
COURS - OPTIMISATION DE L’IMPLANTATION DE RÉSEAUX DE NEURONE

Olivier Bichler

CEA LIST

olivier.bichler@cea.fr



| 2Confidential

ARTIFICIAL INTELLIGENCE

ARTIFICIAL INTELLIGENCE

Artificial intelligence

Artificial Intelligence
“AI is whatever hasn't been done yet”

Very broad: understanding human speech, competing in strategic games, 

autonomous cars, intelligent routing, military simulations,

interpreting complex data including images and videos...

Machine learning

Machine Learning
Algorithms that can learn from and make predictions on data:

requires enough training data and a training algorithm

Deep 
learning

Deep Learning
Cascade of multiple nonlinear layers for feature extraction and 

transformation; learn multiple levels of representation

Deep Neural Networks
MLP, CNN, R-CNN, LSTM RNN…

DNN



| 3Confidential

NEURAL COMPUTING & TRAINING

NEURAL COMPUTING & TRAINING

training

DNN trained modelNew data prediction

prediction

“A car”

Low-latency inference (TPU, FPGA, GPU, PNeuro…)

Labeled 

databases

Machine learning 

algorithm

DNN 

model

Days, weeks on multi-GPU server until correct accuracy 
(topology, training set, parameters…)

Nvidia DGX-1

(8 Tesla P100)



| 4Confidential

1. General introduction

2. Models / topologies complexity

3. Convolution algorithms

4. Graph optimization

5. Quantization technics

SUMMARY



| 5Confidential

1. General introduction

2. Models / topologies complexity

3. Convolution algorithms

4. Graph optimization

5. Quantization technics

SUMMARY



| 6Confidential

• Fully connected (Fc)

• Fully conv. (Conv) / deconv.

• Recurrent NN

GENERAL INTRODUCTION

NEURAL NETWORK TYPES AND MAIN PRIMITIVES

• CNN with Conv+Fc

Auto-encoder network

Residual network

• More topologies:



| 7Confidential

GENERAL INTRODUCTION

NEURAL NETWORK TYPES AND MAIN PRIMITIVES

• CNN layer:

0 1 -1

-1 1 -1

-1 1 0

𝑂𝑖,𝑗 = tanh ෍

𝑘=0

𝑛−1

෍

𝑙=0

𝑛−1

𝐼𝑖+𝑘,𝑗+𝑙. 𝐾𝑘,𝑙Input map

(𝐼𝑖,𝑗 matrix)
Output feature map

(𝑂𝑖,𝑗 matrix)

1 2 3 4 5 6
0 1 -1

-1 1 -1

-1 1 0

0 1 -1

-1 1 -1

-1 1 0

0 1 -1

-1 1 -1

-1 1 0

0 1 -1

-1 1 -1

-1 1 0

0 1 -1

-1 1 -1

-1 1 0

0 1 -1

-1 1 -1

-1 1 0

7 8 9 1011 12
0 1 -1

-1 1 -1

-1 1 0

0 1 -1

-1 1 -1

-1 1 0

0 1 -1

-1 1 -1

-1 1 0

0 1 -1

-1 1 -1

-1 1 0

0 1 -1

-1 1 -1

-1 1 0

0 1 -1

-1 1 -1

-1 1 0

131415161718
0 1 -1

-1 1 -1

-1 1 0

0 1 -1

-1 1 -1

-1 1 0

0 1 -1

-1 1 -1

-1 1 0

0 1 -1

-1 1 -1

-1 1 0

0 1 -1

-1 1 -1

-1 1 0

0 1 -1

-1 1 -1

-1 1 0

192021222324
0 1 -1

-1 1 -1

-1 1 0

0 1 -1

-1 1 -1

-1 1 0

0 1 -1

-1 1 -1

-1 1 0

0 1 -1

-1 1 -1

-1 1 0

0 1 -1

-1 1 -1

-1 1 0

0 1 -1

-1 1 -1

-1 1 0

252627282930
0 1 -1

-1 1 -1

-1 1 0

0 1 -1

-1 1 -1

-1 1 0

0 1 -1

-1 1 -1

-1 1 0

0 1 -1

-1 1 -1

-1 1 0

0 1 -1

-1 1 -1

-1 1 0

0 1 -1

-1 1 -1

-1 1 0

313233343536
0 1 -1

-1 1 -1

-1 1 0

0 1 -1

-1 1 -1

-1 1 0

0 1 -1

-1 1 -1

-1 1 0

0 1 -1

-1 1 -1

-1 1 0

0 1 -1

-1 1 -1

-1 1 0

0 1 -1

-1 1 -1

-1 1 0

𝒏 × 𝒏 kernel

(𝐾𝑘,𝑙 matrix)

𝑂𝑖,𝑗 = tanh ෍

𝑘=0

𝑛−1

෍

𝑙=0

𝑛−1

𝐼𝑖+𝑘,𝑗+𝑙. 𝐾𝑘,𝑙

Each kernel generates ≠ output feature maps

Convolution operation:

Kernels are learned with gradient-descent algorithms

(classical back-propagation is very efficient!)



| 8Confidential

GENERAL INTRODUCTION

CONVOLUTIONAL NEURAL NETWORKS OVERVIEW

…

……

Deep = number of layers 

>> 1



| 9Confidential

• AlexNet (2012)

• VGG-16 (2014)

GENERAL INTRODUCTION

CONVOLUTIONAL NEURAL NETWORKS OVERVIEW

3 fully connected

layers

fc1: 4,096 neurons

fc2: 4,096 neurons

fc3: 1,000 neurons



| 10Confidential

• GoogleNet (2014)

• ResNet-50 (2015)

GENERAL INTRODUCTION

CONVOLUTIONAL NEURAL NETWORKS OVERVIEW

1 fully connected

layer 

fc1: 1,000 neurons

Average pooling used 

to reduce classifier 

dimension



| 11Confidential

• SqueezeNet (2016)

GENERAL INTRODUCTION

CONVOLUTIONAL NEURAL NETWORKS OVERVIEW

Average pooling only

AlexNet

8 layers

660k neurons

3 fully connected

(4096-1000-1000)

2012 2014

GoogleNet

24 layers

3,228k neurons

1 fully connected

(1000)

VGG-16

16 layers

13,565k neurons

3 fully connected

(4096-1000-1000)

2015

ResNet-50

50 layers

10,589k neurons

1 fully connected

(1000)

2016

SqueezeNet

20 layers

2,737k neurons

No fully connected

layer



| 12Confidential

• Combining and/or cascading multiple neural networks

GENERAL INTRODUCTION

COMPLEX NEURAL NETWORK SYSTEMS (1/3)

Objects 

extraction 

(segmentation)

1) Objects extraction:

using typically fully convolutional 

neural network



| 13Confidential

• Combining and/or cascading multiple neural networks

GENERAL INTRODUCTION

COMPLEX NEURAL NETWORK SYSTEMS (1/3)

Objects 

extraction 

(segmentation)

2) Objects classification:

using typically CNN with softmax

output

1) Objects extraction:

using typically fully convolutional 

neural network

+



| 14Confidential

• Combining and/or cascading multiple neural networks

GENERAL INTRODUCTION

COMPLEX NEURAL NETWORK SYSTEMS (1/3)

Objects 

extraction 

(segmentation)

Sharing possible

2) Objects classification:

using typically CNN with softmax

output

1) Objects extraction:

using typically fully convolutional 

neural network

+



| 15Confidential

• Combining and/or cascading multiple neural networks

GENERAL INTRODUCTION

COMPLEX NEURAL NETWORK SYSTEMS (1/3)

Objects 

extraction 

(segmentation)

Combining neural networks:

when several classification

tasks essentially require the 

same features, they can be 

shared in a single network 

with different output branches 

to reduce computing 

complexity and memory 

footprint

Principle used in object 

detectors (YOLO, SSD, 

Faster-RCNN…)

Sharing neural 

network part



| 16Confidential

• Combining and/or cascading multiple neural networks

GENERAL INTRODUCTION

COMPLEX NEURAL NETWORK SYSTEMS (1/3)

Objects 

extraction 

(segmentation)

Cascading neural networks:

objects extraction and 

classification(s) can be done in 

separate neural networks, 

when they are designed and/or 

used separately.

+ Easier to build and train

- Potentially less efficient 

Sharing neural 

network part



| 17Confidential

• YOLO v3 object detector network architecture

GENERAL INTRODUCTION

COMPLEX NEURAL NETWORK SYSTEMS (2/3)

Features extractor
1024 ch./maps

MobileNet v1
VGG-16

C
o

n
v

1
x1

, 5
1

2

C
o

n
v

3
x3

, 1
0

2
4

C
o

n
v

1
x1

, 5
1

2

C
o

n
v

3
x3

, 1
0

2
4

C
o

n
v

1
x1

, 5
1

2

C
o

n
v

3
x3

, 1
0

2
4

C
o

n
v

1
x1

, 2
5

5

D
e

te
ct

io
n

sc
al

e 
1

:3
2

an
ch

o
ri

n
g 

+ 
th

re
sh

o
ld

 +
 N

M
S

C
o

n
v

1
x1

, 2
5

6

U
p

sa
m

p
le

x2

C
o

n
v

1
x1

, 2
5

6

C
o

n
v

3
x3

, 5
1

2

C
o

n
v

1
x1

, 2
5

6

C
o

n
v

3
x3

, 5
1

2

C
o

n
v

1
x1

, 2
5

6

C
o

n
v

3
x3

, 5
1

2

C
o

n
v

1
x1

, 2
5

5

D
e

te
ct

io
n

sc
al

e 
1

:1
6

an
ch

o
ri

n
g 

+ 
th

re
sh

o
ld

 +
 N

M
S

C
o

n
v

1
x1

, 1
2

8

U
p

sa
m

p
le

x2

C
o

n
v

1
x1

, 1
2

8

C
o

n
v

3
x3

, 2
5

6

C
o

n
v

1
x1

, 1
2

8

C
o

n
v

3
x3

, 2
5

6

C
o

n
v

1
x1

, 1
2

8

C
o

n
v

3
x3

, 2
5

6

C
o

n
v

1
x1

, 2
5

5

D
e

te
ct

io
n

sc
al

e 
1

:8
an

ch
o

ri
n

g 
+ 

th
re

sh
o

ld
 +

 N
M

S

MobileNet v2
ResNet-xx
Darknet-xx



| 18Confidential

• Faster-RCNN object detector network architecture

GENERAL INTRODUCTION

COMPLEX NEURAL NETWORK SYSTEMS (3/3)

Features extractor

MobileNet v1
VGG-16

C
o

n
v

in
te

rm
ed

ia
te

C
o

n
v

cl
s

, (
2

)k

A
n

ch
o

r

R
P

in
cl

u
d

e 
N

M
S

R
O

IP
o

o
lin

g

C
o

n
v

D
e

te
ct

io
n

1
st

p
as

s

MobileNet v2
ResNet-xx
Darknet-xx

C
o

n
v

re
g

, 4
k

…

C
o

n
v

R
O

IP
o

o
lin

g

C
o

n
v

D
e

te
ct

io
n

2
n

d
p

as
s

…

C
o

n
v

Region Proposal



| 19Confidential

• Faster-RCNN applied to ADAS:

GENERAL INTRODUCTION

COMPLEX NEURAL NETWORK SYSTEMS (3/3)



| 20Confidential

1. General introduction

2. Models / topologies complexity

• Overview

• ResNet

• MobileNet v1

• MobileNet v2

• EfficientNet

3. Convolution algorithms

4. Graph optimization

5. Quantization technics

MODELS / TOPOLOGIES COMPLEXITY



| 21Confidential

6,06

5,34

3,47

3,47

3,47

3,47

3,47

2,61
2,…

2,61

2,61

2,61

1,95

1,95

1,95

1,95

1,95

1,66

1,66

1,66

1,66

1,66

5,3

5,3 4,9

10,9

22,6

88,9

45

50

55

60

65

70

75

80

85

10 100 1000 10000 100000

To
p

-1
 Im

ag
eN

et
 a

cc
u

ra
cy

 (
%

)

Complexity (MMACs)

AlexNet

VGG-16

VGG-19

SqueezeNet_v1.0

SqueezeNet_v1.1

ResNet

ResNeXt-101 (64 x 4d)

DenseNet

Inception (v1-4)

GoogLeNet

Xception

Inception-ResNet-v2

MobileNet_v1

MobileNet_v2

NASNet

PolyNet

DPN-131

MODELS / TOPOLOGIES COMPLEXITY

CONVOLUTIONAL NEURAL NETWORKS OVERVIEW



| 22Confidential

• Main innovation: use residual learning, thanks to identity « shortcuts »

MODELS / TOPOLOGIES COMPLEXITY

RESNET

“We hypothesize that it is easier to optimize the residual 

mapping than to optimize the original, unreferenced 

mapping. To the extreme, if an identity mapping were 

optimal, it would be easier to push the residual to zero 

than to fit an identity mapping by a stack of nonlinear 

layers.”



| 23Confidential

• Main innovation: use Deepwise Separable Convolution

• Result: same accuracy on ImageNet than AlexNet with x15 less parameters x1.3 less computation

MODELS / TOPOLOGIES COMPLEXITY

MOBILENET V1

M
=

 I
N

P
U

T
 

C
H

A
N

N
E

L
S

N = OUTPUT 

CHANNELS



| 24Confidential

• Main innovation: combine Deepwise Separable Convolution

with inverted residual blocks (« bootleneck »)

• Inverted residual: same principle than residual, but a little more memory efficient

MODELS / TOPOLOGIES COMPLEXITY

MOBILENET V2



| 25Confidential

• Main innovation: compound scaling method

for neural architecture search

• Use “Swish” 

activation

function:

MODELS / TOPOLOGIES COMPLEXITY

EFFICIENTNET

𝑓 𝑥 = 𝑥. 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 𝛽. 𝑥



| 26Confidential

Before starting to optimize the implementation,

choose the right topology!

AlexNet and VGG are NO GO!

MODELS / TOPOLOGIES COMPLEXITY

TAKE-AWAY MESSAGE



| 27Confidential

1. General introduction

2. Models / topologies complexity

3. Convolution algorithms

• Direct convolution

• Matrix multiplication (GEMM)

• Winograd for 3x3 convolution

• Other algorithms

4. Graph optimization

5. Quantization technics

CONVOLUTION ALGORITHMS



| 28Confidential

for (int oy = 0; oy < OUTPUTS_HEIGHT; ++oy) {

const int syMin = max(PADDING_Y - (oy * STRIDE_Y), 0);

const int syMax = clamp(CHANNELS_HEIGHT + PADDING_Y - (oy * STRIDE_Y), 0, KERNEL_HEIGHT);

const int iy = (oy * STRIDE_Y) - PADDING_Y;

for (int ox = 0; ox < OUTPUTS_WIDTH; ++ox) {

const int sxMin = max(PADDING_X - (ox * STRIDE_X), 0);

const int sxMax = clamp(CHANNELS_WIDTH + PADDING_X - (ox * STRIDE_X), 0, KERNEL_WIDTH);

const int ix = (ox * STRIDE_X) - PADDING_X;

for (int output = 0; output < NB_OUTPUTS; ++output) {

const int oPos = (ox + OUTPUTS_WIDTH * oy);

const int oOffset = NB_OUTPUTS * oPos;

SUM_T weightedSum = biasses[output];

for (int sy = syMin; sy < syMax; ++sy) {

if (sy >= syMax - syMin)

break;

const int iPos = ((sxMin + ix) + CHANNELS_WIDTH * (iy + syMin + sy));

const int iOffset = NB_CHANNELS * iPos;

const int wOffset = NB_CHANNELS * (sxMin + KERNEL_WIDTH * (syMin + sy + KERNEL_HEIGHT * output));

for (int sx = 0; sx < KERNEL_WIDTH; ++sx) {

if (sx >= sxMax - sxMin)

break;

for (int ch = 0; ch < NB_CHANNELS; ++ch)

weightedSum += weights[wOffset + sx * NB_CHANNELS] * inputs[iOffset + sx * NB_CHANNELS];

}

}

outputs[oOffset + output] = ACTIVATION(weightedSum);

}

}

}

CONVOLUTION ALGORITHMS

DIRECT CONVOLUTION

N

H

W

C

Contiguous 

data in 

memory

 SIMD 

instructions 

possible

These loops can be 

merged in any order

 Parallelization possible



| 29Confidential

• Direct convolution:

• No memory overhead

• But, poor usage of vectorization

instructions (MMX, SSE, …)

• Why use GEMM for convolution?

• Benefit from highly optimized libraries

and processor instructions that have been

developed for decades for this purpose

• Up to x100 speed-up!

• Higher gain with large number of filters

and/or large batches

• Need to rearrange the input: im2col

• Memory overhead: values are duplicated

in the resulting matrix (depends on stride)

CONVOLUTION ALGORITHMS

MATRIX MULTIPLICATION (GEMM)

INPUT image
[W, H, C, B]

WEIGHTS
[W, H, C, C_OUT]

im2col
Reshape row major

[W*H*C, C_OUT]

(and transpose)

X

+
BIAS

[C_OUT]

Reshape row major
[W_OUT, H_OUT, C_OUT]

(for each batch)



| 30Confidential

CONVOLUTION ALGORITHMS

MATRIX MULTIPLICATION (GEMM) – IM2COL PRINCIPLE



| 31Confidential

CONVOLUTION ALGORITHMS

WINOGRAD FOR 3X3 CONVOLUTION

• Simple example with a (1D) image of size [4,1] and (1D) convolution kernel [3,1]:

𝐼 = [1 2 3 4], 𝐹 = [−1 − 2 − 3]

• Using im2col gives:

𝐼 =
1 2 3
2 3 4

• Wingrad idea: express the result of the matrix multiplication as:

𝑶 =
1 2 3
2 3 4

.
−1
−2
−3

=
𝑚1+𝑚2 +𝑚3

𝑚2−𝑚3 −𝑚4

• Let’s generalize and try to solve this equation:

𝑶 =
𝑑0 𝑑1 𝑑2
𝑑1 𝑑2 𝑑3

.
𝑤0

𝑤1

𝑤2

=
𝑚1+𝑚2+𝑚3

𝑚2−𝑚3−𝑚4

𝑚1 = 𝑑0− 𝑑2 . 𝑤0 𝑚2 = 𝑑1+ 𝑑2 .
𝑤

0
+𝑤

1
+𝑤

2

2

𝑚4 = 𝑑1− 𝑑3 . 𝑤2 𝑚3 = 𝑑2− 𝑑1 .
𝑤

0
−𝑤

1
−𝑤

2

2

Only kernel parameters,

can be pre-computed!

 4 MULT instead of 6 MULT. Can be generalized for any input size and 2D 3x3 kernels.



| 32Confidential

• Extract of NVidia’s CuDNN library:

CONVOLUTION ALGORITHMS

OTHER ALGORITHMS



| 33Confidential

Things to consider for the choice of a convolution algorithms:

• Memory constrains (only “direct” has no overhead!)

• Availability of a GEMM library (BLAS for instance)

• Availability of SIMD instructions

For simple “embedded” architectures (RISC V, ARM…),

“direct” is generally the preferred choice, as other

algorithms don’t provide any benefit (memory overhead…)

Winograd is also worth considering for 3x3 convolutions

CONVOLUTION ALGORITHMS

TAKE-AWAY MESSAGE



| 34Confidential

1. General introduction

2. Models / topologies complexity

3. Convolution algorithms

4. Graph optimization

• Graph representation of a network

• Optimized memory mapping

• Operators merging principle

• Fuse BatchNorm with Convolution

5. Quantization technics

GRAPH OPTIMIZATION



| 35Confidential

GRAPH OPTIMIZATION

GRAPH REPRESENTATION OF A NETWORK

Operators

Tensors

In-place operation:

output can be directly written in the 

input tensor (no data dependency)

Intermediate memory:

Data tensor must be kept in memory 

during computation of the branch



| 36Confidential

GRAPH OPTIMIZATION

OPTIMIZED MEMORY MAPPING

Main strategies:

• Memory re-use when not needed anymore

• Memory wrapping: overwrite the input memory 

when input data is no longer required



| 37Confidential

• From separate computation kernels:

• To single monolithic kernel:

GRAPH OPTIMIZATION

OPERATORS MERGING PRINCIPLE

Padding Convolution Activation 
(e.g. ReLU)

Pooling
(e.g. MAX)

Intermediate buffers

Extra memory read/write

Successive “for” loops: control overhead, poor vectorization

Padding Convolution Activation 
(e.g. ReLU)

Pooling
(e.g. MAX)



| 38Confidential

• Batch normalization recall:

• 𝑥𝑐,𝑖,𝑗: input ij of channel c

• ො𝑥𝑐,𝑖,𝑗: batch normalized output ij of channel c

• Batch normalization as 1x1 convolution:

• Preceding convolution with linear activation:

GRAPH OPTIMIZATION

FUSE BATCHNORM WITH CONVOLUTION

ො𝑥𝑐,𝑖,𝑗 = 𝛾.
𝑥𝑐,𝑖,𝑗 − 𝜇𝑐

𝜎𝑐
2 + 𝜖

+ 𝛽𝑐 with

𝜇𝑐 =
1

𝑁
σ𝑥𝑐,𝑖,𝑗: mean over the batch

𝜎𝑐
2 =

1

𝑁
σ 𝑥𝑐,𝑖,𝑗 − 𝜇𝑐

2
: variance over the batch

𝑦𝐶 = 𝑾. 𝑥𝐶 + 𝑩

𝑦 = 𝑾. 𝑥 + 𝑩

“Freezed” batch norm. equivalent

to 1x1 convolution layer

𝑦 = 𝑾𝑩𝑵. 𝑾𝒄𝒐𝒏𝒗. 𝑥 + 𝑩𝒄𝒐𝒏𝒗 + 𝑩𝑩𝑵 = 𝐖. x + 𝐁 with
𝐖 = 𝑾𝑩𝑵. 𝑾𝒄𝒐𝒏𝒗

𝐁 = 𝑾𝑩𝑵.𝑩𝒄𝒐𝒏𝒗 + 𝑩𝑩𝑵

 Single convolution layer!



| 39Confidential

Do not neglect graph optimization technics:

• Merge simple operators with no data dependency

• Careful about memory over-usage

• Change the topology to allow batch norm. merging with conv.
Non-mergeable batch norm. can generally be moved or removed

without penalty on final accuracy

GRAPH OPTIMIZATION

TAKE-AWAY MESSAGE



| 40Confidential

1. General introduction

2. Models / topologies complexity

3. Convolution algorithms

4. Graph optimization

5. Quantization technics

• Post-training quantization

• Training-aware quantization

• Non-uniform quantization

QUANTIZATION TECHNICS



| 41Confidential

• Post-training quantization algorithm in 3 steps

• Weights normalization

• All weights are rescaled in the range [-1.0, 1.0]

• Per layer normalization

• Per layer and per output channel normalization

 finer grain, better usage of the quantized range for some output channels

• Activations normalization

• Activations at each layer are rescaled in the range [-1.0, 1.0] for signed outputs

and [0.0, 1.0] for unsigned outputs

• Find optimal quantization threshold value of the activation output of each layer

 using the validation dataset

• Iterative process: need to take into account previous layers normalizing factors

• Quantization

• Inputs, weights, biases and activations are quantized to the desired nbbits precision

• Convert ranges from [-1.0, 1.0] and [0.0, 1.0] to [−2𝑛𝑏𝑏𝑖𝑡𝑠−1 − 1, 2𝑛𝑏𝑏𝑖𝑡𝑠−1 − 1] and [0, 2𝑛𝑏𝑏𝑖𝑡𝑠 − 1]

taking into account all dependencies

QUANTIZATION TECHNICS

POST-TRAINING QUANTIZATION BASIC ALGORITHM



| 42Confidential

• Find optimal quantization threshold value of the 

activation output of each layer

• Compute histogram of activation values

• Find threshold that minimizes distance

between original distribution

and clipped quantized distribution

 two distance algorithms can be used:

• Mean Squared Error (MSE)

• Kullback–Leibler divergence metric (KL-

divergence)

Threshold value = activation scaling factor

to be taken into account during quantization

QUANTIZATION TECHNICS

POST-TRAINING QUANTIZATION BASIC ALGORITHM



| 43Confidential

• Additional optimization strategies

• Weights clipping (optional)

same as activations: find optimal quantization threshold value 

• Activation scaling factor approximation

• Fixed-point

α 𝑥2−𝑝

• Single-shift

α 2𝑥

• Double-shift

α 2𝑛 + 2𝑚

QUANTIZATION TECHNICS

POST-TRAINING QUANTIZATION BASIC ALGORITHM



| 44Confidential

• Goal: avoid the need to use data for calibration

QUANTIZATION TECHNICS

POST-TRAINING: DATA FREE QUANTIZATION (DFQ)

𝑓 𝑠. 𝑥 = 𝑠. 𝑓(𝑥) for ReLU

 scaling invariance

𝑟𝑖
(1)

= 𝑚𝑎𝑥𝑗 𝑊𝑖𝑗(1)

𝑠𝑖 =
1

𝑟𝑖
(2)

𝑟𝑖
(1)
. 𝑟𝑖

(2)



| 45Confidential

• Performances (post-training quantization)

QUANTIZATION TECHNICS

POST-TRAINING QUANTIZATION BASIC ALGORITHM

Network model

Input: 224x224

Output: 1000 or 1001

FP accuracy on 

ImageNet in N2D2 [vs 

reported]

Export quantized accuracy

(default)

(without eq. from [3])

MobileNet_V1
ONNX model from TF

71.04% [70.9%] 60.39% (~52%)

MobileNet_V1
ONNX model from MXNet

70.17% [71.05%] 68.84% (~62%)

MobileNet_V2
ONNX model from TF

[71.8%] Not working

(scaling issue)

MobileNet_V2
ONNX model from PyTorch

69.20% [71.8%] 65.52% (-)

MobileNet_V2
ONNX model from MXNet

[70.94%] 65.43% (~17%)

Challenges in MobileNet quantization:

[1] Tao Sheng et al., "A Quantization-Friendly Separable Convolution for MobileNets, 2019

[2] Alexander Finkelstein et al., Fighting Quantization Bias With Bias, 2019

[3] Nagel, Markus, et al. "Data-free quantization through weight equalization and bias correction.“, 2019

Post-training quantization 

performances may be 

sensible on how the 

network was trained!



| 46Confidential

Baseline (FP)
Quantization 

friendly 
restructuring

Integer 
conversion

Single-shift 
rescaling

• Performances (post-training quantization)

• Accuracy loss analysis: example with MobileNet_V2 ONNX model from PyTorch

QUANTIZATION TECHNICS

POST-TRAINING QUANTIZATION BASIC ALGORITHM

69.67%

- Dropout removal

- BatchNorm fuse with Conv

(Zero-variance issue 

correction [1])

- Padding fuse with 

Conv/Pool

- Cross layer equalization [3] 

(with clipping removal) 

- Weights & biases rescaling

- Activations rescaling

68.39%

(-1.28)

- Rounding

66.74%

(-2.93)

- Single-shift rescaling

65.44%

(-4.23)

(    )



| 47Confidential

• LSQ (Esser 2019) and LSQ+ (Bhalgat 2020)

• Learned Step Size Quantization

• 3-bit models able to reach the full precision baseline accuracy

• First and last layer: always use 8-bit (standard SofA practice)

• Initialized from a trained full precision model

QUANTIZATION TECHNICS

TRAINING AWARE QUANTIZATION

Quantizer

function

Gradient used 

for training



| 48Confidential

• Scale-Adjusted Training (SAT)

• Combine previous SotA technics:

• DoReFa scheme (Zhou et al. (2016)) for weight quantization

• PACT (Choi et al., 2018) for activation quantization

• Efficient Training Rule I: prevent logits from entering saturation region of the cross entropy loss

• Efficient Training Rule II:

• BN layers should be used after linear layers such as convolution and fully-connected layers

• Variance of effective weights should be on the order of the reciprocal nb. neurons of the linear layer 

• Weight quantization: SAT restores the variance of effective weights

• Clamping: constant rescaling

• Quantization

• Activation quantization 

QUANTIZATION TECHNICS

TRAINING AWARE QUANTIZATION

https://nervanasystems.github.io/distiller/quantization.html#choi-et-al-2018


| 49Confidential

QUANTIZATION TECHNICS

TRAINING AWARE QUANTIZATION

2

3

4 8
2

3

4 8
2

3

4 8

2

3

4

2

3
4

4

5
6

8

4

5
6 8

2

3
4

4

4

4

4
4

1

4

2 42

1

1

1

mixed
mixed

1

1

2

3

4

1

2

3

1

2

3

4

54

3

2

54

3

2

54
3

2

54

3

2

mixed

mixed

mixed

mixed

mixed

mixed

mixed

mixed

mixed

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

0 50 100 150 200 250

To
p

-1
 Im

ag
eN

et
 a

cc
u

ra
cy

 (
%

)

Weight memory (Mbits) Mbits

LSQ

SAT

TQT

WRPN

Bi-Real

DQ

CI-BCNN

LQ-Net

INQ

APoT

HAQ

ICN

MobileNet



| 50Confidential

• Goal: Allow non uniform quantizers to provide better « understanding » of the distribution

Deep Compression

Use of k-means to determine the position of the quantization

points. Compression using pruning, weight sharing and Huffman

coding. No accuracy loss, and big compression factors on old

architectures.

UNIQ

Drawback : Has only been tested on old architectures 

(2016 : before RESNET)

Uniform noise injection for non-uniform quantization

Concept: Non-uniform k-quantile quantizer

Idea : Keep the quantization operation differentiable by

injecting distribution-aware noise.

𝐹𝑊 : cumulative distribution function of the gaussian that fits best 

to the shape of the layer’s weights.

e : uniform random noise in [-
1

2𝑘
,
1

2𝑘
], where k in the number of 

quantization points (= quantiles).

Results : Works well for small/medium-sized networks.

The scheme needs to be applied gradually to train

deeper networks (because of the accumulation of noise).

Differentiable

quantization

QUANTIZATION TECHNICS

NON-UNIFORM QUANTIZATION



| 51Confidential

Concept: learnable codebook, updated through k-

means and fine-tuned using SGD

Idea: As in Deep Compression, we want to learn a

custom distribution for the quantization points. But unlike

Deep Compression, the quantization points are vectors.

Each column of a tensor to quantize is split into

subvectors of the same dimension d. These subvectors

are then quantized thanks to a learnable codebook,

updated through a k-means strategy and then fine-tuned

using SGD.

E-step : Each subvector v of the a column of a tensor to quantize

is assigned to a codeword (exhaustive search).

M-step : weighted k-means update of each codeword, considering

the set of subvectors assigned to it.

Finetuning : Codewords updated by SGD using the set of

subvectors assigned to them.

Example of the quantization of a convolutive layer. Same color = Same 

codeword assigned.

QUANTIZATION TECHNICS

NON-UNIFORM QUANTIZATION

Vector quantization



| 52Confidential

Post-training quantization:

• Good enough down to 8-bit

• Simple: no retraining required,

but may still need data for calibration

Quantization-aware training:

• Similar accuracy in 4-bit vs floating point

• Down to 3- or 2-bit with lower accuracy

• Complex: require data and specific quantized training

Other (non uniform: k-mean, codebook…):
benefits vs latest (uniform) quantization-aware not clear at the moment

QUANTIZATION TECHNICS

TAKE-AWAY MESSAGE



Centre de Saclay
Nano-Innov PC  172 - 91191 Gif sur Yvette Cedex

Questions?


