

Microarchitectural Attacks

Maria MUSHTAQ
Associate Professor at Télécom Paris

■ A shared concern by many application domains

Source: https://www.visualcapitalist.com/cyber-attacks-worldwide-2006-2020/

OPERATING SYSTEM

■ Modern Processors - Intel, ARM, AMD are vulnerable.....

Spectre and Meltdown

Hardware is Vulnerable!

Side Channel Attacks

- Hardware Attacks
- Software Attacks

Disclaimer

- o Important Background to understand the microarchitectural attacks in detail
- We need to understand how microarchitectural components behave for security reasons i.e., caches

Memory

- Ideal memory: zero latency, zero cost, infinite capacity and bandwidth
- All these ideals oppose each other:
 - -Infinite Capacity: bigger takes longer to determine the location
 - -Zero Latency: technology i.e., SRAM, DRAM, Disk
 - -Zero Cost: require more banks, ports, frequency and faster technology

Memory Technology

o DRAM VS SRAM

DRAM (Dynamic Random Access Memory)	SRAM (Static Random Access Memory)
Slow acess	Fast Access
High desnsity (1 transistor per cell)	Low densirt (6 transistors per cell)
Low cost	High cost
Require refresh (charge loss over time)	No refresh required

Memory Technology

o Can we have both large and fast memory?

- No we can not have both large and fast technology with single level of memory
- Progressively bigger and slower as level go father from processor
- o Ensure most of the data processor needs is kept in the faster levels

Memory Technology

Memory Hierarchy

Memory Hierarchy

Caching Basics: Temporal VS Spatial

- Memory is organized for locality
- Temporal Locality
 - Data/Instructions being referenced are more likely to be referenced again very soon within small time window (i.e., loops)
 - o recently accessed data will be accessed again soon

Spatial Locality

- A program tends to reference a cluster of memory locations at a time, e.g.,
 sequential instruction access, array traversal
- Nearby data will be accessed soon

Memory Utilization

Memory has always been short

IBM Model 350 Disk File 5 MB

ScanDisk 1 TB

- Techniques to reduce memory footprint of system
 - Shared libraries
 - Shared data/text segments
 - o De-duplication

Set-Associative Cache

Memory is organized in a specific way!

- o Data is loaded into specific set depending on address
- Cache line is loaded into a specific way depending on replacement policy

🔀 IP PARIS

Shared Library –Shared in Physical Library

■ What happens when there is no shared memory? e.g. there is no memory deduplication on Amazon EC2

- Inclusive LLC is superset of L1, L2
- Data evicted from LLC is evicted from L1, L2
- A core can evict lines in the private L1 of another core

- Inclusive LLC is superset of L1, L2
- Data evicted from LLC is evicted from L1, L2
- A core can evict lines in the private L1 of another core

- Inclusive LLC is superset of L1, L2
- Data evicted from LLC is evicted from L1, L2
- A core can evict lines in the private L1 of another core

- Inclusive LLC is superset of L1, L2
- Data evicted from LLC is evicted from L1, L2
- A core can evict lines in the private L1 of another core

Shared Memory

Inclusive Caches

- Inclusive LLC is superset of L1, L2
- Data evicted from LLC is evicted from L1, L2
- A core can evict lines in the private L1 of another core

Caches on Intel CPU's

- set-associative
- L1 and L2 are private
- · last-level cache
 - divided in slices
 - shared across cores
 - inclusive

Caches on Intel CPU's

- User program can optimize cache usage in x86:
 - Prefetch: can suggest CPU to load data
 - Clflush: throw out data from all caches

Caches on Intel CPU's

Cache SCAs affect or alter cache behavior!

CPU Caches

CPU Caches

CPU Caches

1337 4242

FOOD CACHE

Revolutionary concept!

Store your food at home, never go to the grocery store during cooking.

Can store **ALL** kinds of food.

PARIS

```
printf("%d", i);
printf("%d", i);
```


Known States in a Processor

	L1d	L1i	L2	L3
level size	32 KB	32 KB	256 KB	3 MB
line size	64 B	64 B	64 B	64 B
# ways	8	8	8	12
# sets	64	64	512	4096
inclusive?	no	no	no	yes
				<u> </u>

Known States in a Processor

event	latency
1 CPU cycle	0.3 ns
level 1 cache access	0.9 ns
level 2 cache access	2.8 ns
level 3 cache access	12.9 ns
main memory access	120 ns
solid-state disk I/O	50-150 us
rotational disk I/O	1-10 ms

Wake up call!

Why known state of processor a threat?

Conclusions

- Software execution on underlying hardware is a problem
- Shared Hardware is vulnerable
- Timing information can reveal a lot about a victim program
- Now we will focus on microarchitectural attacks

Quiz -Student Evaluation

QUIZ: Can somebody tell me?

- Benefit of data sharing and disadvantage?
- Inclusive Caches are good for performance but what is the security threat from them?
- What is the fastest to access data; cache hit or cache miss?
- When there is a cache miss, data is accessed from?
- How pre-determined timing information of a processor can be a security threat?
- **De-duplication helps to optimise memory locations?**
- How many levels a standard Intel CPU cache has?
- What is the difference between a cache and DRAM memory?

Microarchitectural Attacks

- Side-Channel Attacks: a malicious process spies the benign process to steal secret information
 - exploit timing differences from memory accesses
 - attacker monitors the lines access, not the content
 - learn timing difference by cache hit, cache miss

First Step: Build Histogram

- 1. Build data for cache hits and cache misses
- 2. Time each case for multiple samples of time
- 3. Build histogram
- 4. Find a threshold to distinguish both cases

Build Histogram: Cache hits

- 1. Measure time
- 2. Acess cache hits
- 3. Measure time
- 4. Update histogram

Build Histogram: Cache misses

- Flush (clflush instructions)
- Measure time
- 3. Access cache miss
- Measure time
- 5. Update histogram

Determinging Threshold

A mediation point between cache hits and misses

Timing Accuracy

O How to measure very short timings?

- 1. Rdtsc instruction: cycle accurate timestamps
- 2. serializing instructions like cupid
- 3. fences like mfence

- Side-Channel Attacks based on Intel's x86 architecture's properties: Sharing & Inclusivity
- Exploitable on x86 and ARM
- Used for side-channel and covert attacks
 - 1) FLUSH + RELOAD
 - (2) Prime+Probe
 - (3) Flush+Flush

- Exploit timing differences of memory accesses
 - Attacker (process) monitors which lines are accessed by the Victim (process), and not the content!

- Intel's x86 sharing property
 - o Attacker maps shared library (shared memory in cache)
 - o Sharing allows SPY to look at VICTIM's (shared) address space

- o Side-Channel Attacks on Intel's x86 architecture
 - 1) FLUSH+RELOAD

- Spy maps shared library
- Spy flushes shared cache line
- Victim loads data
- o Spy reloads data
- Spy measures timing in both cases(with & without cache line)

- Side-Channel Attacks on Intel's x86 architecture
 - (2) FLUSH+FLUSH
 - Spy maps shared library
 - Spy flushes shared cache line
 - Victim loads data
 - o Spy flushes the data again
 - o Spy measures timing in both cases
 - o Cache line hit
 - o Cache line miss

- Side-Channel Attacks on Intel's x86 architecture
 - (3) PRIME+PROBE
 - Spy fills cache lines
 - Victim flushes cache lines while running
 - Spy probes data to determine if set is being accessed or not
 - o Spy measures timing in both cases
 - o Cache line hit
 - o Cache line miss

[Spectre & Meltdown Attacks]

o What Are We Talking About?

- Two CPU vulnerabilities discovered in 2018!
- o Both exploit performance enhancement techniques

o Meltdown Attack

 Vulnerability: Permission check for address is done in parallel & out-of-order to the load instruction! Potential Race Condition

- 1. Wash and cut vegetables
- 2. Pick the basil leaves and set aside
- 3. Heat 2 tablespoons of oil in a pan
- 4. Fry vegetables until golden and softened

o Meltdown Attack

o Vulnerability: Permission check for address is done in parallel & out-of-order to the load instruction! Potential Race Condition

D IP PARIS

Une école de l'IMT

Spectre Attack

- Vulnerability: Speculative execution of branches
- Miss-trains Branch Prediction to convince CPU to speculatively execute code that should not be executed

PARIS

o Variants-For our knowledge

Variants-For our knowledge

Conclusions

- o Microarchitectural Attacks are a serious threat to computing
 - Crypto and non-crypto applications are under threat
 - RSA and AES implementations can be attacked
 - Does not mean that AES and RSA are broken
- Side Channel Attacks use shared and vulnerable hardware
 - Every memory access should take the same time
 - Hardware components should not be shared
 - Extra microarchitectural states should be cleaned

Quiz -Student Evaluation

Quiz

- Spectre takes benefit of which performance optimization technique?
- What is out-of-order execution?
- How cache hit and cache miss are important for attacker to mount attack?

