
© NVIDIA Corporation 2012

Parallel Reduction with

CUDA

Julien Demouth, Nvidia

© NVIDIA Corporation 2012

Problem

 Input: Array of ints a[0],a[1], ...,a[n-1]

 Output: The sum of the elements

1 4 3 2 8 6 3 2 1 0 3 2 1 3 2 3 2 9 1 2 3 4 5 6 1 1 2 3 0 0 2 1

int sum = 0;

for(int i = 0 ; i < N ; ++i)

 sum += a[i];

© NVIDIA Corporation 2012

Outline of the Algorithm

 1st Step: Each thread computes its partial sum

 2nd Step: Each block of threads computes its partial sum

 3rd Step: One block computes the final sum

© NVIDIA Corporation 2012

Blocks and Threads

 In those slides we use 2 blocks and 4 threads per block

0 1 2 3 0 1 2 3

Block 0 Block 1 blockIdx.x == 0

threadIdx.x == 0

blockIdx.x == 0

threadIdx.x == 1

blockIdx.x == 0

threadIdx.x == 2

blockIdx.x == 0

threadIdx.x == 3

blockIdx.x == 1

threadIdx.x == 0

blockIdx.x == 1

threadIdx.x == 1

blockIdx.x == 1

threadIdx.x == 2

blockIdx.x == 1

threadIdx.x == 3

© NVIDIA Corporation 2012

1ST STEP

© NVIDIA Corporation 2012

1st Step: Threads Compute Their Partial Sums

 Each thread initializes its partial sum to 0

 Each thread reads its element from a and update its sum

1 4 3 2 8 6 3 2 1 0 3 2 1 3 2 3 2 9 1 2 3 4 5 6 1 1 2 3 0 0 2 1

0 1 2 3 0 1 2 3

Block 0 Block 1

0 0 0 0 0 0 0 0

int my_sum = 0;
my_sum:

0 1 2 3

Block 0

1 4 3 2

0 1 2 3

Block 1

2 9 1 2

© NVIDIA Corporation 2012

1st Step: Threads Compute Their Partial Sums

 Each thread moves to its next element

 And updates its partial sum

1 4 3 2 8 6 3 2 1 0 3 2 1 3 2 3 2 9 1 2 3 4 5 6 1 1 2 3 0 0 2 1

0 1 2 3

Block 0

9 10 6 4

0 1 2 3

Block 1

5 13 6 8

© NVIDIA Corporation 2012

1st Step: Threads Compute Their Partial Sums

 And so on, until all threads have their partial sums

1 4 3 2 8 6 3 2 1 0 3 2 1 3 2 3 2 9 1 2 3 4 5 6 1 1 2 3 0 0 2 1

0 1 2 3

Block 0

11 13 11 9

0 1 2 3

Block 1

6 14 10 12

© NVIDIA Corporation 2012

1st Step: Threads Compute Their Partial Sums

 Each thread writes its partial sum to shared memory

 Shared memory is shared by threads in the same block

 No synchronization: Threads do not know what others are doing

0 1 2 3 0 1 2 3

Block 0 Block 1

11 13 11 9 6 14 10 12

11 13 11 9 6 14 10 12 smem:

Advanced note: Inside a block, threads of a same warp are implicitly synchronized. On current HW a warp contains 32 threads.

© NVIDIA Corporation 2012

1st Step: Threads Compute Their Partial Sums

 We want smem to contain all the sums of the threads in the block

 We use __syncthreads() to create a synchronization barrier

smem:

Time

0 1 2 3

Block 0

11 13 11 9

11 11

0 1 2 3

Block 0

11 13 11 9

11 11 9

0 1 2 3

Block 0

11 13 11 9

11 13 11 9

0 1 2 3

Block 0

11 13 11 9

11 13 11 9

0, 2: complete their writes 0, 2: wait at the barrier

3: completes its write

0, 2, 3: wait at the barrier

4: completes its write

Threads go through the barrier

Note: __syncthreads synchronizes the threads of a same block. There is no instruction to synchronize threads of different blocks from a kernel.

© NVIDIA Corporation 2012

1st Step: Threads Compute Their Partial Sums

 Code summary

© NVIDIA Corporation 2012

2ND STEP

© NVIDIA Corporation 2012

2nd Step: Blocks Compute Their Partial Sums

 With more threads and more blocks

11 13 11 9 6 14 10 12

44 42

22 22 16 26

© NVIDIA Corporation 2012

2nd Step: Blocks Compute Their Partial Sums

 Half of the threads updates the sum in smem

Time

0 1 2 3 0 1 2 3

Block 0 Block 1

11 13 11 9 6 14 10 12 smem:

11 13 11 9 6 14 10 12

11 9 10 12 my_tmp:

my_sum:

0 1 2 3 0 1 2 3

Block 0 Block 1

22 22 11 9 16 26 10 12 smem:

my_tmp:

my_sum: 11 13 11 9 6 14 10 12

11 9 10 12

© NVIDIA Corporation 2012

2nd Step: Blocks Compute Their Partial Sums

 We want smem to contain all the sums: __syncthreads()

 1/4th of the threads updates the sum in smem

Time

0 1 2 3 0 1 2 3

Block 0 Block 1

smem:

11 13 11 9 6 14 10 12

22 9 26 12 my_tmp:

my_sum:

0 1 2 3 0 1 2 3

Block 0 Block 1

44 22 11 9 42 26 10 12 smem:

my_tmp:

my_sum: 11 13 11 9 6 14 10 12

22 9 26 12

22 22 11 9 16 26 10 12

© NVIDIA Corporation 2012

2nd Step: Blocks Compute Their Partial Sums

 We keep doing that until there is no more work to do

 Code summary

© NVIDIA Corporation 2012

2nd Step: Blocks Compute Their Partial Sums

 Block leaders stores the sum of the block in global memory

smem:

partial_sums: 44 42

0 1 2 3 0 1 2 3

Block 0 Block 1

44 22 11 9 42 26 10 12

11 13 11 9 6 14 10 12

22 9 26 12

© NVIDIA Corporation 2012

2nd Step: Blocks Compute Their Partial Sums

 1st and 2nd steps are implemented in one CUDA kernel

 We launch the kernel

© NVIDIA Corporation 2012

3RD STEP

© NVIDIA Corporation 2012

3rd Step: 1st Block Computes The Sum

 We can call the same kernel with different arguments

 The result is in partial_sums[0]

reduce_kernel<<<1, BLOCK_SIZE, smem_size>>>(grid_size,

 partial_sums,

 partial_sums,

 block_ranges);

© NVIDIA Corporation 2012

Parallel Scan with CUDA

© NVIDIA Corporation 2012

Problem

 Input: Array of ints a[0],a[1], ...,a[n-1]

 Output: The sums b[i] = a[0] + … + a[i-1]

1 4 3 2 8 6 3 2 1 0 3 2 1 3 2 3 2 9 1 2 3 4 5 6 1 1 2 3 0 0 2 1

int sum = 0;

for(int i = 0 ; i < N ; ++i)

{

 b[i] = sum;

 sum += a[i];

}

© NVIDIA Corporation 2012

Outline of the Algorithm

 1st Step: Each block computes its partial sum

 Same kernel as the 1st kernel of the reduction

 2nd Step: One block scans the block sums (global scans)

 3rd Step: Each block scans its elements and uses its global scan

© NVIDIA Corporation 2012

Scan Primitive: Parallel Scan in a Block

 Each thread loads its item from GMEM

 We allocate a buffer in SMEM of size 2 x blockDim.x

 Store 0s in the 1st half of smem and its items in the 2nd half

int my_sum = in_buffer[idx];

0 1 2 3 4 5 6 7

0 0 0 0 2 3 1 4 smem:

2 3 1 4 my_sum:

© NVIDIA Corporation 2012

Scan Primitive: Parallel Scan in a Block

 Parallel scan pattern

© NVIDIA Corporation 2012

Homework

 How can you implement inclusive scan?

 How can you optimize your implementation?

int sum = 0;

for(int i = 0 ; i < N ; ++i)

{

 b[i] = sum += a[i];

}

© NVIDIA Corporation 2012

Parallel Radix Sort with

CUDA

© NVIDIA Corporation 2012

Outline of the Algorithm

 Loop on the bits:

 1st Step: Each block computes its partial sums

 One sum for each combination of bits

 Almost the same kernel as the 1st kernel of the reduction

 2nd Step: One block scans the block sums (global scans)

 3rd Step: Each block scatters its elements

© NVIDIA Corporation 2012

Sort Primitive: Where to Store Counters

 Each thread has one counter per bit combination

 Problem: It’s not possible to dynamically address registers

 Solution: Use SMEM to store counters

int my_counters[NUM_COUNTERS];

my_counters[(item & mask) >> i]++;

__shared__ int s_counters[NUM_COUNTERS][BLOCK_DIM];

s_counters[(item & mask) >> i][threadIdx.x]++;

