u934Onnnrq5OvIkSOxixSVELFLmzbhPnfWWfYDWFMGlRiCgSLAbdHV//IywDe+4b8MrtgIqBB1iyUFMWoS0B/9aFqxkrEwPSsAgJ/9DOATnwhTHqG59KwAfOlLXwonTpxY8d6JEydg/fr1cMYZZ1R+p7+/H9avX7/i1auE8rZt3QrQbgP09VX/e18fQO6ItRnAUgvA1xFDMGAFOPZzZXT1n//bxz/utwwc2Ago33VLIbYYNQlopQA+85nu9e5TwD6DP/mTdCezQhr0rAB8/etfD98ouRb++q//Gl7/+tdHKlFzCLlc1GoB3Hpr9t9lEZj//y23APz4x7jfK3aeIZeMObyMMQQDVoBv3Ur/bV39v+td2cvk6bApgw+Pr42A8lm3VGKLUYxXq4qQy9OpgH0GP/sZj8e2KSskggWxgxC5eOaZZ9TDDz+sHn74YQUA6rOf/ax6+OGH1T/8wz8opZS6/vrr1Y4dO05+/vHHH1cvfvGL1cTEhHrsscfUHXfcoVqtlvra176GvmavBpFSN2ZwUBVcPzp6KtiZWiaOAHxssDrXxpS8zHXB3742DeQB5+XrumwOMNU/9kUtg69NQrZtwkfd2hDLtnL27nW3Bdv+pmmbTjodpQYGcHWyd6/btbp5U12vjt9FukYA7t+/XwHAqtfOnTuVUkrt3LlTXXzxxau+85rXvEatXbtWnXfeeerP//zPSdfsVQPCdtaunU8ZXUdNHcCwA/biYvU1sR0j987KWILBJMCpYOvf9KKUwecuVxcBxV23tuhsC0Cp8XE7gYQRWBz2sHs3vXxNFThTU35FsVLmncbz82y3E4VeHb+LdI0AjEGvGlAMDyAGijjCitjyTLvdVmpiQi8k5ueze5+ZUWp4uP63bb0qsQRD1UBu6z3h8Pi8613464VIueIizlPxQlXZVqtlL5CwAsskoCkvbPlSSXtjQ6ej1OCgP3vGeOhbLaXm5njvKyS9On4XEQHoQK8aUOzlIh1YcbS46D7Q6DpGyudthHIKgsHFe8LlAcQO0qEmLal481zIbWt8vL59YwQSVWDVCWjqCyu4U8rBaINPAUtpn02y7SK9On4XEQHoQC8bUCqxS1VgxJFPAUh9cS+Vh8B18OHy+GAHadewBYrgTkGcu+IqkDAepIGBrB0Wf6NOQOded6y9mMqHFTiTk2k/Q44JR26vMzNKTU9nfycn8W1weFippSVfd+iPXh6/c0QAOtDrBtRkbwfHEiTXK/RSuStc3hNTzBln/WEH/Olp+3jPbsLVY0rxIJXrsk5AVz0H2/JR23/Kz9tlwmFTp1WvoaF066eOXh+/lRIB6IQYUHO9HVxLkC6vJiwzVcG5nKqbRNQtQZZfGA8qxuNYFetmiveMNej5bneuHlOKwKLUZX7fu3fjy1dVV9T2H/t5+8C0ycOmP2tS/cj4LQLQCTGg5sIZdG7bWTatw8zh3gVeJ2a44/aoMWamz8US8FWieWiINyA/pAfQpi6xvz81Ve29nZ+nt3/O5x174syVhimF9mCLjN8iAJ0QA0oLaqfqugTpIh59LpX7HlxCbajwsdkIs8uV+gq5hG/y2kxM8FzHte5tJ1jYusSUb3Cw3nsLoNRll8V53imEFPhcAWlKSIuM30r17EkgQtpQs8/bHOm2fTvAvfcCjIysfL/dBpiYyE5iqDp9pK8v+/fy91ot3L0BAHz2s9n1uQlxtF1+goWOdjt7ZranBzz/PMBttwG86lXZsFKmeAoMpd63bwd44gmA/fsB9u4FmJ52P9kg1BnEuhN4cj7zmcymXcGewFNX97rv61hYwNmLqXx5HVXVVf7eV75y6rcouDzvkKcP6fBpszHP5BaIxFagTUZmEH6gzpA5dqRig86Lnrvy9+bm8B6PwUGa5wrj1TN5h6am+LyBExP6+3vJS+w9HBMTZq8clwc15gkUVLBem+Fh9+dcTAVTzmVJTb5ts9RIyeVX1UaxiZLzfgJAqSuu8Pu8U0o9Q/UATk3pc5rGaA+uyPitZAnYhV43IB9LjVQx57tTtVlWHhrCd6oYMIIYG9MzMuIunGzih7Bi3CQsL7uMd1nbZSksdMwTRay6ngBRFWPochLI4iL++DKKveS/X26jVGHf15fd88iIv/ymKSXQx7bh4j0vLen7NokBbB4iAB3oZQPyEcdiI+ZS6lRzZmZwZRoYwMcpmgZIipAJmSSWMkAsLZk9f60Wb84x21i1GJt4KPVum1vSZ3Jhm004toLC1kanpvzlN411hGYdmF3A5XtOOf8rlV4ev3MkBlAg4yuO5eDB1b9ZRCmAI0eyz+Vg403qPkeNNcRQjg2s4+c/X3kvVWWri/nK3xsfzz5HibtRKvtd23u1jfGpen5FPvc5c5mWl7PPcWGKJcvjPcsxj+12FmvnI46zjq1bAYaGcJ/dtIn++xR7s6Eu5rYOk73oyONUKfGHAAAXXFAfF+z6vLHPxObZ2ZA/j7p43tHR1fesi5sO3R4EBmIr0CbTizMIn0uuNjNkFw8g5ZxSyjJwp4Nf7tLN9in3ZnOyCXYJ2rZc1HvG5nbbvduu3Dqo8Z6xlrnm5sz149trxrG7m5rLzwabo+Xye/PxvFM9QrPqJJBeOO2mF8fvMiIAHehFA/I5SNj8tm2nil3qslnq7nSU+n/+H/d6oghi26PtbJZsXHMoLi5WDx7T07jvT0/Ty4y9r6pypTbY6eIkXZbhQi9RhhCc2E0oocRXNy2hNp1eHL/LiAB0oBcNyOcggRVzS0srB+T5eVqnivVi5r9rEolFOAccygBpu5vVdtCz8a7kudnqBHWMGEDMfdpMAHwLxvl5t925VYSOpw3lESvuaK67Tkjx1eQjNLuJXhy/y4gAdCCWAcX0SPgeJEwz5ImJ6gG56v26TpWSToMi4ChHK2HT02AHSJdlWZdnVa7zwcFTZSuXVVcXeX2YdgFzJTrG3h/HBMBXkl/ufmB21mwra9Yo9cADfH1OaI9YKuIrRh+emic7NiIARQA6EcOAYmeRDzFrr+ukTeeyzs3hOjiO3G9l8URJjdJqZR4cbF1gBkiXZVmXJb2qQaXORnNxaLKbqjyArVZY8WcT66qbAKS+vNfp4NMXcfc5oUVZLwqh2ONGiogAFAHoRGgD8pmiwaYcPmft5U56aYlv8wnnMUi5eKL+JsXrhh0gbZZl87KYBkWbjTDFz2NjFPN6WVrKYv12787+hlz2VQr/PCcncfYJQE/+HRKbs3vLbd1FWPWiKMPiWjepjBs5qTxrEYAiAJ0IaUApZZFXKvysnXPpGePFpGa9p3oVqV43bKdJOXmhGOuo8w5U/ebw8OrEwLoyppYDzQT1eXIn/w6NjVe82OeIh8kPrvXKMW5wCraU7EQEoAhAJ0IaUIoJj0PO5LgFhMmLOTdHW+qm7sLlfk7FZ7G4mL327j11JJYuplLnHaj793IHXhebSU1UncoxUpxe4uKrKvl3qHaku47L/ebJk+tsSESgHRyeO+yReHXtzlaw1YWGpGQnIgBFADoR0oCa5kHhxoeAMHkxsUvdCwvZEVLYAZPbU2vqpOvuMxe5deXs6zPvyjW98npKNQdaHa6pbrA2GsojYrqOzfF++UuX8zK15+pCyAkvh+duYQH/DKvGDVvBVmVrIyP4GOBQiABUIgBd6HUPYEh8CQhTp44ViVRBxAW2k666T19ervIrj31rWg4025hK7GAbyiNCyXnpQ/B2Q78UeunStb+nCvry72C+327j86umaCciAJUIQBdixAA2xYPig1gCQpcgmNLJcsdIunoJOHdDm1557FsqaTiwUGIqKYNcqJhe6nWoMaQ6r07x1eSViRhLl64rPpTJXZWdYb9fjGl18SLHsBMRgEoEoAuxdgE3xYNii84rl5KAwHaSH/uYnyUjVy9BKA8gwMrYt1R2AWLJyzs56V4Pw8OnjtxyeXZYbE/XyZ+PKYbUNcYsdWJtvnNt25TJXVXfafN9jv5EPIBhgdgFaDKp5AFM2YNioiwGTDtSq74TS0DEjst0vT7Gq+waA0jt3LmfLefvYeoL6xHDvlxth8NGdX1Ot69MxAq9ca1XGw+ezfdzW+h03FcUJAYwPBC7AE2mF08C4aLTyTofXQB5sbPDeDhD10vsuEyO62NOXuGKgzOJGZc4K0pCapfJEsYLz7lsHMMDWIXJK9+tKxMxJ3ku9YrZxNRurz5W0za8Zf9+dw8gNpE/FyIARQA6IQZkx8IC3VNimvHGyC8V2/vBdX3MRhcOQYMRolX3YBrsdEfSVf0eQDb5cEmsa/LC54JpZgafU9KH7YSy0W5bmciJPclzqVeTgPzIR1bbZjl7ANZe9+51iwG87LLw/beM3yIAnRADouNjl1jM/FKxvR9c18eeBHLZZdl5sMVrtVpKnX66vZhxibPi2LlqM9Bgvc02XhFfu4B922g3rEyUwXjS8rhOX/dcl+MTc706Abltm94Gp6ay377qKlq/bDrLO2Y7KCPjtwhAJ8SAaPjYJZbCCSmxvR+mGC3OLP51QtulE7f1snDYk++BxiYuyoftxLbRJkNJB+TTa8WVlHl2FmeHmFWaYv/K1R5D9d8yfosAdEIMiIaPXWKxl2hyYns/fMfAYYT24ODqhNgYkWEbZ8W5i7lqoKmqU+pzxpZxejruSSCCHmwYhK/JBNcqR6eDP7YQ2244dwHXvRYXeetTKRm/lRIB6IQYEA2XXWJ1M0HOIO1uGiBNS6P5Eg8WbOe+uEivQ1sR7yOPYX6NurjCslfEJKhjx4k2idTbHzauk/uZcq5ycIu04i5in3lFBwb4RbWM30qtAUEIxKZNdt/r68v+3nILQKt16v3lZYATJ3iuvW8fwLnnAlx6KcDVV2d/zz03ez+/1oEDAPfck/1dXibeRECWlwGuuy7rOuvYs2fl/Zn48pdxn/vxjwEuuQTg3e/O/hafVx1btwK026eec5m+PoDR0exzxeeAffYUjh3L6uSKKwCefHLlv/3sZ9mryNGj2Wfr6rHVArj11uy/y/dXZ9e9yL59AFu2rGx/W7bg7TMErVZm0yMjAD/5Sf3nlAI4cgTg4EGe6x48uNoWba937BhPmXIuuODUf9v27xh+/nN9OxMsia1Am4zMIGhgAqqrXlXLiJQlGdczMycmwu9Qc4Eyy8em18HuZLVdardNr8KZpxAg82BS45iwNiYxeNXE3MRlQ+jUMJzX4/YAlhOI+zo/G9vOKMj4rWQJ2AUxoAzK0o0poHpw0JwPCrvzE5svyyZ5b6qDk1K0pRhMp4odNIaH3TeZ1IkkmzOXc3ui1MPiIs9gWEXqS5wxSGETF5XQccec1+PcOFX1XHydn+2jXmX8ViIAXRADsttoUBdfhYlLo3RgGA+Ly4Cf4uCklN0sX9epYgXl+Lh72es2XpieedkTWLULemrK7GV0iWNq8nm3sUhlExeFEHGd5dQvnNdzTZ1kmvza5g1dty5sO5PxW4kAdKHbDIjqoXBZurH1hlB2VWJ+k+N815QGJ6XslmJ0nWrsQRp7/R07sue5uEhLGF6cKLgskcW2gyZ6GGMfp4ilXLfz8265FU0nq9QlNufK5YgRaXVedMzE2kbAPvBA2HbWbeO3DSIAHegmA6J68mIt3XAPGBwCMPbgVAV1lq/rVGPvZKV65TA7c+sGXxvxnIInOMZJOBxMTaUvruvqtio2GCOOdM/KlGvTRozVUfaOU3KJ2joLdAI2dD/TTeO3LSIAHegWA7Lx5MXquLm9US5LwCkMTjqws3zscXGxTjyhPiPXMlHimFKIBW3aJooczCQltrjWlbGvj35+relZ6WJW+/qy9kw5CYQCVtTZTjYwG6FC9jPdMn67IALQgW4wIBtPHvWMSB/l5Zol2m4CyV+uGx980+nUi3VqpxpjJ6ttPJGrcMDmAYy9kzflTRQYTyvmWcaqX0wZBwdpfY3vM7V94zrZwIjMUP1MN4zfrogAdKAbDIjqUaN2Yj46K+5ZIkXQll8cGx84qetguTrVkHFmHOf8utgfx9KXb2LHZ9Zh8hJhy11MNBwa7jJypWAJHXJSTICtO0WEc7IRop11w/jtymnhMw8KIVlezhKEHjuWJercunVl0llsYtD8c6akpEXy5L3cbN8OcO+9WbLjYlna7Syp7vbt9N9bWFj9exi2baN93if79lXXya23Zve4bZveFjDkyXB9g0lmjcEl8W3dvXLev6l9mqC23xDkibTLzy5Pmn3vvQBLS7jfKiYaDg22zm69FeCGG8zPjesZUBMuu9hYVZ9Sh1KnElK7tpFQ/UzPE1uBNpnUZxCYWA2qB4ESkM/hsjctI3HOEn2mXvBNU+PA6uDylvjyfHHYXlX7HB7OdphiSc0DiF2SxsZ1xlzupNggppyuNm3T57hsDrL1wKe4Ka6K1MfvEIgAdCBlA8IKAmpMXcilm9g7G2NufKCQchyYLRznivq6Zw67NA2uExO434m9Q7sM5czolMpdRaeTnUHLJXowz6ou3Uv+okwOXNN02cYrproprkzK43coRAA6kKoBUQUBRehg0mS02+4ddyoerSYc4ZWaF4gDDg/g3Fz979t68DjsEju46spfVaYUJiqUNE0plbsO7mwHtkceFvtWDhszCWyb9peCaKeQ6vgdEhGADqRqQDaCgCJ0uLwXdaTm0Uot8L9MU5LpUuA4V7RuUK6y9aGhbENP3fPtdDKvlc4jhLVLH0frpTJRofY9qZS7DlOWAK5l2fI9z83VX6+8glPVN2Gfw+Rktc1TPfApiXYsqY7fIREB6ECqBmQrCChCZ2JC3xm4dARN8WilIgybUl9UXHcBVwlezG+WvSzUVDSmeqYMrouLeBvD2qNPu7VZkk6lHdVRlyXARfS4pMjJ63B+vj4UwTV5OtUDmJJox5Lq+B0SEYAOpGpAvgWBbw8dtvOanIw3aMSOTyySWhwYJ7Z5AKvsG7v0Wl6Oo4pQk6eVMriWPY6uNhbCbpuwtEslpKfSJfwhr+OrrrL7HjY2HECp9euV+tjH9Ecvpkyq43dIRAA6kKoB+RYEvgWmTQdYHsR8ehVSiU+sKhM2jjNlj0uZYh6y6Wml/vIvs+VRqn1T7Co/dcFGfJrsvtPJyu8ywNvYWEi7TX1p14ZQ7YZjA5StbWFiw019b1NIdfwOiQhAB1I2IJ+zcN8xZ7bxX7ogaq5OKrX4xCLYo5ZS8Vy6YGPfvgdWyrOfnw9znZwYdtu0iYZPKHXBlQLJ9mWKDa+ynSZ6dlMev0MhAtCBFAxI17H4moWHiDnDzj7Lr3Xr3DspXZ2mHm9nsofUPJcuzM+v9qTp7NvnwGpTh7o4Wm4bS91uTTRVTOZHMVKW8jk2QLm8qmLDuTZApUQK43dsIHYBmkxsA8J4c3x0nKFizlziv2zLZarTpu64TdlzaUPdTl5T6hdfA6vtxGpubvXxWpy553KaardKNddrvbBQv4PYNGHQebh9iL7iq2oS0PQJRBWxx+8UgNgFaDIxDSi2NydUoHdRwE5O+uvgivekq9OmdoRNLXcVLraPXXotxgDqBt3BQfcg+PIkzfWUjKpJX1Off+x+zhbM5iHTpKtuBWduzs9ERleeJk8g6hABKALQiVgGFNubkw8o4+OrvRc+A719HqaOrdOlpXA7bjm9t93SgbvYPtajXLULOOSOVhcPe523LE8Z0qSd4rH7OUz5qton9RQNneiuuwa3h9Bkz02dQOgQASgC0IlYBhSzMVYNMMPD+iS6XFCOZqLWC6VOfYiCckevy/FlQ7d04Lb3QUnngtk443tHq42NmbxlExPNSs8Sw2axky7dsjR1omo76aqzy/w5U8pgsuduTDUlAlAEoBOxDCiWNyeF5Rjs0UzUTopap5yiwMYzRaVbOnAb28d4ZIaHszQzupNAQm9CoNgY1luWLx9y2K1vOPs50/OjbNYw9YPj47R+yUXA6jyE2Mny5CTOnrstv6MIQBGATvSSB9DHcozNoGo6mqlYHkonZVOnmPKbPkNNNOwi1LqhA7d5Tk32fmLbCOUem7Kjluu5mTaRUDZrYPpBSo5Hn32maywpti5TnUCYEAEoAtCJ2DGAIb053IModWdfseOr8wIWl7qonZSPOjXdIzVWiEOsNL0Dt3lOtl7DVEQSpixc3rKY912+Nke8LWZZ3FRnxetg+0FdovLiy9QnFeujynvrmk5mYIC+iQnjTU2l7egQAdhlAvD2229X5557rurv71djY2PqoYce0n5+enpavexlL1Onn366arfbanx8XP3yl79EXy+FXcChvDmcyzHUpeQq0bJmzervDw6uFFd5J7S4mL0wcT1cdcq5o9i2nutoSgddB/U5UScvKaUdwZaFY4KGmbD4spu6a9vELeblnJlZvUmt/ButFr7N5feO+ez4eHW5q/oqbH3U3YOub8LmU+Wy75TajgkRgKp7BODs7Kxau3atuvPOO9Wjjz6qrrnmGrVx40Z14sSJys/ffffdqr+/X919993q8OHD6oEHHlCbNm1SH/rQh9DXjG1A1Bghl86bywNIXUqmLJFixaOuQ+LwkGHvcWYGP/hQ69lUvqYIQF2MU9VmpPn56t/AepJSiHPNoZTF1YON8ZT5Gthtrl3XJrlzhxZfuQ1i22dVWQYGshUMG68lts+0qRMO+6baa+w+KPb4nQIQuwBcjI2NqV27dp38/+XlZbV582Z10003VX5+165d6k1vetOK9z784Q+rN7zhDehrpmBAmIbEMSvjWiKlxipROnOqeKzriG28hzb3OD1NH4Rcl/dDz9BdOnpTWauSKNclQq8LzC8OTimlHbEpi60H2zYUgUM0UNIvYfo56u5Xymt6GudVLE4mRkZW/vvICC4UxaZ8pnQyPk/zoNhrKl7CFMbv2EDsAnCwtLSkWq2Wuu+++1a8/973vlddfvnlld+5++671YYNG04uE//gBz9Qr3jFK9QnPvEJ9HWbYECmTlF3ckLdb7kskVKWkm2XSCniUdchV3VUIyOZcOSIx5qZoSV0dR1wQ3u3XDp6bEoT3b1UXb+85Ff0JKW0WcQl3Q3Vg+0SiuAqikOtLLi+MEvFZduzmXz6DAvxad/Y356aSsfD3oTx2zcQuwAcHD16VAGAevDBB1e8PzExocbGxmq/d+utt6oXvehF6rTTTlMAoH77t39be53nnntOPfXUUydfR44cSdqAMJ1iq1W9bFaHaYAxeXywHcXiov3JH1TxWLd0jBFmrvFY2Bidcj1TCe3dchGbWLvV3cvgYP31AZT6zd/MPDpLS6eum1KybGpZXLzW2GuZbDnEfdbhIpy4Xnn7xIrRqr7D5VlUPYOiXWD7Uxv7xpY7pfOERQCq3hWA+/fvV2effbb64he/qP7X//pfat++fWp0dFT94R/+Ye119uzZowBg1StVA6J0itTlYGxcVtWSnGkpeXBw9dIJtSOkdKTljofiTbCJx8o7wnz3XZ2onpuzWz6tej4hvVuuYjPkYF60z6Z6AF2X1Djq21YUc9U5h4itelVtNivacVX+SJfJp82zqGtPtvGQPj2AqbQvpUQAKqW6QwDaLAG/8Y1vVL/7u7+74r3//J//szrjjDPU8vJy5Xea5gGkdIquMy+dxwdg5bLp3Fz9UrJLx1HsCG06pLzjoX6XEo9VfuUDNVdQdJ0YwCan5fBuuQ7qvgbzumdXjgF0jXPlAFuWvC3p7sv1Wi7Pkus+uWKL617luL6BAaXe9z67e+eYfLqGhdjEQ1aVBdsnYZ4jNjF1qOMoRQCq7hCASmWbQHbv3n3y/5eXl9XIyEjtJpDXvva16qMf/eiK9/bu3avOOOMM1UH28KkbELVTdO3EsdfJ0ztUCRVMkmdMR2gzqOUdj60AwcRjYTtwG0winMMGQuSkC72cV7UL2CXOlQtTWaqOC6y7L9trUerO132GELG5F69o17Z27DL5pD6LqrAQm3jIcl3beJUXFvS/jT3FSTyA4YDYBeBidnZW9ff3q7vuuksdOnRIXXvttWrjxo3q+PHjSimlduzYoa6//vqTn9+zZ49at26duueee9Tjjz+uvv71r6vzzz9fXXnllehrpm5A1I7A9zJO1QCWx/pNTir1x3+M/w1dMH8OdRZs6wGsq798593HPqbUunX6+nAdRLFxc1hPS5XQC5WTDjOY6+7F9qXLAxgrWbauLNxL1nXXCnGGMEed24rYujqyrV8bAVbuO+rqY37ePAGz6b+KdW0bv7uwUD2Bz3MepuRhVyr98TsEELsAnNx2223qnHPOUWvXrlVjY2PqO9/5zsl/u/jii9XOnTtP/v+vfvUrdeONN6rzzz9fnX766Wp0dFR94AMfUL/4xS/Q12uCAdXNylwGijI2HjOXWL/JSVxaiPz+MV442xjAuvqzib9xmflS4450HXtV2bFHZRXrz6WjN3mF6kRJ/jrjDPrza9pJID42rVDie7lFMUedY3Z+Y23RxY4xJ4yY2r5tfWDtYnJy9W/bxu/qJtvlviUVD3sTxm/fQOwCNJmmGNDcnH0niCH0kh1VKHU65uPjqryHlDLZJq+2HajLUE4o0A3kHLFDxd9x6ehNosM2yJ3LrmLj4gG0ERcuAi2koC5fa37e3hZt7JjShnx4vVzswua7VNGYioe9KeO3TyB2AZpMCgaE7Vjn52kCiFoG1yDyEJ0ltePBxqwArI49DC1AKB13nc245lLDxEDanKqis2+duA9lV7Gw9VCFTsTLdT0XEelii5TvumYQ4MDFc2njVbYVjbE97CmM37GB2AVoMrENiNqx1n3elNgYWxbb+JuQnaXNzjZduVotpfbsOfV7i4txBAjHsqurJ7fKg+m7o3cVrfkrRnwfB1QPlUt+RpfyuV6PQ0SG8GBS2pBPr5etB95GzKWUP5NC7PE7BUQAOhDTgGw71mJHNjW1OgbPxRNQFwTM8YoZhK8TtuX7xaY6KL8oJ7JQy4odbF3Tr8RYQuUIP5iaCl9uTrAeKtf8jFS4rudLtPqYnFDa0Oys+/V02Hg9bSaSKeXPpCACUIkAdCGWAXF0rD461U7HLYFz+TU9nUYQPmVThO2LawnOZanLVkzFXELlyBmYimfCt4cq9EDNcT2Mh3d4eOWJLhh8LYNT2hD1FCYbbGyKOpFMbXcvFhGASgSgC7EMiCvNBveAji3X8HD9UV2pdhjFjnRxkVfoFjtXTJoHSlkpv2ETyxlj914RDg9gCp6JEHF5oZfqOK6Hfb5DQ7TlZF/L4DYhCSmGH1Ankint7sUiAlAEoBOxDChUol3qwIgt18xMMzuMHJ+7nsu7tX0G51ehey4Aqz2fsZbmc1w2IFEnGr7iGUPF5TXRA0g9VcNUVyGWwV0yCKQE1t7zz42PZ5P7lPoHHSIARQA60VQPoC9PALVc3OkAQu0s4zj4nDKohRbEuueSwu69MjYbkGJsQqgiZFxe6KW60BuTOH/PVQRTd6an4IW2oapdDA1lYjCV/qEOEYAiAJ2IHQNo27H66gQ7HXNs3ODgynJxCQqfA3S5fNj6y0854RCBtgOzy3JwakJPh26Hu6tnwqeHLrRXLrTn3fV6Nh5eDo+i6zI4NR46lThUCqF3lHMjAlAEoBMxDUiXad7U+Hx5AmwEIAe+OqI6UZGfwYqpP87lYqoICJ3vLTY60eoaF+lDnCsVJ4WG70S8VYmYXa5HTU7OEVPIIbgpS8E+PYA+JnOhd5T7QASgCEAnYhmQqUOcmMD/BqcnIEY6AF8dkUlUYs9H5UySTREBTZ+d+4I6GPq26VBtpnzf2KMUqdRNOubm3K63sLDai2tTV6GXwU2nMAFk9zUz48fTrpsEugjDpqZ+KSICUASgEyENKG+sMzNZjIWu0WE7MO7E0DG8GT46IqyonJvDeTaoQeGu92Ajipu25GuDjUfUxaYxdRpCkITyBPuedCwtmfs+TEqY0MvgdacwVb24nkunoz/+EmD1ag3l2rbtIqV+RgSgCEAnQhlQVQfOKRaKiaFdBooYs0IfopNyH5gOzVUAUkUAx2acblsqthUntjZNqVOfgiSUJzjUkiBmww/Gdquez/Cwv7x82D6c65nbnI5DubZNu0itnxEBqEQAuhDCgKjxLzaCR3cdSqdgCnz2kXbDh+jkFJUcR5VRBwRK+Zt0yoItLuLExkNnU6c+4vJCxmmFjq3TxRpjbXdubrVH0acgKa7i6JazXZ6L7XhhunZVCAGlXaQYkiICUIkAdMG3AbmIBx9LnqYOSdcx+0q74WMJzXYwc9kxXPeiJLilln9x0V/8ZEozfVdxYvI6Fb1GrmKTUzSHFGUhwz8wHnWT7cYUJD6zMHCci12+dl17psZBc/czrogAVCIAXfBtQDbiIaTgKWKaeQ4O8qTdAFgdo8i9hIbpSKu8PlWd5Pi4W0f8wAO0shfLbxLFi4v8A1GKM30OcaJbViuK25SC4ymJ2TGxirrPhNzMQhE5VdeLLUhi52GlXBuzGc7kuU6pTRQRAahEALrg24Co55zaDrKuHRKmU263cR0qtYPPB1/uJTRdmh2AlTutTYKVoyOmghHFlOdO2dCgs0/M8hJl4A0ZJjA3Z253MTZC1YG97/JyZNlbi/HohtpdSxU5VfUcW5BwrjAU4TgXu3htbHs27ShPqU0UEQGoRAC6kJoH0FbwuHaInB0q9Z6Lgy/XEhrFA4jpJE1pIHwNQiZRjK1r7Oag0IHhIcMEsIOhD6+qLbYpiIptiuLRDbG7lipyquo5tiCxjSs12TqXBzDfSc3Vr8cW3HWIAFQiAF0IFQOo6yg4cki5DpCcHarNLJZ7yYbSYVE6XcpAXL4nl0TGdd/DPPfBQbwAoNqBy3Ix9buu4oQaV+nbE4YFs2u2rpztNn1Tl+8k05T2VlfPKQgSij1ibR0r+PMjKnWfo4SvmPr10LkXsYgAVCIAXQi5C9jnrNr1OtgOdXraLGBcZrFcHTZFyGA/Oz6+emDMN8yY6tznpgrdcy+WEdNxU9PnuO7MpX63atcnVpzY7Kz23WaxVNnP+vX27czU7nzuAO90zKcN5XVdV8+pCBKMWKbauknwT02dips2/a7t86+7V+yGkVDZA0QAKhGALsTMA8g5q3a9DmbmWV4GrRMwtstW+eDLgQ8PYF3OQFOd+95UkSeMzb0CxTJgD7TPBwDKwOriheFaaqbkfePIreijzWIp5/uktq0Q7Q4DZgcwZsNZKiKdc3NN/lvYs6+XlszpaHThK1ShjOnrQmYPEAGoRAC6EOMkEN8zI9vrUJeadB2t7bIVlweQImS44suq6tz3bsWqDndg4JSXwGZpHzuwuoQNUJemuHJcUp9zSrkQczhThXC3O46yr19vPgkkJzWRXoXLCsPQUPa+6+ao3L5t206RujYRI3uACEAlAtCFphqQr4GpqkO1nUGalig4hVDdvVBjdGw7ybrn4TNWCdPh2l4fM7C67IQ0HQdW/C6niE7Fa+QCZdDPYwBjL5VSy05pD776Qq7fdQmJMdmli7jkFMqx0vI0dfzmBGIXoMk00YB8u9mLHd/0NL3DLn5/cTF7YTw+PgZfiofAtl513/O1W5GS3sHWu6nzau7ff+o0BOpvU1KbuC41Y59Xal4jperrn7LJqrgL2FX0cgii0Lt3XVZDuPpYjOfZdpLtGr7CRaxNOU0cv7mB2AVoMk0zoNBudptdoeWOc2TEHPQ9OBh/SXxhYfWOyZERt52s1Bg8LJQOl9PrhfXq6n6b4rWgfJ4iGlJc2i2iEyCU1D+636OIXi5BFFIoUMpcjq/k7mNNG7Vs6ySVzTCx0vI0bfz2AcQuQJNpkgHFcLPbCA1sh+aj07fFRlhjnke77SZ+Xb1AeYc7MbHay9BqrUyGbVtHVS+duKB6LWy80E3GZIvz8+ZNVlVJ211jgzkEEadg0d0PpcyhQlXqRLhrqpYYsXdlxAMYD4hdgCbTJAOK0ciwHXa+1IgpH7WD8w0mML0qVyP2eaxbp//3OgHI4QUyCXPqBgpqHel+SydgRkdPCR2fg3IqlJfVTfc6N6evP4qwN5WLe9LJ4ZHWtQ1KmW0nrbZ9bJVodU08vrBQPcmkHN3pSixPZJPGb19A7AI0mSYZUCw3O6bDdgl0du1Ubck748lJWjmp8X02926a1c/N8QhzbMfsIw5PZ1P5IfWm6zVp80YdFA9UsZ51Rx1y1YmvSafLkjRX2EWe8NumvXL1sZhnb9pop2snIdtFjA1WTRq/fQGxC9BkmmRAsdzsSpk7bBcxxDE7pC5v2Qy6tgMNdUDBejDm5/mEuclmfEw+6mwqF7eY66W4eYOCrQdqZiZMOIjPSafNkjTGE13Oh1n3ok78KO0FA+bZu4aghPaMh95g1aTx2xcQuwBNpkkGFDvgV9dh23oAOWaH2GDvYpJV246/WG5Mig3dcl7dgEJd3uUQ5pOTervxNfkoLn1OT5/6i7nW9HTzl31tJyGh4iJdUv342GTDsdJQtHmbds/Rx2KfvW6jTUyHgI6QG6yaNH77AmIXoMnENiAbz1VoNzsGjDgdHOSfHWIDoF08frpXvmOw7nmYAvarBhSq14VLmOsGG5+TD9tnEytmlAsbMZPX88xMmDqyee4+01Rh28ZLXmIuMzb2rq5PcQH77BcX3euibAOp74CnEHv8TgGIXYAmE9OAOPPODQ9nS2cxwYhTzs4HuwRiCph3eeXnxmKOgsOKds6ZPWbDBXaA8zH5cNk53vRdv7ZhE5xL+xgoz51rR6prYvX163F9EXa5uNymXeFYWrexAd85ZEMjAlCJAHQhlgFhgvx1Qml+fvXyYgoNOWQMCLYDxJ464SJCTMKWUi/c3ra6ARz72+UcaVzP12UJ1GfeyFDYeADz+w4dDoKxX66YNNMOX2x7xtgqNo6XO9yAQ8BTbSCFdDHciABUIgBdiGFAmIGvnLOtKO5Sb8ihlhg4d+GWXx/7mN0pF1z1wu1toy6z5gNP1fdGRrKBM+YRWd0gACne2bpnEzIcxGS/HKIGk7KIkjfPVOZOR5+n01dcNZeAx9pAihtGOBABqEQAuhDDgGxjf4oxZd3WkG3gDAivqr+FBf2z4Bpg6wYpbm9qp4MPfM+XtusmGgDuItBVwDd9CVgpmne2+GyK30/lWDvXZU3MxJgSu0dJSRSinVddl0PAY2zAd8hArLhCEYBKBKALMQzIduCz3VVaR9ODgTGzaGx9VXW8IRKsmmJyuJ8RJfic4jH0eSwYVUjEwOU52XpnOa7NiavIoNomp3eeQ0jbPAcuAW+6ts90PjHjCkUAKhGALjTFA8g9OHZLMLBpFo05Nquq48UsRXGVver3fXkesEtPIXZI2i6BmoREaDjaUn4ihG5TQurefddlTezO5pkZe++ZTihxi3isDYQQ8D4TescMRxIBKALQiZgxgL52plY15HIgP9cgbnPv3J2d7S7c/PWud2WDb16WEPEyPq+B2ZBiGjxtvNS2nhfqEmhKQoh7AEw1zRMWl/JT8j/m16J4z3xNemOLIAw+Ng2lEFcoAlAEoBOxdwHbiMChIVpDpiwx+Wy0Pr2ONrtw68oRIsUG9RpY4YytY9Pg6eKltvEilMuSL72nLIR8DYBUYZPKEnCO7bImxQOYQ2kXVJGG+e0URBAW7slFComoRQCKAHQitTyA5d2/VZ1JntcO05Bt86xxN9oUZsmdDs77GeLMZco1KKKOUsem5bCQ56RWlSWlDQ5V+BwAuQV/aGxEqa/6tBFp2HpNQQRR4GxTsc6mLyICUASgE7ENqNxRYs53VYonL1eoRpvKLBlbDmz82/S0vdcFO3DkJ42YRJ2POp6YsLMdzsEuNe9WEc4TW2xIYVJFAZOSBbML2FdbK6fXwdRrCiKICpcdpiB+Y4/fKSAC0IEUDQg7S+PKy+W70abQUVDKYdplCKDP04gBE5OTnzWMEXXcdWzrOW61lFpasng4DYRS59yeulQmVVjq7r+c8J6yuoGFItKo9ZpK3xYDH3GFVFIcv0MDsQvQZFI1II5ZWqhAfq5y+J4lU5ddKTGaNgOUKSYHe0rB/v205LgmXDzH3TrYVYEdAOfm+Gwmp0nCgzKZaLczzzPn0j+lrmxic2OLoJjE3rSU6vgdkjUgdB2tFsAllwC8+93Z31aL/hubNtE+39eX/b3lFrvruZaDWl6f5di+HeDeewFGRlb+W129KJX9HR8HWF7GXafuGu129v4FF+B+5+hRgLvvxn0WUwcHDwI8+STu96o4dsz+u02i1QK49dbsv/O2k5P//2c/C/A7v1P9fRubycHW8dGjtN+1ZXkZ4MABgHvuyf7m97O8DHDddafu1cTRowA33wwwPQ2wfz/A3r3Z38OHs/Ziw9atWZsqP6Ocvj6A0dHsc9h6zT+HsQFKf1pXjzZw/lYdpj7M9pkJBGIr0CbTzTMIaroZXwH2qcySbcpR9MTefLMfr0udtxfrjcCmzxgextWxnNBBQxeyQfHiUsDaxvCwfy+MbnnbJgzFR3+A9VTZelY5NldwhgmE3hwkJ4HEQwSgA91uQJhlxhCNNvZSgWs5Fhb0SXqLL66lbKxgxabPGB/HXdc2djS15a6Qg1LVtTodfzaDndz5bl+mDRPY0AQOUYwpK3bjnCk2d3FxtV25JpLm2tDTtM1BLnT7+I1BBKADvWBAqaTTaGo5qBsiFhf5hAdGsHLHg9kkKk9tcEkhPQpFSFOejSmhu60wpwoYzIYJylGMrqIYA+YedW0OYPXxkK52xbmhp2mbg1zphfHbhAhAB3rFgFJJp1FXDs7yYRO4Yq5H2RDR15cNDtzCwyRYfSyxUwfBlPLzpeIBwS6lDwzgnk1dwux169xFpo1gpixD2+won5qi1rgZl/yKVeeCc9gV5wSuSZuDOOiV8VuHCEAHYhtQKsLMhM9yphz74pJKh1N4YE464V5i1wlPDnvwYVMpeUAouR5N6EQt1g7rPGq2ghkrcMfHaTvqi9fnFOtV9jwyUh8GU7TPxUV8SiYqnFkSuH6rKeNS7PE7BUQAOuDLgLBLDbGXqXJ05bUpp88jmurw4fmheHHqPAShhIePJXZfA4Ev20/JA4JZSh8cdF9qxb6q7tlFMLvmQcQIQK42gw3jqLNBn3aVmgcwpXHJhAhAJQLQBR8GhGlAqSxTmcprU05sB9KE2Bdsh+prhzCVJszcfdp+Kjknc3T5JLH36uqF5hJxZaihB2XbvPHGMG2GGsZR9Vx82hVnCIfrb9m0zZh9jghAJQLQBW4DMs005+fTWqYyLS1RvVqUDiS1mW8V3DtxUzoSKga+bT8lD2BO3YQIuwOfkpaHGgLgKmxcQg9CiXWqgK6yQd92halH6qoK9ZnYtM3Y3kIRgEoEoAucBoSZabZaSu3ZE3eQyjuSmRm3XXrlclI7kBRjX6qIsRM3BXzM7H3XUyo5J6vKVdy9W44n0w2alFhCaggAR55CW4Ebqs3YpqIpXjeEXelCOKhCyyYchPo8UljFEgGoRAC6wGlAHBsGXMWKCZtYHGw5qR1IEzyAunor78TVeUsBcPFeqeBrZh/C65NKzkld2SiDJkV8UET7woL5OdikkKkSoroQEN+iiqv/DWFXVc/PVmhRJ3A+z0z2hQhAJQLQBU4Dcj1BgUus1EHNZ0ctJ3VwTyn2BYOuQ01FAHJ47bhm9lVlCeX1SSXnZBGXQZNbfGDj4nxvxPIpqlw3z1TZYGi7Cim0KG0zlRUPEYBKBKALKXoAbWbdpsGeayehrpw2nQLnABDT85NCh8jhteMacOrKMj8fbomWKoZ9B7O72gin+OBMUZNjazu+RJVLf6yzwZCbHkL2K5Tnl8pmKxGASgSgC6FjAKsalY1YoQ723MvTVeW09cJxDgCxPD+xO0Qurx1XGgldWSYm7IV609LSFOGwEa7792GvrjuKOZ9rp6PU5KR9/zYx4a9sFEL3KxMT+j4/bw8pTHiVEgGolOouAXj77berc889V/X396uxsTH10EMPaT//i1/8Qn3gAx9QL33pS9XatWvVBRdcoL761a+ir+djFzC2k7EJ2s6vQR3suZen68rpsgONq5ON0WHH7BA5l4lcBxxsWebm6LbvS6SFCmZPZdD0VZbYk6AcjjjnvL3E3uUa0mZMIUJlUZzCZisRgKp7BODs7Kxau3atuvPOO9Wjjz6qrrnmGrVx40Z14sSJys8vLS2p173udeptb3ub+uY3v6kOHz6sDhw4oB555BH0NX0Y0Px8ttsXMyDbLFPZDPacHsDJSXNweWrxV77BeH99dYgpbaahfL9s+0tL9W3BV34yzHNrt7OTIFwnFKkMmhxliRnfWXd9pXjjnKem9PUToj8LZTO2KWB09Se7gMMAsQvAxdjYmNq1a9fJ/19eXlabN29WN910U+Xn//RP/1Sdd9556vnnn7e+pi8Dmpurb0gunYdtJ2vqSACU2rCBrwOPuWwSC93yCcDKGTQnnJ4X1x2ntmXReVp85iezmRi5eIBS2qFsW5a6us29ur7Fiun61OdZ9xoY0P97qF39IWzGNn5b91kRgGGA2AXgYGlpSbVaLXXfffeteP+9732vuvzyyyu/85u/+ZvqPe95j7rmmmvUWWedpV75yleqT3ziE6pDaJU+DciHJ8xlsDd1JKE68BRxFazd4gFUCjfg6HK/2QwkOu8e9Tcp3kJsAm/Ogde3h5yaCoZSFp/xnRh016c+R45XcZOMz0mvjc1QymObwUHXRmQJOAwQuwAcHD16VAGAevDBB1e8PzExocbGxiq/8/KXv1z19/erf/fv/p36H//jf6jZ2Vk1MDCgbrzxxtrrPPfcc+qpp546+Tpy5IhXA+LuFHzvJEzJQxEKjjifmPFd8/Pm61I7Y52dmETA4CB+EoEZSEyemOLgRB2YpqftBn7XAS6lzSzYsmDrNt/pTRErGLgyGXzsY+aJrimlU/4aGMjKNT+/Oqk+d6wgxWbm5pQaGsKXh9p/pRLPKgJQ9a4AvOCCC9To6OgKj98f//Efq5e+9KW119mzZ48CgFWvphgQR0yIqSPppRg+1w0AeV3u3o0XKZxgB8W5ObvfLtsJRgTkgydmEsEZm0rJTzY9nd2LjQcw5ABHwfdmFpf4zpB56jDlM010sV5nAKWuukrfHkL3m9idvEqdek75qVDYcSWVDT8iAFV3CECbJeB/9a/+lXrzm9+84r37779fAYBaWlqq/E5oD6AO204yVkb6bsN1GcNmtyG3YAg9E6fkj8NMIrADycAAbnCi7HYfGsIfyxhrgMMSYkku9qDvmsmgXAdV7XdgILPdZ5/lW1YOGTYzO4svD7b/cpm4iQfQPxC7AFyMjY2p3bt3n/z/5eVlNTIyUrsJ5Pd+7/fUueeeq5aXl0++d8stt6hNmzahrxnLgFyXHZvipUtZSLp0YtTdhr5iYkIPytjrjY/jnj1FUGImPTZeope8xH5wn5xMw65DDMixB33Ks8VOjjudzLbKYQbl5VPXVwhP8fy8UmvW0NoT5rNV40oqO9pFAKruEYCzs7Oqv79f3XXXXerQoUPq2muvVRs3blTHjx9XSim1Y8cOdf3115/8/A9/+EO1bt06tXv3bvW9731PfeUrX1FnnXWW+vjHP46+ZgwD4lqqSVlcKRU/h5YJW/FEjUXyGT9JEVAhrzc8jLNHykCCmfRgdrv7eMW26xATgdiDPvb6lBhEzrQxvuodAyX/LIA5rnZ4OFsW1o0rKcSLiwBU3SMAlVLqtttuU+ecc45au3atGhsbU9/5zndO/tvFF1+sdu7cueLzDz74oLrwwgtVf3+/Ou+885LaBVxFKrunfBMquS6GOqFs69GgeplCnBWKGcS4QgPKwe51r8VF3ASFMpBgJj11v6d7vfjFbgN87E1Sobxz3IM+dRKLvT5XDkiul08PoK/70JU5r9/x8dX9QciVKBGAqrsEYGhCG1DsZZQQpCRyMfnlqB4NrLdl924+z6xuQMN4MTjrfHwcd/9lL4POS8Yd0mATn+m67Bdz8hbSO8f1rGxXCLiuz7kBSffCesNtod7H+vW4z9V5Lavqf2go6xdCr0SJAFQiAF0IbUBY8ZC731Nd3tWRisjFeCFtPBqh7w8zUNrk37PFduA0eYm4Qxo6HVqal/Fxuucwhl3XEXJJzvVZce2+N3n4dJ/hPh6z7jU/T6sbKtT7wG58osQ+x/KAiwBUIgBd8GlAVR0QJYZKN+CnTAqH3lO8kFSPQmhvC6bDDbkZxGXJKbSXrNPBe/by9CDle8MueXPWsS1N2BwWYoUAM2my7YtHR/ETrquucq4uI5QJ2cREduQixqbLwjWllZ0cEYBKBKALvgyorgPKA5SpXobYMUYUfCSrrhLAOpFILYOvWCQXKB1uDK+ki7cspJes7ljG8qBeTE5dtAVqrsDY4Rupbw7zbavYSRN2Ild1RjUm9jZPEu0bTFnWrMlSxFBCI8piLpWVnSIiAJUIQBd8GJDtcUmmV18f38H0PnHxkGE7b5NIxHrEJift69C3t4WaeDf0Ds2q+8eeoBDaS2ZKjjs/7z6ZyAf9xcV022UKwpCSSogK1UvlMpEzTYJCxsSZyjI/b7fjuSjmYueBrEIEoBIB6AK3AWGWx4aHlfrgB1cvTVGXmsqiJyVsOlZs5z03ZxaJlEHbpQ59DqrUDjdGWoby/S8u0geWqt/xMWhWHdc1OpqJQ91kwia1TGrtMqWUTJS26WtjR9H+XCZyVd9tteLUs+4+bMM2imJOPIBpArEL0GS4DYgaID88fGqmGONgeldMu1MpHSu27nQxXcVlG+ygHbsO6wg9mHHQ6Sg1MmJ+PiY7sRk0bTYGYCYTeRkpXvuUbIojcJ9ToGPFiI3X2naHvsv9FVOixLYF15RXur4ldh7IKkQAigB0gtuAqDuybL1WsRueUriBm9Kxcu7KywP6sYN2zBQedVA63GI9Ly7GCxNYWDAvA09NrV6Ccx00bUSkzXJh+fM620rBpjgC9314DymJiykeJWofyuWdS3GDRBGbcamqvCkkfy4iAlCJAHQhtgew2NiefdZuGdimo3TFRzoAzrxcxWVRytJH7AD+MpgON5XlPUqMUbuded84Bk1bW7TxsBaFNjbFjKtNuXinODZk+Ur7gc0nSYkpoy7XcwmXGMujFLug9K2mOom9ylBEBKASAeiCrxhAm92RroloQwXf+prtYjxeWIFcHrQnJ9OqQwq6DtdmgPYRb0eNMaK0D92g6WKLrkHtIYLiXcW9Sxld6hZjY75Ek81yvat3LvQGCapdUMYljJhLZUORCEAlAtAFn7uAbVNk2L5Cea98znZNHi9TGp26zhy7OWFxMft8Kh1cTlV5bAZoX95CTu8tZdB0sUVXO3b5Psa+OLxvMeqHksbJV0wZ1fPv2n9y9InYPsfWLkwe+ssuS6OvoyACUIkAdCFkHkDb19BQFlifSvCt79muaYnBJg6FIgBTWVI1QR10fC7n+TxVQTdocni4bNuV7fexsbMcXnZqGYsixMZrTrUxnzFl+b3s3u23v8qv5WJLVNFsaxemdEip9XEmRAAqEYAuhDgJZGYmW7p08QhOTaUTfBsi3sU0G6bGoWCFwmWX1Q9g+XNIxStIyXWY26CroKjDhwcQUyauGDfbdkX9vk4gAZzKCGCbTseljLaT1rwMtuIkpXyaLtjaEkU0u3qdfSzpx1wtEQGoRAC6EMqAXJeF9+5NJ/g2lXQAPoKg16zBP5PYXkEfost2EHSJfc1thjJoYq9ru8uV0q6w36fESQ4M4PsFjjJSNvDU1a3vJXFbQvZXVFuiijIXj7ePJf3YqyUiAJUIQBdCGlBVY6Fuauh0Mu/A5GT2inXqgM1sN+ZMsdNx32RT1TlzeF9t68VVdLkIiipsg+/zuE7KoFmVyw9ri3XxlC62ybnpgfKiCPa6MlI38NTVbYonReSETF/iY2KaP2cXkW3zfEwea5/9IgYRgEoEoAuhDajcOfy//6+5QZpykcXyRFFmuza71rjFIjbtBHUgdPEeuD5P7g1HHMtg2CS/xUECm8ewrr6qTvOossWY7YczTpLTa2UjTKvqNkYqFAqprKAUoYqyTsecZ3P9+izkY//+lecYU9MW2UwMfNinDhGASgSgCzENCNvA5uayz/sM4ne5B+7djE3cqeqy49n1eXJsOOLssKs8dOXyDQysTAitu5ficpOuvnTn+XLWty1c9sddXkosqemUlRRCQ3SktrufKpoxArD4Kh9LV/7/8qt4ljWHvfoW+yIAlQhAF2IaEKXx+8q95xtquamDNKVDxwxQpg6y7kVd1uJ+nja7N30JirryTU2tjm0rCnvTcpNu4MPu2I3ZfmyX7Mufb7UyjycXnJ67kEut3QBVNPucxJbbJceKie/lfhGASgSgCzENiOL+xzb86em0RKBPkWvjKTQNUBMTdkuqxcERI0o5d3na/nb+CrEMhvHecaRN8pGzz0c9uC7Zc4opbs9dikutKUMRzVxhBKaJbiohJSZEACoRgC7EMKBcIGA9NbmYwDa62LtTi/gQufv3uy3nYXZEYsWIjShdWODf5VkEKwA/9rEwy2AYYe9yBCKmvlLaoJDakn1eJp0AXFjQbyLh3lTTa2BFM6cH8Oabzf1Qq2UnBiUGMBwQuwBNJrQB2YoLSsNPabkFW+58ZzPmszMz7st5pgGq+O/YHIwYUUpNt2Ezg05J7CgVbtlKV1+peABzcvtyXWbjLO/ERHXM2MQEbfON7wloyuLSpWyY73Lu/KeEilT1fbrPyi7gcEDsAjSZ0GlgKCkyyrskqYecpxATiFleGhykeUSou9k4MM3QMV6udtves0jBJrDc54Dq85QQbH2lvEGhyrawgf6cZ8tS031wCACq7aWUBSFW2bjCCLACcHx89X3plpBDLveLAFQiAF0IZUDULfV1KSyoDT9WyoUiuhgXm0F+Zsb/4Ehd1uL2crnMoCliJ8Sgha2boSHzRMFlg0HKGxTKtuUzRrTq2lzHVlbZWB1U24u9i1tH6LK5hBHkz4ZiY1iPddXOfp+IAFQiAF0IZUDYQXByUj8Tpjb8GElXq6jr7LGejmJH6ns5z0YUcXq5BgfdBwyM2Ak1aGEFKSahs+sGg6ZsUAjpsYyRHslmt3+oXdzUyR/W+1+X25KjnHVhKrr6pdpYCjvpy4gAVCIAXQhlQJxxWZ1OnGVQV2y9HGVRxD04ljtSU8dZBecgurjoXtdK6cVO6M4c633DCDTXJeuUY8iKhPJY+lyir+rPbGwvVAxn3XJ8eaJanBDatH1fS8OmpdpyW1pYwPd3qcXRKiUCUCklAtCF1DyA2MaTckwTFsrAU+6MuAZHlx2/RTDPI48BDPnM6sROjM4c631rikDD4nI/ITyWoT2ANrYXYmOTbYy2jYD2tTRctrXiSSB1ydGrVmGqViFS21ymlAhApZQIQBdCxwByDv4pxzRhoO5sLtcPx3KgTSC1aVkLs+wa+5lxe6Qpybi7SdyZ4Iix9F1noWMAbWzP94TFpg6osXQcfT4nmNQ/RSi5aEO1bxGAIgCdiLELuG4zxPh4mh4CX9ikNCgnXM7Tx0xOnjrCiHJtm45bJ4owzyOFZ8Y1oC4sKDUysvI7IyPNsD/fpLxpoUidF6jYN5X/G/NyDZcot3Wf3nMXL+jioltqFl0b8yX+bZbhMf11ecnZ9w5tEYAiAJ1IIQ+ga6NpsleF6oXLxZerZ8WlwzeJImw+r5jPjGNArYsfMgmAXsB3jCWX/ZjaX74UaJOqpu75Y22vvHw5P+/Pe+4SB7l3r1tqlroJpc8d+rYTQOp9+p7siAAUAehEzJNA6rbUuzSa2MLChoWFLAUItkPi8KzYxu2kHldJwWU5utMxC4DBwe6pKyo+lyy5hAHGC95ur9wFmvctudfLtq2YbK8uwXTV+xzec44JoW1qliob8O09dgkBwTgxQvWbIgBFADoRy4B8eAhSTpJqYmlJfxxY0SvAUW/UDj+1ZTsubJejsXFPXDuam4avgHlOYeAiUjkEbp3t5edx193j3Bz/JNcmHKUqTUoxJOWBB+y87CF26Ls+v+JkIGZGChGAIgCdiGVA3B6CpsQb6cAsKXLVG7XDTzmuMkZaFOwpApOT4e4jJXx4ALmFgYtI5RK4VbtWbe6Rw3Yoy5uY9EW5x5LqZQ+xQ58zpjLm7mARgEqdBkLjOHaM73PLywDXXZc1szJKAfT1AYyPA2zbBtBqkYqZHFz11moBfPazAFdeufrf+vqyvzfeCHDBBQCbNgFs3Zpm3e3blz37J5889V67DXDrrdnzPngwqwvdPbRaAJdcEqzIlejuY/v2eOWyZevWrPxHj1a3y76+7N+3btX/zvLyqWd44sTK+imjFMCRI9nnMc9z0ybzZ+o+5/LdImXbO3CAfo9ctrN9O8C9967+rcHB7O/Pfrby92+5JfvOvn0AV1yx+jkfPQpw880Av/u7APfcs7p8+ffLcI4NdbRaWf1ccUVmi8Wy5/3fLbfg+jwuWxAsia1Am0w3eABTTNBJBevd4DoiSxevk7K3r4jO6wugT17rCucScDd4r6twTfljG1OG9bRgvODDw5lXjvpd22VKqjfJh+1QTgLB9lumfHxFQvbnHBkJYuakFQ+gkiVgF2LHADbdBc8FttMzpVzA7l7VDXrz88Fu2xrbvGVcgoprEwj3sib3MrLr79kOsLY5KqnCALPsWTdx8JHTkiJ+UjiazOdSfyhB5XP5XHYB+0cEoAMxDYir0YSKGfEZn0URsa67V2OeKcqF7a5FzvvjSANja7tVdavbBGXzLKp+b2CAfuA99dq2OSptn63J06hrV9w5LSniJ4WVD9+bfUILqhyu9uJ7NUUEoAhAJ2IbUBNc8CF2F1M7c0y9VXVi3INGXUfpu85cz2/lGhRd7xN7HzMzp+p5amp18mlTImPqcjg2P54PbMS9qzBYWtKnYtL1IeX0MIuLYbxJKax8hE73EyI8xaVNh97IFXv8TgERgA6kYEApu+BDxWfZiNi83mZmslQEuUjQeYPqci/aDBpV1xgeVuqyy/wM0kVc8pZxD4ou9ou9D2yeSA7BRPHA+RiMbcS9qzDwldbFdtKDET8peAB9T759C6ry78/NNSseN4XxOzYQuwBNppsMyNdyjG4Q5YxFsRGxlBMKKDFVmE0kNjFaVbnDbDp4m7xloQZFCq734fKqs1+KuPYRY4a9PueZq67etFCbMcr/HmvzQZHYy7W2pJTQ2ZZuGr9tgdgFaDLdZkCcM8YYM2yKiLUVYa2W26BhG6NVrjNXj4nN8VMpduK6AZRD6FHtl+qB4xbTGFFcPKGDA5e2HnMzRiriK9ZyrS2hNhn5ptvGbxsgdgGaTC8ZEFUcxoqxwZSTQ4TZDhquy68A2VI0h8eEkiokZY9E3XK6az1jXjMzK8tCfb4+YsxM4p47BtHFmxZ7KTYV8dWUROaufWdK2SR6afyuA2IXoMn0igHZeJtid+w6XEXY+Lj9oOG6AcMkbqgek/l53DVT9kgotXoAnZnhFXp1r6Gh1ZuHKAOkT2GjC2fgFvO23rQUNmM0RXyFxmUjXEr9fR29Mn7rgNgFaDK9YEC28TmpxNhUwbEL1nbQcOlA+/rwni1MR4sRKwMD2c7Mpg2KHJ5Wymt8fOUmItMSmW/773RW73b2fX0bb1rKE8VexnUjXEr9fR29MH6bEAHoQLcbkEt6B6XSibEpEzMPnu3GhbzOOHcid/Pg2+lk4pVSx2WPWf7/lGeVe8ZDe+DKxHq2lJMw8s+nOlHsVUynBNn0mymGj3T7+I1hTchj54TmsG9fdubkT39a/xmlTp2tWUV+PubIyMr32+3s/VjntOZnrebnVmKgnnFZR36OZvE3MeR1tm0b7vOYszNDnBsai1YrO5cVw/AwwMJCdl7u/v0Ae/dmf0+cyN4fGsJf9+jR7IxUgOz7U1MAAwMrP1O0/+Xl7Azbe+7J/i4v46+lI9azzc/nffe7s79f/jLAli0Al14KcPXV2d8tW7L+Jf98XXvI//+zn836GO46ElZjOhseIHtmur6r3D/G7u8FDbEVaJPp1hkEdZeXydsUMsYGey3T7tGy94Y7Bg5zggLAyqXF/P64PCbd7AFUCnfkXPm82ir7ocYTYtP1+Ez4ncKzpYSP1G3k+chH/CeSbyo++lXK6kjdys78fDNiKrt1/KYgAtCBbjQgm11eqQgE6oCqi1kKIVrza4yPr15q1wlOrqX1Xlh+cxUh7XZ2egilPWDahe8k6bGfrU16l/l5XIyrzyXFpmwI8TV5wMZHu2yES4VuHL+piAB0oBsNiDoDTEUguGxWSaHDp5bDFHDP4QlNMW7HhomJ1UlqW63s/RyT/QwO0mOgqjzjnU62qUYXn8jVrmI+W5vjGWPnpAxxbCUHPicPlOeWSt9pSzeO31READrQjQZE2SGbikCImUw2JtSlxbk5/OebNpuvQycscvvF2I/NhpCyB5CSd7Hq+7b3H/rZdjpKTU7iRbJLbjnOc6l9emS58N3XxfYch6Qbx28qIgAd6EYDws4Ah4fT6RRTiHdKBYonpejdaPpsvgrsYLm4iKuvqSlzTGHdIGlzegJX7ruQz9ZG5Lqk7OGooyZNIG37OooNYD3HTe8zunH8pnJarM0nQprkO2SPHs2afRXDwwBPPgmwdm3YstXRzbtZKeh28FWR71jNd+hdconX4gXn4MHMTutQKtvFfuAA7vd+8QuAn/9c/5m+vux33/Wu7Ppbt2bvU55LDmYnN4Z8Z65v9u3L7Al7n+12Vj9zc/bX5KgjrJ0cPMhXj8vL2e8dO5bdw9atuOwCNn3dvn2Z/RXvcWAge++GG1ZfN8/eUP5Ou51lQdi+vfo32+1sR7dpt6/tvQseiK1Am0y3ziBMO2Snpuxmfb5mjL3qASzXJ9aTlap3gxtsOMM734n7nC4nZv4qxxrabCJp4jOxWcbNj6Sz9QAODvLUUejTSFxiDbljK3XHAupCTGyXy1OKs+zW8ZuCCEAHutmAqhrq4ODqJTBs4/XZ8HspbiWnqj6piY+rBoxugus0EMoJLFXfpX4+pZgzLDZ1nd/r3JxdcvSpKZ5J5VVXhWsjrrGGmKMb874OK8ptMgfofquur00tzrKbx28sELsATabbDajYuU5Nuc36fDf8btnNihnQbOLJTK+UDmnHgKknTB5ArEixPQKL+mrq5hvb4xVzwTA/X91+616Dg9l3XCeVS0urvbZVrzPPdJ9AusYaYgXd3Fz2eYoo9507NMU4y24fvzFA7AI0mV4xIJfGG7LhY3Y8ci1Dm463srnGwsLq81tHRlaX33bHJKXDThmsN5lDAOb24/ts4Ze8JOyZy9zhGK71s38/Pg8gQJbCR3dcGTZMZXoaX0ZXYe4aqkL9PlWUY/oA2+XyFMN0emX81gGxC9BkutWAbGPLqhovR8OnDFa6z3ItQ+t+x/YaCwu4wYdbiMRcHrcRIRRvsktdTU7STmDheIXy/PkIx3Ctn6rEwuvXrw5rGB09tWSM/W3dve3ejf8d13biGmtI/T7V/n2eHx46zhJDt47fFCB2AZpMNxqQS2xZVeN1bficoo1jGdrmoHRMMmqTpyoPeMfWJ+aZxVwet3muVG+y7bJknT3WhRlgXyYbCSHEudpBlXh3rZ+6MpW9eVRho7s3igcQwM1DhS334qLb9/MyUlcLMPdmG28tHsA0gdgFaDLdZkCusWXcHkDOwYpjGdpl+VV3DayHdXGRNogUB+iqeKlY8Wa2z5VqSy4ewLqBqE642pwUEnoAdA3lKMYDUzzgphg73b9XlclG2NfdGzYGMH+5eKiwXtK6iZCN+DKtLJieexU28dYpbtTrtvHbBohdAE5uv/12de6556r+/n41NjamHnroIdT37rnnHgUAatu2baTrdZMBucaWDQ8rNTNTHQ9n0/A5Ywe5Zp8cy69V18CemjA5iRtEhoezga3qGRdF4dISz9I6BZfnSvUm2yxLYuzKp/fL5xKYbTvAJHcuDv7l+qnb4EGpq2KZuIX9xITb9ylg7EQnpGzE18JC/QqD7SqAzQkzqW3U66bx2xaIXQAuZmdn1dq1a9Wdd96pHn30UXXNNdeojRs3qhMnTmi/d/jwYTUyMqK2bt3a0wKQM7asPIO1aficSwZc8ScuS4r5a3x89e9SBKCuPnXPoAxlCZYzZszludp8lyLMXAeiqnqipo/x6QG0aQeUVQFTCpAqwYDdXV0sk0u8YV0b/93ftb83KlWbvTjq0hQ+MTVVHVNpa++2MbyprER00/htC8QuABdjY2Nq165dJ/9/eXlZbd68Wd1000213+l0Ouqiiy5Sf/Znf6Z27tzZ0wLQd2wZteFzBg2n5AEEWH3PlCVgXX2ankHxu9glWO4UPi7P1dabjM1pyTEQlQfFmRm8XfheAvMdQ2ZqR1WCwcUraeNxrUpPkpfp93+f3pZscdlYV1eXGFI4vi2FMijVXeO3LRC7ABwsLS2pVqul7rvvvhXvv/e971WXX3557ff+4A/+QL3zne9USimUAHzuuefUU089dfJ15MiRRhlQ3vBmZrLg5+KSLTW2bGZG792oGowpDZ/TA8gVf8KxE7SuXrCbQIosLZlPp2i3q5fkMeXzkcLH9bnaLiNV2V6IgYgyafDtBaG2A9sJD2UZ26VtYpamdb8TcmJQxsbzyU0qQiwWIgBVdwjAo0ePKgBQDz744Ir3JyYm1NjYWOV3Dh48qEZGRtRPfvITpRROAO7Zs0cBwKpXEwxI11m22+Zs/LaDg+2SFnfQMFf8ie53KINklUeDKg6wz2Bqiv6d/fv9PGOO55rKMhJmAMVMGlqtU8l7fWNqB8UdtxTvpUubd2mb5c0p2N8xebZtj7vE0OngjhV06T9N+EgF1DREAKreFIBPP/202rJli7r//vtPvtfNHkBMHE9f36nkqpgONEReJ+6gYS7hoPsdl5k9tVOmxCTmv0F5br6eMcdzje29oMZQ6pYrBwbCDrxYzxc1ftElTi5E28zx4dmmgJ1YDQ/7KQN3WEdTEQHYJQKQugT88MMPKwBQrVbr5Kuvr0/19fWpVqulvv/976Ou69OAQu26LHd62HQhofI6cXt7OOu16ndc64VSPmwcUV5n1Jgrn884FS+eDTYDqI+dmC6UPWd15aKIP9d78N02c2LnpMNOrKo2jLkSW/ymhAjALhGASmWbQHbv3n3y/5eXl9XIyEjlJpBf/vKX6rvf/e6K17Zt29Sb3vQm9d3vflctVeXQqMCXAcXYdVns9DiWtjg7ktjeHgqc8Ya6e6bEP5WfLbZ8vp9xk55rju0A2unod37GGnhd0z81TbwrFf9UijrBHUKAxha/KSECsIsE4OzsrOrv71d33XWXOnTokLr22mvVxo0b1fHjx5VSSu3YsUNdf/31td9PZRdwrF2XNp1eanmdUsG1XkwTANuE3fmzpZRPnvFKbAdQmx24IcQxtlzlmLV222+cnE9iiiCs4C5v3sq/62oTNrk0Oe0wpUmfCMAuEoBKKXXbbbepc845R61du1aNjY2p73znOyf/7eKLL1Y7d+6s/W4KAjDmrkvbTq/JS3k+sa0X0wSAeg5q3bOtE5lVgzr3M15aynah796d/UU63JPA1ntE+V7IAH1sufKMASkM3K6EXL0oY7Nxqy6Hn41NUMQvtx2mtvFEBGCXCcDQcBuQz12Xpt906fRSmtWlBLVeMBMAamC+7tmW48B0nTPXM56YWH30VquVvc+Bb1v07QHMd7JWPUMfHleXPqfJ7T6WZ5s6geCOHcWK37k5XjtMceOJCEARgE5wG5DvXZcmkdDrXrvY2OZdMz1X07MN1TmbjtxyFYEhPAy23iPM99rt8AH62Ani/PzK7/ms61DCMsbqBdUDh2nfVJswid+qjYAu10x144kIQBGATjTBA5gzP1/vPZIl2zTgOGqO+mxDdc5LS6s9f+VXq2W/HBzSw2DrPcLk4PPV/nXMzeHsqBgS4KuuQy8ThvZiYicQS0u0UA/O0B3ucSjVjSciAEUAOuErBpA7NqWqsa9fr9QHP9i8pZtuhpIfTGcjw8MrT3nhuKZr5zw9jbvO9DT9t2N4GFxiPOu+F2t3KsUGfNZ1isuEPsBMIKirATY2USd+ue0w9q7rOkQAKrUGhGRotQBuvTX7776+lf+W//8tt2Sfw7JvH8AVVwA8+eTK9595BuC22wB+/nPa7wn+2LoVoN1e/exz+voARkcBPve5U/9f/ncAgM9/HuA97wG45BLzsz12DFc27Ofq+MEPeD9X5ODB1fZdRCmAI0eyz9myvAxw4ADAPfdkf7dtA3jiCYD9+wH27s3+Hj4MsH27/ne2b6//3qZNuLJgP4eFYgO+6np5GeC667LvV/0mAMD4ePa5prN9O8C99wKMjKx8v93O3t++nd7ebGyi1cr6iHe/e2Vfgf2ts87iLRu3XQtmTotdAGEleedw3XUrO9p2OxN/pgGmCKZTve66bDCrEgrLy1lHfuxY1ji3bhWx6JtrrgHYs6f635Q6ZQNcNhKqcz7/fNznlMpEFsXefIvYffuq6/rWW6vr2tRu8oG3TD4BOHq0us329WX/vnWr3X3UQbEBX3WNFZYHDmT1d/QowE9+AjA8nAmppvVN27dn/W6dnVDa2+gor02Y7DDnfe/L2oDuPjC/19cHMDSU/fuBA817lo0mtguyyaR+EohNyoEcaixOk3cEpgA2sXP5SCvXOg+VEgMTA1h+YWO/fJ9YQlmWdI1hi7E7lWIDvjIVTE7ifrecCsWmjpsA5gzp/Nn4uG/T8YX5tQFW71KuehaY3wv9LGUJWEkMoAsxDQgz+NucFatU+EHPN6mLU2xiZ1+75UKJDtMuYKy9lfElYqnxblwxbL52p+raAdYGuOva5kSb0GKIG2x/ZBJNg4N+j95bWNCfXkNtt9hnHSrmUwSgCEAnYhkQVnBRAonLx3+FHvR80QRxanOkGzehUmJU5QE0DQYYQWFKmeHzGEUfmyO4Jy2YdoC1AZ2QpwpdzMSH8kr9HFtqf1T1+YGBbNXG5T6x5aCcN46x99yuZ2ZWny7j0l5sEAGoRAC6EMOAKIKLKi72709nR2DouoqFTe4/X7vlQnlKiyeB7NqFtzcd3AKQsiyZ1xfHffiA2meYvEI60YbN5ch1BnEqdYzBtj/yMRnAlsM1NVXds0ihvYgAVCIAXQhtQDaCC5NMtDiQjY93x6CXujjNselgUx3gbOBIEcH9rKnLkvng7HofPuCsG4xow/4WZeJTF/eXSh1jSKU/opYDm5uS+ixSaC8iACUNTKOwScGwfTvA1BTu9886C+Duu3Gf9bkjkIMQqUE4oOz2y9PAcO8CjQnHLmTOZ12XNqmK4vNINdUFZ92YfgsA/1vYPmFyEmBuDvfZnBTTiaTSH1HKsbwM8MUvul2v7lmk2l56DRGADcJWcN1ww+qcU0XygQwgS61gYng47UEPIG1xWiRPkYCFmgcydbC5D3WiF/sMv/ENfR45XdqkqnIBnHoeHPfhA852wPlb2D7hzW/OUubo6rZI6Dou54ess69U+iPOnI86TPaeanvpNUQANghbwdVqAfzJn2SNSpdg+sc/xv3+e97DM+hhO08K+W8eOoT7fOwZZquVJWI1MTp6KklsN+Ga/Hx5GeDECdy1Pv5xgC1bMi9fFZQB78wzAW68McuBBuAniTsHnJM0zt+i9B3FutXR1xe2jvfty+zp0ksBrr46+1tnX6lMln3kfCyDsfdU20vPEXsNusnEigG0TcFg2uVnE9Pnci4q9+5cSuxWKjGAmLiq4WH7M3Kbgs0uZJsUIjq7tInHtN1Jawt1QwBn2hbOGECl6H2H7nmHPs+cuqEjVL5NEz5yPpZ382KeRf774+Orz6gP9SwlBlDJJhAXYu4Cts3ZphtAbDsp6qA3P08fnLH14ioCfFJV9ylvpAkNRdy4pBCps2ObHdk2O2ltsZ00ceZ5NOVyxO4C1t2Tru8ophGZnlbqL/8y+4s9+5oD2w0dMZJ8V8Gd83FpiWbvVc98aCgTgyHztIoAFAHoREp5ALlmTbadFHbQm5vT54GzmQlTU0pw1RVVsFQN3pRd10IGVwqRsqjGnr7AYbNUXFMacfQZ3B7A4u/q2lHdv8fK8ekyaQuVb9NEVTmGh1eLMG7RmlJqLhGAIgCdCGFAdZ2fz5xtpk7K9tqUlDQUjxe2Q56c5KsryuCj6/R81EdqcNuqjaeu6jU+vvq3KUdWVT0jzL3aLuO6ClDX5xDDW13XziYm4gkJ1xQmqZxMpFuGLfZlXKI1lVQ4OSIARQA64duAYp5iwT3rpnptKB6v0DmluJNxt1rxY4N84cOGXZPTFl91gt3Gwzg+bnfahqk+UgkTwNb75CSPuLFd5vfdZlJ5Hhxg+zIO0ZpavYkAVCIAXfBpQCm5yjnKRPXa+PAAcnQs1Fks5b5jxwZx48uGbY+nqnrVCYXigDc9bf/7xXu1rY8UkuYqZed5tRX7HMv8voREKhs6XAntkUvFjnNEACoRgC74MqDUXOUcZaJ4bWxjAEN0yFSxib3vKu9RjNggLnzZMMY719dHOz3CJBQw9mWKa223lRoZsauPVDwnNjGStptkOJb5fQqJVDZ0uBDarlKx4xwRgHISSJKkkjWes0yU/FbU/E8+ckrV5SikJnTF3ve2bQBPPAGwfz/A3r3Z38OHm5v3z4cNY07pyJ/3ddfhf9f0TE32pZQ+h6VSWZmPHtV/pq4+Ukmam9eDUvjv5J8dH8/qCJs7jyMhss+cetu3Z3k5ywn22+3m5Ou0TU6Nzd9a/txFF6Vhx0KB2Aq0yfiaQcR2lVfN0DkCn03eg1YrSxGDLVMZrmBlXZwWdRbbLctFOdhYIG4bxi4J5s+J4nHGehzq7Au7k9ulPmJ6nIrP3OVs2Kkp/BK4iwfQpU3ZbNBJYUOHDbZ5XzExrKbNOyl4TsUDqGQJ2AVfBhTTVV6Xo+mKK9zLZNphOTeHL1NdbJFrh2yK05qbowu6blguUor2HLhtGPt7i4u0zw8P08MNbHM5crSf0GECthtiql66Zflyu8EuN3O2qZib7mJAnZxiY1hNn5uYSCPcRQSgEgHogu8YwNBeIx/JdauuQWn8ITfDYOPW5ufpgi6V/F+2xD75YGYGZ4czMyuvb/p83aSDAuZe8xhA1/oI6XFy6Q9sX5RThjiFRIqb7nxR9uhi+jJs37i0hP9cbM+pCEARgE6E2AUcymvksuuOWibsIBZ6MwzFa2Uj6Jq6XETp/Iv3ZyOU68DuxJ2ePvUdk4ChnlqhA9Nem+QJ5kq2nd/f4CDus+UlcGpOUhthkeKmO19U1efg4OrnU+7LsH0jtp2mkCJHBKAIQCdi5AEcHq6Pk3PBZRnLlycr9FI4NW6tqYKOCvY5lM8EzWN+OLw0VA9gTsg2hJkU+PQEc9oj17J2Lm6xsYNVbRl7X7rTLRYXs1fVb3D1M776A67fNSWkn5qqvwa2b9y9m9aHxkQEoBIB6EIIA5qbqx5YuQWXTXJdzpM1XMrE1ZmklqaAC9ujtnJsEy8X4yZjJpENKdR9nASCgTt+zfaZl9Ph5OLWd1gLdbm6WDcc/QxX/ZdtY36e73ddvJziAexOIHYBmkwID2CouBSbGX8qiWe5OpNu27GrlHlgwgxcrt6g4eFsac4FzJJk054NFz76Ceozz681P18vbn0tgdssVxev6drPcNU/dsONTX253iO2b8xjAJvQh4oAFAHohE8DCh2XYtOJxk4866MzaVKclgnMbjzMwGWTALhKBLrWnc7L07Rnw4WvfoL6zLHL2D6WwG0nKByihav+qR5M6mYKLi8npm9sSh8qAlAEoBM+DSjGciQlx1eoWVyMzqTpO3aVwg1MptMrqlJAuIhAjucV8tk0IcbTZz+ha3sA+pgxHdz16no2dL6py6af4ah/lw032PAgLjvBtr8m9KEiAEUAOuHTgGIkg6Z0pCEbcowdt00Y/HVwBfGbksAOD9MEIMfEIcSzaUpOOB8Jt4t1m+e9THkgd7X1vXuz+56aWp2r0HSvHPXPmUeyTrByrqZQsjik3IeKAFTqtLDnjghYsMcYHTqUHbOzdSvtqDOXa05NhT3qaPv27Ki0gwezY4k2bdLf77592VFgxSPD2u3sGCtsuVstgEsucS56NDiO0ir/TtVzuOgigPPPz445U0r/W0qdOu5MV7fLy/pn7fvZ5EfOle/n6NHs/ZSO+sK22RMnsnrV9RF17WZ6GmBoCNf2YpAflYexwSr+z//JjqMr3vfAQFYXN9ygv1ds/es+x9VWAbL77+vLjt7btu1U2fNj/K644tTxhTnU4zKx7a/pfWhPEFuBNpmYMYDlF4d3AhP3026nN5Mr0ksJXZWqn2X78ADWQY1fCrGb0pam5YSjxOrp6rHp7cYmREGXnxB73xyeNU4PoKntUldTUvfiuSAeQCVLwC74NqC5OVpnxhVj1YQA3iqaNni7ostxhxmYdDGAANly2OIirr4WFlbHI1FFZQoipImpgLDix7Q82PR2g91FW6wLXYJq6gYO2z6TY5NV1Ut3LrttXkWO1Dap2JEIQBGATvg2IJtUDBwddRMCeKto4uBtC+aUC8xRWhjhgO30l5b0MYEhdlO6EiP2lgNKCpFyPXZTu8nFxvi4fkIyOuqWnLqMa59J8WBi425dnpfP1DapxNKKABQB6IRvA7Ld3cbRUac6a9PR1MGbCuWcW9PAhBEOlE4/5m5KDnyXg9KuqG2w07FLxNut7aZYf4uLSj3wQJa8fnIy+3/s6TK2G2iofWZdWy0nUveda893apu8L7DdRc6FCEARgE6k5gFsakfNRUwREVIwY+9zeDgrB+YkkMXF1TsgbQcVG29IKiLE527Jqh21dd4QW8+JTT2mIr594rKDPeR9U5ZnfYXqxEhtE8MrKAJQBKATvg3INjakyR21C7FO8gi9zEHxDGNtgVsEUAVxSiKEY3B1OdXBdvnN1gPYjSfgFNHVp+nZpHzfvkJ1YqS2iRFjLgJQBKATIQyIurttcBDfYcVe5vV1JmrITSwxNi5QOlesxwzb6Y+P89+PUrjJDmVTiisug6vtqQ65t9Zm+c0lBrBY5iZu/tJhm2S5Kfftow/lmIzZhC+FFtwiAEUAOhHKgCi727ACMHZwrs/rh9rEEmvjQqfjvuO2DEVU+rIR7GQnlJ3aDK4upzrs3283+GIFp0nUNHXzlw5sfZbbU9Pv24XYqW1CrWCJABQB6ERIA7Jd3qkidroNlyUuXwH0NsRatlxY0KevKAolijcYG27gc5Zusykltie7iMvAt3cvffmNIjgxoialuuQAW58zM91xugUXMVPbhIphFwEoAtCJ0AbEEZsRO90G5xLX8HC2JIndIcndccfYuEBZXhwcpIn5hQV8J+1zlk7ZlDI/7+5J5rQNl3NpbTyA2M9PT3evWNGBrZ+pKfNvxV41CU3I1Dah+pYiIgBFADoR2oA4PE6xg+19LXENDWW7LKvw1XGHrkvq8qKNR3d8HPfbpkmGq6By8aS5btZwsQ2bclfFAGKX31LZPZ0qWE+UyV5ir5rEwrUtz8/Tzgtfs0ap2Vkfd7IaEYBKBKALoQ0I05kND2d5ouqIPWD4XOICyJIbF/HZcYfePekqLjivoTvNg0NQuXjSsG3Bh21Ql77ya83Pnxpop6bwy2+xJ3RNAOPZbkKS8qZR1ResX2/Xj/tABKASAehCDAPCuNV1A27sAcPXElfxNT+ffTdEx62LlQHAL1FjcF1exNDpmOML6zYacQoqFw9g8TU8XH1dH7ZRPIWiaAO61+hoNtiVyzI4uPo5VC2/+ZyENC3eTVdel1M/QvSZTatrE6bUO2vW4PtxX4gAVCIAXYhlQKZAed2Ai/FQUFLJFH8XG0TtY4mrPOjn5bHpuKmdcdXzKJ+zG3LJuepV9KiakkKbBOC6ddXf4xRULkHkVdcu1z33oI6xgTxmsZwcWjdQYk5L8JHCpWnxbqbyuqx8+F41aVpdm3DZCV/Vj/tCBKASAehCTANaWtKnAtENuJglEermAUoHRhmwbEVPPshSO27bzrjs/al6Hr6XnE31gbk326B5H14Sk3cV+6pqC5yDuilGtc4LzCmaOVO4NC3ezVT/uei2tU+fHsCm1TUGLu+9bZ1iEQGoRAC6ENOAXDolk5eHOvDovHmuOcdsRU8+6FLqyLUzjrnkbLqmztNUvDesMBoY8Ceoyvdbdz4q1S6KbQFrG4uL+vK5PHNsGSYnw+10x3hvUop3w5S31co2FtgulftaZu/W2EKO+F3b/oKCCEAlAtCFEAZU16m7DLhcM9pOR6mREfvBAjtg2aQTyDcAYAczjs44VHwl9ZixqlQpdfdGmb3bCCqbe6+zE+qJG8W2gJ1YmLy/LmEGk5O0wTDEsmDsGGEqFHudmLBfKjf1QVNTdKHWtLrGwukBNE3AXBABqNQaEJJl3z6ALVsALr0U4Oqrs79btmTvb9qE+42qzx07hvuu6XOf+ATA0aP6zxw5AnDwYPW/tVoAl1wC8O53Z39brerPbdsGcOONAGeeaShwgZ/8BODBB7Pf1vFv/2123YMHAZ58sv5zSunvBYCvXk1s3w7wxBMA+/cD7N2b/Z2fB2i3V36u3Qa4916AoSH8vW3dCjAwgCtH8T62bs2u19dX//lWK3suVOrsZPv2zC6wFNtCqwVw663Zf+vKfPQowBVXZG2uCptnnrfrj38c911sWTjA3s+Xv+yvDBQobWl2FmBuDmBkZOX7eTvZvr3+u9u3Z58pfzdnz55TfTMWn/3F8jLAgQMA99yT/V1epv+GLaa+oK8PYHAQ91vve59fe+95YivQJuNzBmFajsy9OthliaIXheNEEUrS4JkZt3ooe69OOw1/XYwHcGkJ743RnYUbe0bP5S223TGJ8chxxzVh7023c9nkxc7txGUZ1xRmgH35XhbE3o/vAH0sVG9T3i5sl8o7nfr2QY3b89VfpLCpBBPnPTGBs3dfsZDiAVSyBOyCLwPCLkfmcV2mJQ3MDkXdIFPuMDFLq8XX9LRdPbgOllihiz1XN3/pjqrzscPaFepA4xIjOj9Ps61Q96Y76WFx0X4gpsSHce2OrCsLB50O/znTPqHWqWtMGWfcno/YwpQ2lWDivOfnzfbma9IjAlCJAHTBlwFRBmxTI6OKKIx4pGR2B7DzALoMlnmHMTPDM9hSOiPuHdYc2Aw0dfdhGkhinY7iIrqxdlJnx9hd7ZyxUT6D4zlOg7HFxjsX8ghDH+mDuFL4pLipBPM8XSZgLogAlBjAJMHGfHzjGwBLSwB33QWwuHgqHuzw4SxmZXkZ4LrrsuZTRznurhgPs29fFnNUjh+jxnHVxc3oMMXk1ZHHndxyi911TSiljwXctk0f39LXBzA+HjYmRxfvVqyvoi1s3w6wsLC6DkdG9PFSoeIgczCxfF/4QnV8aR4n9bWv4a5VZ/d18WHl2DKuewbAxwDbsG1bnDLoYp51bN+excDWxRADZLYxOprFp9mQ28rCAu7zpmed/97SUhbHahOXWIYjjpkbTJz3j3+M+y3O9iP8M7EVaJOJ7QEsvqpiPLC/Mz29eobGtVzVbmczPGq8DdYLMTCw8v+L3k/OZMJY70fsOEAd1FxxNrFEse6f495ML5Mn2+TtwNbN0BB/yhEKPk8XqYNj6XJurr68LsufNrZiip8u/97ICC7pt47Yx3zaEqvPEA+gkiVgF3zHALos3SoVJlWM6VWOJTMJiE4nE4zr1uF+f3FRP+japJBx6YxCdMJLS5lo3707+6s777YMNfUOdTDFioelJf6jr1zvzfcAxB3b6xMfp4vUkWpC7Pz3qP2wKUTEV4xeypNPHTEmHEqJAFRKdZcAvP3229W5556r+vv71djYmHrooYdqP/uFL3xBvfGNb1QbN25UGzduVG9+85u1n6/CpwDE7sTUNRSXDsE1medLXlJfxrqOjjrTxu5E5IhjxHZGlATDNgJoYmL1JotWi/fwdNcB2SQeqs6+5dylqBOCtp5tjgFoYaF+cw0m9tZFyNiWN0QZuIULR0Ls/HcotoKdHNm2K2x5Y3qPbVmY66hLYL96N+xVF8N+tQY6qDp1QQSg6h4BODs7q9auXavuvPNO9eijj6prrrlGbdy4UZ04caLy81dffbW644471MMPP6wee+wx9b73vU9t2LBBPfnkk+hr+jAgm+WGuo7SpUOgLFcV/39gQKk9e+gdnY1XRpeSpUzdTmZXL2vVdUx1PjhoJ4BMaRMuu4zHm8YxINeJhzwZr03dYjAtW9t4trnKZdqoUnUKTlnIcIkbLCGul+rSJdVWqs56LtZXCA+db8+tF3uoaLQ/hLb617DgddIjAlB1jwAcGxtTu3btOvn/y8vLavPmzeqmm25Cfb/T6ah169apv/iLv0Bfk9uATIPEu95F7yhtOwSXpTybtCM2otf1VIncy1pVN/mgXO7gFxbMnaDNGbam57G0pE+vUid4bOAakKnpg1w9FJjlNapnm2MAwth3u22+7xTyu/kg1aVLrK3s3p2VLT+esO75UH/PpR348Nxa25+uw6xptC/886szO+dWaA0iAFV3CMClpSXVarXUfffdt+L99773veryyy9H/cbTTz+tTj/9dPVXf/VX6OtyGhBmeQC7bFmVoNemQ7AVj1QBQZ1p2wqFqnoYHKQJPVMnmH9nfHz1746M2OfXw+Y0xDwfE74GZJ8DPXZ5DZtyAnv+bqj75o4dC+1JNJUlxaVLajou0/Oh9nMu4p77+Vrbn67DxMyMWq3MreoBEYCqOwTg0aNHFQCoBx98cMX7ExMTamxsDPUbv/M7v6POO+889ctf/rL2M88995x66qmnTr6OHDnCZkCUDPw2HaVth2AjHqkDHsUrYzvgmTowzA48029UxbYVXy4Jdnfvpg0eLoOmrwHZ51IfJfbSdPKH7c51X/eNEbeUMmMnMSHFoW6zVqiNL2UoqyDYE4coYSchN/1g6oHc12A6XWyH5qESRAAqEYBKKXXTTTepM888U/3d3/2d9nN79uxRALDqxWFA2EFifDz8DkHqgEAVEJSZsc1SBkfwNecpDjZCgOIBLL5sl818xBL59ABS2o/OCwuwegOT6zKr631zpYVSym4SE2qZuW6TTFV8ZCgw7cDGU0gRgbE3bljZL6bTLefw0r08VIIIQNUdAtBlCfgzn/mM2rBhg/rv//2/G6+Tggcw70Ri7xA0QREQ2NMcFhft+gAO4cGVFse2HJQYwOLLJXCe2858LvX5fD6uk6ulJX34hum+bXbk69pZ6PvHsrAQ9/q6cunaAWXyUfd7Ln2Tb6w82D4aJHMliABU3SEAlco2gezevfvk/y8vL6uRkRHtJpD/+B//o1q/fr369re/bXVNHzGA2MGRY5nG91IPRUD43L3GsfTomhYHO9DqhADm8HTuPtNXLBH3c8ZMImwENPbZ6O7X5Agx3bftWOriaee6fyy2XvpQy9W661DCd8r9Nza0I2byZqsJNLbDpHgBmStBBKDqHgE4Ozur+vv71V133aUOHTqkrr32WrVx40Z1/PhxpZRSO3bsUNdff/3Jz3/qU59Sa9euVffee686duzYydczzzyDvqavXcAhlndD7SikdNC+PJtN8ABin3FdGpW6vjXJnF8edylSd19TXxRBjUlthLlvjLjFlJljEuPLE2XTRlPZFd3p2Mf3proDuoiV5x57Y5Q4QPEAsgOxC8DJbbfdps455xy1du1aNTY2pr7zne+c/LeLL75Y7dy58+T/n3vuuaoqnm/Pnj3o64XKA8i9vMu9o5ATHzN6jqVH10G4/CoPGJRn/PWv4/vWVPHlualrPx/8IM9zKzsh6u4Ds9w6PIw/xYUaO1ZVZo5JjC9PFNVLn1ofhj26spziJdUd0Cf5ZwNfGP8b1QcvqL6+F3D1TbmxuTmzex6TJ4mICEDVXQIwND5PAvG1rOE7G32qcHhXXQbh4vXa7UzETU5mL2psI0aMrl+fnV0bO8UHFp3N22xCKn/edhNN+YX1QPnw7NgmiS/n23SxX1+TCkp9ufRhvvpWlxQvIVd+6qisl5LBLcC/Vu3W0RVl1E5cKTc2P6+vMA87gUQAigB0ookG1IQlB19weFfrfiNfmtUNrvm/Uc9HrisHVoymnixYJ6S4lvlmZuxFT5WoMHmgsB4hqketOFDnKW0o3iPXSYzPTANYh5FtH4axJYpALD8LlxQvMTf2VdbL4D+pBdi+quAdaKn9cInaO/4QTkBTA8FNiVIZK6SJ4zc3ELsATaaJBpTqsUs5rjN00/d9bp4xeWiw58BiwXqEXDwJITYK1Qkpzvtx3QBRvB7GA2WbtN22/ijeI90kBlMXvlYIsPdi04dhloyr6mVoKBPzZduv+mzevikikHtjn22dryobLKs+WFYL8K/djQB7Y5i4CUbja+L4zQ3ELkCTaaIBpewBdPX2+Ehw67L8uLh4Kjlv7iHgHljz683MuKUaqcJ3kL1LbkWbMQhzLd3JMDnYNjQ0FCa2y8Z7VGfX2Jh8X/0D5l6ofRhGsJtyQxZt3zRpwfxW7L4WVS+wrEbhH1QH1tAKbqtkAw9OTRy/uYHYBWgyTTSgVIOOXYO6fSS45RRAHH0bRyoKbN8ZIsieY1OCza7cOtufmsrqVLexg5K6I2TSdi7vUQorBBgvvq9E87pX/txMq5T5qSypp3hB9xlwMb7gLp0mNk5jZobl/ps4fnMDsQvQZJpqQCkEHRdx3Zhi60kyLZNxCiDXgdXUr3IO3NwbheoGdI60JNTB0zbWyjZ5L6d3LgQprxAUofRhIXJ4VtVP6nWJ7jPg3+IK7tppYndqTU+z3H9Tx29OIHYBmkyTDShm0HEZ147SNb6rLGZ87JTGlnFxcfV3Mf2qbR1WiQ3OgYtjpyz34EkVWJh8fjr7cM2FadqosLTEJxhTXSGoAtuHcXkAKa+9e4OHtJGx9gD66jTFAxgciF2AJtN0A4rpaSji6r3iTnDrY+aOTcExMrJ6sMf0q6aD5ut2hFaJDewO1slJve2YhOvcnH1aklBChOpddvGi225UKKdQc417TW2FQAfm/jjS39j2J6aNNRMT8fpho9ivigGsMwKOTlNiAIMDsQvQZMSAeIjpAcxfRXHpK4UHJQVHHo9GqRvKwG2z+1b3qvJSYYTr/Dy+TsovbiHi4g3NX7ZedK6NCsXnbRP3mpPSCgEHprYxOMgjEIsTE8zkYXAw7mkm2nqBF9TC4G/hjIAjBkV2AQcHYhegyXSrAYWekS4t0XawVi2Buc7wizsGbY91wkCJJRsZoYtRzMCN6WdbLfqyZ1FkUoWryatVNXBy2qWrN7R8wkOxrjFtKdQyJcWLl8oKARe6toFd5i8KcdNEy/aZhva0avsMbgM2dZoB3c/dOn5TgNgFaDLdaEC+U39grqdr93Xlq0vEbOrUbXcMFg92p7K4yD+wF/tVU4yYj+uX65LqECiWGRsLbhpLsGMXhze0qiyUthRyo0JKcXyh0dkEpS/CTLRcnmnZk+hbiDtfgzN4NJD7uRvHbyoQuwBNptsMaGHB3PFxX880yBbbvU2qF90pHS47BsfH7e+bOjDovHGmfrWqLx0YoF2bOni57oDkWE3Cii9Xb2hd/VM3RMbYqBB7J2+K5EJofHz1qkSVJ10nmjie6dRU3CViEpzeuwCqt9vGbxsgdgGaTDcZUKdjzm+FncBRArN1nd/wcOa9wny+uBmi6trcOwZdBk9bDxy1X6XuXtVdc3w82/SB+U5xB6SNcHV9BhTxRRmksfVvsyEyxkaFWPnnmoKNBil+x3RUn0ubTG0zzkkaFDzaTeO3LRC7AE2mmwyI6wQArOeFOshzCDOuHYOuy2c2AnB8nNav2uZG1AkWbLnzZ2DrEMA8g4GBrDx1SYJN90LNRfiSl5hPCMmxtVWTB55rowK2LQs0qvo+6vFw1DaZ5DJ+Q4JHu2n8tmUNCD3P8jLArbfiPnvsWP2/7dsHcMUVAE8+ufL9o0ez9/ftw/1O1fWon6+i1QK45BKAd787+9tqVX8mr4u+vpX/1teXvW65pfq7WH78Y/p3tm0DeOIJgP37Afbuzf4ePgywfXv15w8eXP0cbFEK4MiR7L/b7dX1ktPXBzA6CrB1a/b/27cD3HsvwMjIys+129n7dWXXPYOcn/8c4C1vAdiyZaVdme47v5eDB7P/37Sp/rNF/u//BfjZzwCmpsz172Krg4Or3xsYyOrrC1/I/r+uTnIw/158TsvLAAcOANxzT/Z3edlUcqFMXd/3859nfwcGVr7fbmfP2vSs6ijbMTsuRoHpaIU0iK1Am0y3zCAoy2B1XgOq5yWGB5CCz5UM6rKjzUzfx6aCvXuztC06L1VV/dg6BDA7psvXtdl8gl16xT4LG1vVLdebNkGV4zQpca+hN311I5i+Lz8ertgGdB5ySptkp0eMolvGbxcgdgGaTLcYEHbQHBjgywKAXaKcn1/5eY5NZlh8rWRQRYdNv+tjU0FVQHpRdPgYHzqdbODUbVwpPntu8WX6bl2ZKbZKnTxhTwIxTWJcT+4SMlwmp3XPyDokR9dpYTq0HjKKbhm/XYDYBWgyoQ3IlyDBdmBTU/W/YbNzc27O/PniwNekEwpMYJJCu4gqzk0Fxdxnda89e/yF+lAGWNuJwsICfnc0xutCsVWf3u26PsNmo4pQjeuu9apnZGXHOs8d9ozBHjIKEYAiAJ0IaUA+vfIYsWBKvGsziNl6axqyycxI1b0MD2cbPnSbVLCTAK5dwBgByGmPZagDrO1EgbrJxQTWVjnS3lAJHVLRzfiqS5Id2ySzLP9QjxmFCEAlAtCFUAYUwiuv80hhrmEzebQd+HxvMgu5iY0q6KiTAOxS0uRk9RIvZTkKaytUQk0UfIQZYJ5vjHE3huhsEpR26TM8BWXHLlv+i4XrMaMQASgC0IkQBhTSK+/qXdMdfO6S/DbkhDPV+GfbSYDLiRz5wEfZUOIrFtPkoW61spCC8veoQj5GLtsY8a2ubQ+bUqkB2UBWYdMH+AxPMdYjR8Cva/Z2TgIZjghAEYBOhDCg0G3SZcemboCemKi+VuiBz+YeYscYukwCOOzHZnzhHiMwy9mc3nDXMAOqiAgd3+rS9jD3Fmsi5aodXPqAaOEpHFv+XbO3cxHQcEQAigB0IoQB+fTKc020XARKKhs7Uo5/dhFxHH26zYYSH6tE8/P6o+k4n5FL27AVEaEFhE3bMwnx+fl4EylX7cDRB0TxenJ5AJWK2yEHNhwRgCIAnWiyB5BzouVaxhQ2dqSy+lGF6ySAo0/nTpViQ8rPKMdVRHBOynS/k/875sxb7L0BZAIdm7KHEw7t0AT7qsRly3/VA7HZncZ1DwENRwSgCEAnQsYAcnrlKZ0lZkAaH3cTKNjr+CRlTyvHwMS1rDkyQh9PuGhCjHoKIsI0uav696Eh8/jOmVuymA/Utd1zaYcm2FctNlv+depYN0PwsSQboeGIABQB6EToXcAmD06nk6WymJzMXq5npWJTRw0NxR/0XEnZ04qZ4A8PKzUzszKPWFVuMY7Btm5XsO9VohTElYnYIsI0uctPCLF5dpyny+zdy7cKwWUXTbAvLZRklgDmGWDIJdkIDUcEoBIB6ELsPIDlrP5VudoGB+2Szk5N4do+9veGh9PcBZiLopkZvZD17WnF/hZmkj84uNoWuCftVI8iVXzaJMfN7awohEMTU0RgJncuMZScHkBs/4KBSzt0Ovp8lzHjgNFgk1lOT+MCf0NVhngAowCxC9BkUjkJZGHB3G7yDpVy7Bum7WN/b3w8SBWRqBIxdfdrkwKEq//UrcZgX9R74EzzYbMjVnegAVYIx0jfE3MjJZdA06V+sU03V7z/dlsfSkCtIy7tQOlHk4XLAGOknwjccEQAKhGALqRgQNhOud0+NWBzDBJ522/qsgklZMZmQwrnoFQVr/XBD9LFILYP5dwgRPWCYj7vU7hz4LLpxmWZnmuJVucpw4gk0/OwPudWU2dcO9115TGdhpQMHLu+YsQyBN6BnML4HRuIXYAmE9OA8oFichLfAecDiussvtj2MctyqS2bYLxzrkuJHP2nTgy5PDfTZhGupTmqF5Ty+eLSvU4Ix1q2q9tIOT9P+86GDUrNzuKu6dsDmINJxzM4WB8i4ENbuGqHpk5ka3Hd9RWrQgKmhBABqEQAuhDLgLAekLoOdX6ed6BIJZcflhB9m+s1OIU6dmDlDvuh1oFNnaU8cM/NrY4rrfOkmjzS27aZr4fxhHHlUZybq/+NvM3XeTNDbrjCaofYm3e84OJOjhnLECglhAhAJQLQhRgGZLPb33agpQwUKeTywxKis3ftPzmX6rEDK/fATE0PZPNcUh24qamWMGL/Ix/BX7duMpbvAuaYrNm2eZ/awlY7pDyRiEbTZvZERAAqEYAuxNgEYusVymMAlaKf7Ypt+7Fz+WHLEqqzd+k/OVNuYAdWTjHV6eBjFLvNA0j1pGLvYc0apZ591tzGMBkDuCZrtm0+NW0R0+EVHd1DbNLMnogIQBGAToQ2IBevkG0qmHLbHxzM3k+5IzRtYgjZ2dv2n9weQMzAyimmbNIDmdJw5PZXfC6+nqXLZIZajxSxv2FDvV1Typ/CZC01bZGaKD2Jz4eFTfYa21g8IAJQBKAToQ3IxitUzgOoFG3QzBP/ltPCmHaFxuozsEtvITt7m7rAbK6hvEIvzdmkB7IRgErxP0vXXdBUT6qL2I8uThyhtI0QfUrx2a+BjroY9qtdA3vV/zfFdEHqTXBuya/6ba4dXw1EBKAIQCdS9QDu2FF/EkgOdtC06SN89lk6qEtvscqJhZLzrnyf7Xb2/H0vzXEG+rt4IF29ScVci65Ci3ofnc5qzx71eXft8uQ/E6ytdjqqs7hf/fCKcfXsOuQOHiw2CTF9CbTQiZ4TRASgCEAnYsUAci13mQZNmz4i5qSSOvAuLKxOSDsyko4AVKr+GXEG82OvWZWzr248s7FV1xhEl3g0bF5BTPuyuffZWXsBWLbrbiNYn2IyBJcLUm/Ct0BLMXg2MCIARQA6EXMXMNfAz7lZIvakkiIgmrT6UfeMfMZQmcSUqf7m5uhnBtuOSS5Lgza76jFjok073bbNTQA2KkUJkmB9CtYQbC5ocxO+BVqq2+cDIgJQBKAToQyoPMDNzZk9dxyxMr5imXxNKrHXX1zsntWPGLGWmN3ounxzdSLVxnPmsjRou6seOybaCPSPfCTb7Vv8Tvn/fbSrVOP8g/QpNoZAuSD2fN7ib/oWaLE76wQQAajUaSAkzb59ANddB/Dkk6fea7cBpqcBhoYAjh0D2LQJYOtWgFar/vO33gqwfTvt2ps20T537Bju89jPUVhezl4DAwA//3n1Z/r6sroAWFk/ZZQCOHIE4OBBgEsuYS8qK61W+DIePKivP4DsWVQxNQVwww1Zucu0WpmdXnFF9qyUOvVvfX3Z31tuOfXdffuyzxY/BwBw9Gj2/r336m0ecx9VYNvF9u0A27Zl1ym30zpuvhngk58E+NznAH7wA4Dzzwd4//sBXvay7L7K9wpwyq63bjWXaXl5dXm+/GVcn1H1Xd29cBCkT7ExBOwF9+0DuOYa+m+edRbuO9jPldm6NXvIHEYlNJfYCrTJ+J5BUJcpuZc1MTtRbfKZcU8qMTFcxTropdUPH54d2xyFWM8qxnPGsTRIvY+YnmGO0I+qeq3bdV21GSzGhqkgfYqNQVPiAGx+E+s1XFy0v+9k896EQTyASpaAXfBpQNQBzlesjKkPm5hYXeYQ+fWw5ctfw8PZDs/9++1WZJqIr0HbNUchpl5NwpVDGFDuI4Ux0SXm0ybWMW+v8/Px4mWD9ClUQ6DsBLL9zZkZ3Hf/8i8dblyll4wxICIAlQhAF3waEHWA8zlTnpjQ913FviJ0fj1TH/uSl1Sfxzo4GFaohiZEBgmqoMhfHJ5VDi9up7N6F3jdK5X0QC45JW2eFYD+RJcQbcV7n0IVa5y5gOp+c3oa990NG/ABr2XDyd+bmcmuNzOTVgCo58BUEYBKBKALPg2IOsD5Wta0TQUTYlJp64kqDiTduPoRYuekbY5CgPpJCKW/55rw1O1ULr9cVtpM+B6HuU+VsalnV7z2KQsL5gzk1AtiO+SBgerfxHoA8wat2wFYt/ZfvudUZjlKBYk5EAGoRAC60AsewBipObC4nJfb15f1f2UPUDesfoSKxazqo3W7f3XCk9rfcy0Nxo4H1cWvco13Ps6VDlU/Rbz0Kaa18fXrT8WOUC5ISUng8v2isc/P44M8634nhdlvoBxdIgCVCEAXQsQAYgc4X7EysQdIHRyejcXFNNNf2NLpZKfAhHpm5UE5jxejeFZt+3uOpUGsDU1NOVRSDZi4PI7xzsVTrlv+Lb4aGS+LWfptt+06BdcOeWkJX/mcr9jxLwGTyYoAVCIAXQi1Cxg7wJmW5aam6O0m5XRRrrFoXCIoFbAnWvh+ZlUnrNR5s1z7e44j4DA2FCN+tXg/LuNdp7P6LG+MDsgTeofe2MUOx3mFNu5H2xkKtSH7eMVS9AEHHBGASgSgCyEMiDrAmfoO6rJSjJ29FFxi0WL2c9xQd3naOjawZcEu53L0965LgwsLOEHEaedUr5yrnWJjHav6mGSzhWAevM4Yscsb4+P28Wg2HbjLjJbrFWtmHHDJSQSgEgHoQqyTQDAZCKjHcOlIdgAolK+qf+72nb45Nrs8Bwf9PDfqcm4qIQZYgcQ1YaDG5bnef6ejDwfLl3vrNqBEzxZSFWtgEmUmY6SqYtvOD9uBu27X5nyJB7AngNgFaDKpGpCPMAqXASDEhpC6zW/YHIYpw5UTz3b8opQztSNPsYQWoqE9gErhxXmdvUU7Lg67JFq8EYwxttvm9X/bXU022DZkG4Hn655cjSTgklOq43dIIHYBmkyqBuRrULUNg4lxgkAOJYdhbLAZHMr15/tkDiw2dpdKiEFoIUqJX+W8f9NELnZ7rSwwReTkBoPN9j41Vb+8gb1mlVFQvH7557C7t8oPr+pweNsOATMT0D0rDuMJtOSU6vgdEohdgCaTqgGlsqwWaDd/LQE3lDnjckxXiJM5MNjaXegQg7qcuCmeYhPq/nXliRbq4bIkStkKX6eKx8ftDRojhGw3e0xPr54lUtK95J1L+TsuMwFu4wkQc5Dq+B0SiF2AJpOqAaWwrJaC+EqhHjDYxH0X6y+FkzmUcqvvUDFmunEtRqyrTgOEjLFLob2uwmVmgxWAuTFWqWIbg8YKIdvNHq1W5vEzXU/3et/7Vp4E4joT8GU8chKIdyB2AZpMSAOitIUUltVSEF+peEJ1uMZ95/Xnshs61LKmye58x5hhxrUqQTY8vHLM5cb3SSB113PVOt5xyWC9uOjeCdomYzUJoaUlt0aPjXOsew0M2G9ESTmQl4gIQCUC0IVQBmQTWmESBL49CymIryb0S67Lt8X64zyZw5ZUd4xTxrX5+dU5eFM6JcuFur7EdrXTK7abIvIHyWGMlI4Uu6sYe86v6R6xcY6UTs+m00yhs7dABKBSa0BImn37AK64AuDJJ1e+f/Ro9v6+fdXf274d4N57AQYGVv/b4CB/Octs2sT7ORu2bgVotwH6+qr/va8PYHQ0+1wsjh1z+36x/rZvB3jiCYD9+wH27s3+zs5m91mug/z/b7kFoNVyK0OR3O5GRla+325n72/fznctCgcPrm5DRZQCOHIE4BOfALjySoCf/GTlv5vaWxPQ9SW33IL7DZ/tdRWmBlymbNQcxojtSPftA9izB1fOH/wA97k6cmM9cMD+N+o6HmyHVPxcCp29YEdsBdpkfM8gOE5JiBXUncIytFLpeqRyXI7pwtZfjBxudRstqPksuZaEsU4K3YkZ3DYbMq0KZrWw1YrfXldBiW2oM2qOTOG6jrQqJ6Hu5eoBzF82u4arPHhFbDyAS0v6pYbcuJaWaPXuGfEAqu5aAr799tvVueeeq/r7+9XY2Jh66KGHtJ+fm5tTL3/5y1V/f7961atepb761a+SrufbgFyWMFMI6k5FfEVPYqvBZgOHTf1Fy+H2z9hsKuRMR+K61I4ZOymETrdCuf/Y7XUVdQ14bi5MglFTR0o5s7cYA+iaw88U52jT8dvM3JsQa1OBCEDVPQJwdnZWrV27Vt15553q0UcfVddcc43auHGjOnHiROXnv/Wtb6lWq6U+/elPq0OHDqnJyUn1ohe9SH33u99FX9O3AbmEVqTSJlMRX7EFkA6dUAbQZ2toAlRPtA/PNWZcw2bScA1liuGZdzn1LAl7i9WAOWcOAKt3AdepbewxRhQPKdbAqDN3iQFsLF0jAMfGxtSuXbtO/v/y8rLavHmzuummmyo/f+WVV6q3v/3tK9678MIL1fvf/370NVP2AKbUJlMWX6mgE8pNrj+qJ9qn59o0roU4Di6WZ57SlzTZ3thx2Ylcfk1NrfxtXaOniLC6JKIuM0fKzD0VbwMREYBdIgCXlpZUq9VS991334r33/ve96rLL7+88jujo6Nqenp6xXt/8Ad/oF796lejrxsqBtAmLqehbbKn6caBl2qHvu3WJLR9x63GapepxOQ2DuwDGxrSe+Ha7erK1TV6igjjCLqllK38uQYalwhApU6LtfmEk5/+9KewvLwMZ5999or3zz77bPj7v//7yu8cP3688vPHjx+vvc7S0hIsLS2d/P+nn37aodRmWi2AW2/Ndu719WWtKce0izPfQHf06MrvFb/fbsfdASuspNUCuOSS2KXghbqp0GYTIoXt2wG2bct2BR87lm1M3Lr1VBuybW9YfN9fHS59SU+D7Uj/+I8BrrqqvnJvvbW6cnWN3mSsmN9x6VCwHZIYV2ORNDAEbrrpJtiwYcPJ1+joqPdr2mYyyNskQLgUIIJQhpohIkRGiXxce/e7s7/FNuA7jU3MjBmppuhJGmxH+m/+jZ/K1RlrSohxNZI+paqmNc3i+eefhxe/+MVw7733wjvf+c6T7+/cuRP+8R//Eb785S+v+s4555wDH/7wh2F8fPzke3v27IEvfelL8Hd/93eV16nyAI6OjsJTTz0F69evZ7ufKpaXcRPBMvv2AVx33crcX6OjWZ8lbVLwzfIywJYtZgfK4cOZPVM/77PcNu0N87ux78/XvXU12I601yu3Qff/9NNPw4YNG4KM36nSFQIQAODCCy+EsbExuO222wAA4IUXXoBzzjkHdu/eDddff/2qz1911VXw7LPPwl/91V+dfO+iiy6CV7/61fD5z38edc2mGFCD2qTQheQJiAGqV4fKDgLq55tGt99f1yIdaVfRlPHbK3FDEPmYnZ1V/f396q677lKHDh1S1157rdq4caM6fvy4UkqpHTt2qOuvv/7k57/1rW+p0047Td18883qscceU3v27EkuDYwgdAvUdECppA/yRbffnyCkjozfSnWNBxAA4Pbbb4fPfOYzcPz4cXjNa14Df/InfwIXXnghAABccsklsGXLFrjrrrtOfn5+fh4mJyfhiSeegAsuuAA+/elPw9ve9jb09WQGIQh4qA6Ubne4dPv9CULKyPjdRUvAMRADEgRBEITmIeO37AIWBEEQBEHoOUQACoIgCIIg9BgiAAVBEARBEHoMEYCCIAiCIAg9hghAQRAEQRCEHkMEoCAIgiAIQo8hAlAQBEEQBKHHEAEoCIIgCILQY4gAFARBEARB6DFOi12AJpMfovL0009HLokgCIIgCFjycbuXD0MTAejAM888AwAAo6OjkUsiCIIgCAKVZ555BjZs2BC7GFGQs4AdeOGFF+BHP/oRrFu3Dvr6+th+9+mnn4bR0VE4cuRIz55RGAqp6zBIPYdD6joMUs9h8FXPSil45plnYPPmzbBmTW9Gw4kH0IE1a9ZAu9329vvr16+XjiUQUtdhkHoOh9R1GKSew+CjnnvV85fTm7JXEARBEAShhxEBKAiCIAiC0GOIAEyQ/v5+2LNnD/T398cuStcjdR0GqedwSF2HQeo5DFLP/pBNIIIgCIIgCD2GeAAFQRAEQRB6DBGAgiAIgiAIPYYIQEEQBEEQhB5DBKAgCIIgCEKPIQIwEnfccQds2bIFTj/9dLjwwgvhv/23/6b9/Pz8PLziFa+A008/HX79138d7r///kAlbT6Uuv7iF78IW7duhTPPPBPOPPNMeMtb3mJ8NkIG1aZzZmdnoa+vD975znf6LWCXQK3nf/zHf4Rdu3bBpk2boL+/H172spdJ/4GEWte33HILvPzlL4czzjgDRkdH4UMf+hA899xzgUrbTP7mb/4G3vGOd8DmzZuhr68PvvSlLxm/c+DAAXjta18L/f398Gu/9mtw1113eS9nV6KE4MzOzqq1a9eqO++8Uz366KPqmmuuURs3blQnTpyo/Py3vvUt1Wq11Kc//Wl16NAhNTk5qV70ohep7373u4FL3jyodX311VerO+64Qz388MPqscceU+973/vUhg0b1JNPPhm45M2CWs85hw8fViMjI2rr1q1q27ZtYQrbYKj1vLS0pF73utept73tbeqb3/ymOnz4sDpw4IB65JFHApe8eVDr+u6771b9/f3q7rvvVocPH1YPPPCA2rRpk/rQhz4UuOTN4v7771c33HCD2rdvnwIAdd9992k///jjj6sXv/jF6sMf/rA6dOiQuu2221Sr1VJf+9rXwhS4ixABGIGxsTG1a9euk/+/vLysNm/erG666abKz1955ZXq7W9/+4r3LrzwQvX+97/fazm7AWpdl+l0OmrdunXqL/7iL3wVsSuwqedOp6Muuugi9Wd/9mdq586dIgARUOv5T//0T9V5552nnn/++VBF7Bqodb1r1y71pje9acV7H/7wh9Ub3vAGr+XsJjAC8KMf/ah65StfueK9q666Sr31rW/1WLLuRJaAA/P888/D3/7t38Jb3vKWk++tWbMG3vKWt8C3v/3tyu98+9vfXvF5AIC3vvWttZ8XMmzqusyzzz4Lv/rVr2BgYMBXMRuPbT3/4R/+IZx11lnw7//9vw9RzMZjU8//5b/8F3j9618Pu3btgrPPPhte9apXwSc/+UlYXl4OVexGYlPXF110Efzt3/7tyWXixx9/HO6//35429veFqTMvYKMh3ycFrsAvcZPf/pTWF5ehrPPPnvF+2effTb8/d//feV3jh8/Xvn548ePeytnN2BT12X+w3/4D7B58+ZVHY5wCpt6/uY3vwn/6T/9J3jkkUcClLA7sKnnxx9/HP7rf/2v8J73vAfuv/9++P73vw8f+MAH4Fe/+hXs2bMnRLEbiU1dX3311fDTn/4U3vjGN4JSCjqdDvz2b/82fOxjHwtR5J6hbjx8+umn4Ze//CWcccYZkUrWPMQDKAg1fOpTn4LZ2Vm477774PTTT49dnK7hmWeegR07dsAXv/hFGBoail2cruaFF16As846C77whS/Ab/zGb8BVV10FN9xwA3z+85+PXbSu48CBA/DJT34SPve5z8H//J//E/bt2wdf/epX4Y/+6I9iF00QKhEPYGCGhoag1WrBiRMnVrx/4sQJeOlLX1r5nZe+9KWkzwsZNnWdc/PNN8OnPvUpWFxchFe/+tU+i9l4qPX8gx/8AJ544gl4xzvecfK9F154AQAATjvtNPje974H559/vt9CNxAbe960aRO86EUvglardfK9f/Ev/gUcP34cnn/+eVi7dq3XMjcVm7r+/d//fdixYwf81m/9FgAA/Pqv/zr80z/9E1x77bVwww03wJo14m/hoG48XL9+vXj/iIhFBmbt2rXwG7/xG/CNb3zj5HsvvPACfOMb34DXv/71ld95/etfv+LzAAB//dd/Xft5IcOmrgEAPv3pT8Mf/dEfwde+9jV43eteF6KojYZaz694xSvgu9/9LjzyyCMnX5dffjlceuml8Mgjj8Do6GjI4jcGG3t+wxveAN///vdPCmwAgP/9v/83bNq0ScSfBpu6fvbZZ1eJvFx4K6X8FbbHkPGQkdi7UHqR2dlZ1d/fr+666y516NAhde2116qNGzeq48ePK6WU2rFjh7r++utPfv5b3/qWOu2009TNN9+sHnvsMbVnzx5JA4OEWtef+tSn1Nq1a9W9996rjh07dvL1zDPPxLqFRkCt5zKyCxgHtZ5/+MMfqnXr1qndu3er733ve+orX/mKOuuss9THP/7xWLfQGKh1vWfPHrVu3Tp1zz33qMcff1x9/etfV+eff7668sorY91CI3jmmWfUww8/rB5++GEFAOqzn/2sevjhh9U//MM/KKWUuv7669WOHTtOfj5PAzMxMaEee+wxdccdd0gaGEtEAEbitttuU+ecc45au3atGhsbU9/5zndO/tvFF1+sdu7cueLzc3Nz6mUve5lau3ateuUrX6m++tWvBi5xc6HU9bnnnqsAYNVrz5494QveMKg2XUQEIB5qPT/44IPqwgsvVP39/eq8885Tn/jEJ1Sn0wlc6mZCqetf/epX6sYbb1Tnn3++Ov3009Xo6Kj6wAc+oH7xi1+EL3iD2L9/f2Wfm9ftzp071cUXX7zqO695zWvU2rVr1Xnnnaf+/M//PHi5u4E+pcQ3LQiCIAiC0EtIDKAgCIIgCEKPIQJQEARBEAShxxABKAiCIAiC0GOIABQEQRAEQegxRAAKgiAIgiD0GCIABUEQBEEQegwRgIIgCIIgCD2GCEBBEARBEIQeQwSgIAiCIAhCjyECUBAEQRAEoccQASgIgiAIgtBjiAAUBEEQBEHoMUQACoIgCIIg9BgiAAVBEARBEHoMEYCCIAiCIAg9hghAQRAEQRCEHkMEoCAIgiAIQo8hAlAQBEEQBKHHEAEoCIIgCILQY4gAFARBEARB6DFEAAqCIAiCIPQYIgAFQRAEQRB6DBGAgiAIgiAIPYYIQEEQBEEQhB5DBKAgCIIgCEKPIQJQEARBEAShxxABKAiCIAiC0GOIABQEQRAEQegxRAAKgiAIgiD0GCIABUEQBEEQegwRgIIgCIIgCD3G/w8C6qah3B79zwAAAABJRU5ErkJggg==", "text/html": [ "\n", "