

TRUSWORTHY EMBEDDED AI RISK ANALYSIS AND CERTIFICATION FRAMEWORKS FOR CRITICAL TRUSTED AI APPLICATIONS

Supporting Safety Assessment of Autonomous Systems with *Papyrus for Robotics*

with contributions from Matteo MORELLI, Ansgar RADERMACHER, Fabio ARNEZ, Guillaume OLLIER, Diana RAZAFINDRABE (CEA-LIST/DILS/LSEA); EL JIHAD Hasnaa; Huascar ESPINOZA (KDT JU)

cea

- Safety of robotics applications must be guaranteed
- ► Legal directives and standards compliance must be fulfilled!
- ► Avoid emergency stops and ensure system stability

Safety is the condition of being protected from harm or other non-desirable outcomes. It can also refer to risk management.

Functional safety is the part of the overall safety of a system or piece of equipment that depends on automatic protection operating correctly in response to its inputs or failure in a predictable manner.

Safety of the Intended Functionality (SOTIF) concerns with guaranteeing the safety of a functionality that can have safety risks in the absence of a fault.

If a fault develops here

Commissariat à l'énergie atomique et aux énergies alternatives

Guidance on measures to ensure the absence of unreasonable risk due to a hazard caused by insufficiencies of functionalities where proper situational awareness is essential to safety and where such situational awareness is derived from complex sensors and processing algorithms, including AI

SOTIF is crucial to achieve trustworthy AI-based systems

e.g., autonomous shuttles for passenger transportation near activity zones, living areas open to pedestrians, etc.

Challenges:

complex/changing operational contexts; data noise, ambiguous scenarios; degraded sensor quality and sensor failures.

Cea

Model-driven engineering as a key enabler for design and V&V of safe autonomous systems

UNIVERSITE PARIS-SACLAY

CARNOT

20/01/2023

CEA LIST

Exemplification Agenda, based on Papyrus 4 Robotics framework

Definition of the operational domain of AI system functions

ODD specification

Ollier, G., Razafindrabe, D., Adedjouma, M., Gerasimou, S., Mraidha, C., 2022. « Using Operational Design Domain in Hazard Identification for Automated Systems », In proceedings of 18th *European Dependable Computing Conference*.

Identification of critical system functions based on safety standards

Papyrus for Robotics support for HARA, FMEA, FTA

Radermacher, A., Morelli, M., Hussein, M. and Nouacer, R., 2021. "Designing Drone Systems with Papyrus for Robotics". In Proceedings of the 2021 Drone Systems Engineering and Rapid Simulation and Performance Evaluation: Methods and Tools Proceedings. Jihad, H.E., Adedjouma, M. and Morelli, M., 2021. "Automated Fault Tree generation in Open-PSA from UML Models". In 2021 28th Asia-Pacific Software Engineering Conference. IEEE.

Functional safety through anticipation of faults' impacts on the system

Papyrus for Robotics support for simulation-based FI

 \equiv

Uriagereka, G.J., et al., 2019. "Design-time safety assessment of robotic systems using fault injection simulation in a model-driven approach". In 2019 ACM/IEEE 22nd International Conference on Model Driven Engineering Languages and Systems Companion (MODELS-C). IEEE.

Guidance on measures to ensure the safety of the intended functionality (SOTIF)

Combined process based on knowledge engineering and simulation for the identification and evaluation of unsafe scenarios in autonomous driving systems

Arnez, F., Ollier, G., et al., 2022. "Skeptical Dynamic Dependability Management For Automated systems". In Euromicr 2022 STITUT

Context: In practice, the number of possible scenarios which have to be managed by an automated tends to be infinite. Because the NNs learned from data, it is impossible to ensure that these data capture the infinite number of scenarios in which automated systems must operate, which makes their safety evaluation challenging.

Goal: We need a mean to define the scenario-space in which the automated system must operate safely without having to enumerate the different scenarios individually. The scenario-space is specified through the operational design domain.

Operating conditions under which a driving given automation system or feature thereof is specifically designed to function, including, but not limited to, environmental, geographical, and time-of-day restrictions, and/or the requisite presence or absence of certain traffic or roadway characteristic.

Operational Design Domain : From Operational Domain to ODD and scenarios

Ontology for Automated Systems

 Contains crossdomain concepts
 to describe the
 environment
 (e.g, weather,
 maneuvers,
 human operator) Domain- specific Ontology

Contains relevant concepts to **describe** the **environment** for a **specific domain** (e.g, automotive, avionic, railway) Operational Domain

Contains
 concepts to
 describe the
 environment
 for a specific
 system

Represents
 the system
 scenario-

space.

ODD

Refers to the intended
 ADS capability to
 handle operating
 conditions.

Usage Scenario

Expected ADS
 behavior under
 specific operating
 conditions.

université

From Operational Domain to ODD and scenarios

The structuring of scenarios can be achieved following a number of approaches, e.g.: ✓ descriptions from the <u>outside</u> of the ADS (e.g. 6-layer approach, ISO/DIS 34503, PAS 1883)

		ODD		Attribute	Sub-attribute	Sub-attribute	Capability
				Drivable area type	Motorways (M)	-	Yes
					Radial roads (A-roads)		Yes
Scer	herv	Environmental	Dynamic		Distributor roads (B-roads)		Yes
	lery	conditions	elements		Minor roads		No
	Zones			Lane specification	Number of lanes	-	Yes, minimum of two lanes
		Weather	Traffic		Lane dimensions		Minimum 3.7 m
	Drivable area	Particulates	Subjective vehicle		Lane type	Bus lane	No
	Junctions	- unicolates	Sobjective venicle			Traffic lane	Yes
	Special structures	Illumination				Cycle lane	No
	Fixed road structures	Connectivity	_			Tram lane	No
						Emergency lane	No
т						Other special purpose lane	No
10	op-level taxonor	ny with ODD	attributes		Direction of travel	Right-hand traffic	No
		Layer 6				Left-hand traffic	Yes

*Source: PAS 1883

2101100 2	Layer 6 Data and communication
	Layer 5 Environment conditions
6.0,00000,	Layer 4 Movable objects
	Layer 3 Temporal modifications
	Layer 2 Traffic infrastructure
	Layer 1 Street layer

Drivable area geometry	Horizontal plane	Straight roads	Yes	
	-	Curves	Yes – up to 1/500 m (radius of curvature)	
	Vertical plane	Up-slope	Yes	
		Down-slope	Yes	
		Level plane	Yes	
	Cross-section	Divided/undivided	Divided	
		Pavement	Yes	
		Barrier on the edge	No	
		Types of lanes together	Only traffic lane	
Drivable area surface type	Asphalt	-	Yes	
	Concrete		Yes	
	Cobblestone		No	
	Gravel		No	
	Granite setts		No	
Drivable area signs	Туре	Regulatory	Yes	
		Warning	Yes	
		Information	Yes	
	Time of operation	Part-time	No	
		Full-time	Yes	
	State	Variable	Yes	
		Uniform	Yes	

Commissariat à l'énergie atomique et aux énergies alternatives

cea

From Operational Domain to ODD and scenarios

The structuring of scenarios can be achieved following a number of approaches, e.g.: ✓ descriptions from the <u>inside</u> the ADS (e.g. 3-categories approach, ISO/DIS 34502 approach)

ARNO

20/01/2023

*Source: ISO 34502-#:####(X)-DIS draft 210908

ODD definition and formalization using OpenODD language

*Source: ISO 34503-#:####(X)-WD 34503 - r11.0

Commissariat à l'énergie atomique et aux énergies alternatives

20/01/2023

CEA LIST

universite

PARIS-SACLAY

Scenario description can be done at functional, logical, concrete levels

Functional scenarios	Logical scenarios	Concrete scenarios	
Base road network: three-lane motorway in a curve, 100 km/h speed limit indicated by traffic signs	Base road network:Lane width[2.33.5] mCurve radius[0.60.9] kmPosition traffic sign[0200] m	Base road network:Lane width[3.2] mCurve radius[0.7] kmPosition traffic sign[150] m	
Stationary objects: -	Stationary objects: -	<u>Stationary objects:</u> -	
Ego vehicle, traffic jam; Interaction: Ego in maneuver "approaching" on the middle lane, traffic jam moves slowly	Moveable objects:End of traffic jam[10200] mTraffic jam speed[030] km/hEgo distance[50300] mEgo speed[80130] km/h	End of traffic jam 40 m Traffic jam speed 30 km/h Ego distance 200 m Ego speed 100 km/h	Jate Layer 6: Digital Information
Environment: Summer, rain	Environment:Temperature[1040] °CDroplet size[20100] μm	Environment: Temperature 20 °C Droplet size 30 μm	• (e.g.)V2X information, digital map 34815 Layer 5: Environment • Weather lighting and other
Level of abstraction			weather, nighting and other surrounding conditions
Number of scenarios			Static, dynamic, movable Interactions, maneuvers Laver 3: Temporary manipulation of
✓ Do we need to vehicle status?	include occupants ar	nd	Layer 1 and Layer 2 · Geometry, topology (overlaid) · Time frame > 1 day Layer 2: Traffic Infrastructure · Boundaries (structural) · Traffic signs, elevated barriers
*Source: https://www.p	egasusprojekt.de/de/abou	ut-PEGASUS	Layer 1: Road-Level Geometry, topology Quality, boundaries (surface)

Definition of the operational domain of AI system functions

ODD specification

Ollier, G., Razafindrabe, D., Adedjouma, M., Gerasimou, S., Mraidha, C., 2022. « Using Operational Design Domain in Hazard Identification for Automated Systems », In proceedings of 18th *European Dependable Computing Conference*.

Identification of critical system functions based on safety standards

Papyrus for Robotics support for HARA, FMEA, FTA

Radermacher, A., Morelli, M., Hussein, M. and Nouacer, R., 2021. "Designing Drone Systems with Papyrus for Robotics". In Proceedings of the 2021 Drone Systems Engineering and Rapid Simulation and Performance Evaluation: Methods and Tools Proceedings. Jihad, H.E., Adedjouma, M. and Morelli, M., 2021. "Automated Fault Tree generation in Open-PSA from UML Models". In 2021 28th Asia-Pacific Software Engineering Conference. IEEE.

Functional safety through anticipation of faults' impacts on the system

Papyrus for Robotics support for simulation-based FI

 \equiv

Uriagereka, G.J., et al., 2019. "Design-time safety assessment of robotic systems using fault injection simulation in a model-driven approach". In 2019 ACM/IEEE 22nd International Conference on Model Driven Engineering Languages and Systems Companion (MODELS-C). IEEE.

Guidance on measures to ensure the safety of the intended functionality (SOTIF)

Combined process based on knowledge engineering and simulation for the identification and evaluation of unsafe scenarios in autonomous driving systems

Arnez, F., Ollier, G., et al., 2022. "Skeptical Dynamic Dependability Management For Automated systems". In Euromicr 2022 STITUT

Hazard Analysis and Risk Assessment view

M

page of gears

4

M L

LOM. LOC.

Criticality

H M M M M

2R

► HARA is performed following ISO 10218-2:2011.

list all the relevant hazards at system and behavior level and compute their risk index. The risk analysis table structure is extracted from **ISO/TR 14121-2:2007**.

H H

15

cea

Commissariat à l'énergie atomique et aux énergies alternatives

► HARA is a preliminary analysis step, needs to be completed with FMEA

from hazardous situations to failure modes, causes and effects \rightarrow FM criticality is automatically computed

	곗 Quadrot	orCtrlCdef	f.di 🛙						- 8	
II 🕼 📸 🖓 🗆 🕏 🔻					A	В	С	D	E	
🕶 🥞 «ComponentDefinitionModel, SModel» QuadrotorCtrl					Name	Description	Causes	Local Effects	System Effects	
 «SSafetyArtifacts» SafetyArtifacts ⊴ «SFMEA» FMEA ∞ «SBlockFMEA» QuadrotorCtrlCdef ∞ FMEAActuatorFMOscillMode 	0	FME.	AActuator	FMOscillMode	FMEAActuatorFMOscillMo	e Actuator oscillatory mode	Software bug; faulted RxMux	Limited pitch control; Induce	LOM, LOV	
FMEAActuatorFMDeadband FMEAActuatorFMFloatSurf Table FMEATable0 ComponentDefinition, SBlock» QuadrotorCtrlCdef ComponentDefinition, SBlock» QuadrotorCtrlCdef ComponentDefinition (Component) UML Primitive Types	1	FME	FMEAActuatorFMDeadband		FMEAActuatorFMDeadbar	Actuator increased deadban	Damaged servo driveshaft	Slow actuator dynamics; Lim	LOM	
«ModelLibrary» Ecore Primitive Types	2	FME	EAActuato	rFMFloatSurf	FMEAActuatorFMFloatSu	f Actuator floating surface	Broken linkage; Broken servo	Limited pitch control; LOC	LOM, LOV	•••
	Welcome 2 QuadrotorCtrlCdef_ESFArchitectureDiagram0 FMEATable0									l K
						Unitial Severity	Initial Occurrence	Is Detectable	Juitial Detectability	Initial Criticality
			0	FMEAAct	tuatorFMOscillMode	9	1		5	45
	• • •		1	FMEAAc	tuatorFMDeadband	6	1	V	5	30
		_	2	EMEAA	tuatorEMEloatSurf		(4)		5	180

20/01/2023

17

Complementing with compositional safety analysis

Combination/Propagation of failures on the architecture, and cut-sets

Commissariat à l'énergie atomique et aux énergies alternatives

UNIVERSITE PARIS-SACLAY

ARNOT

20/01/2023

CEA LIST

Definition of the operational domain of AI system functions

ODD specification

Ollier, G., Razafindrabe, D., Adedjouma, M., Gerasimou, S., Mraidha, C., 2022. « Using Operational Design Domain in Hazard Identification for Automated Systems », In proceedings of 18th *European Dependable Computing Conference*.

Identification of critical system functions based on safety standards

Papyrus for Robotics support for HARA, FMEA, FTA

Radermacher, A., Morelli, M., Hussein, M. and Nouacer, R., 2021. "Designing Drone Systems with Papyrus for Robotics". In Proceedings of the 2021 Drone Systems Engineering and Rapid Simulation and Performance Evaluation: Methods and Tools Proceedings. Jihad, H.E., Adedjouma, M. and Morelli, M., 2021. "Automated Fault Tree generation in Open-PSA from UML Models". In 2021 28th Asia-Pacific Software Engineering Conference. IEEE.

Functional safety through anticipation of faults' impacts on the system

Papyrus for Robotics support for simulation-based FI

 \equiv

Uriagereka, G.J., et al., 2019. "Design-time safety assessment of robotic systems using fault injection simulation in a model-driven approach". In 2019 ACM/IEEE 22nd International Conference on Model Driven Engineering Languages and Systems Companion (MODELS-C). IEEE.

Guidance on measures to ensure the safety of the intended functionality (SOTIF)

Combined process based on knowledge engineering and simulation for the identification and evaluation of unsafe scenarios in autonomous driving systems

► Faults

data arrives too late (communication delay) data are corrupted, etc.

How does the system react to faults?

faults can even jeopardize the system stability

Process

. . .

annotate system model with a fault specification

generate "Saboteur" component from specification, inject it into architecture

simulate, simulate, simulate

observe run-time behavior and refine the design:

under which conditions the system stability is jeopardized?

which are appropriate strategies to add to the architecture design and ensure the mitigation of fault effects? which is the lowest response time that a monitor must have to trigger mitigation measures?

prant agreement too 782410

Satec

Recap on design-time safety assessment using fault injection simulation

MDE-based simulated fault injection enables :

- quantitative assessment of safety properties of interest
- refinement cycles of design until reaching the required level of safety
- exploration of mitigation strategies to potential hazards in early development phases

Commissariat à l'énergie atomique et aux énergies alternatives

Definition of the operational domain of AI system functions

ODD specification

Ollier, G., Razafindrabe, D., Adedjouma, M., Gerasimou, S., Mraidha, C., 2022. « Using Operational Design Domain in Hazard Identification for Automated Systems », In proceedings of 18th *European Dependable Computing Conference*.

Identification of critical system functions based on safety standards

Papyrus for Robotics support for HARA, FMEA, FTA

Radermacher, A., Morelli, M., Hussein, M. and Nouacer, R., 2021. "Designing Drone Systems with Papyrus for Robotics". In Proceedings of the 2021 Drone Systems Engineering and Rapid Simulation and Performance Evaluation: Methods and Tools Proceedings. Jihad, H.E., Adedjouma, M. and Morelli, M., 2021. "Automated Fault Tree generation in Open-PSA from UML Models". In 2021 28th Asia-Pacific Software Engineering Conference. IEEE.

Functional safety through anticipation of faults' impacts on the system

Papyrus for Robotics support for simulation-based FI

 \equiv

Uriagereka, G.J., et al., 2019. "Design-time safety assessment of robotic systems using fault injection simulation in a model-driven approach". In 2019 ACM/IEEE 22nd International Conference on Model Driven Engineering Languages and Systems Companion (MODELS-C). IEEE.

Guidance on measures to ensure the safety of the intended functionality (SOTIF)

Combined process based on knowledge engineering and simulation for the identification and evaluation of unsafe scenarios in autonomous driving systems

Current solutions rarely enable the assessment of the effects of functional insufficiencies of learningenabled components

- Validation of the driving logics by simulation Solving ODE/physics simulation but <u>with limited rendering realism and simplistic sensor models</u> *→ unable to run realistic AI-based perception pipelines*
- Parameterizable elements in the operational scenarios
 Vehicle, pedestrian, road, sign, traffic light status/attributes parameterizable at the level of concrete scenarios
 - → large number of low-level scenario descriptions needed
 - → no support for intelligent generation of scenarios from higher-level specs
 - → simulator-specific (migration to other technologies may require big effort)
- Parameterizable failure models

Failures of perception and localization systems can be simulated

only in a simplistic way (non-perception time over an acquisition perdiod)

 \rightarrow complicates the design of mitigation policies in ambiguous situations

(e.g., wrong information perceived) or of policies aware of perception uncertainty

Combined process based on knowledge engineering and simulation for the identification and evaluation of unsafe scenarios in autonomous driving systems

Commissariat à l'énergie atomique et aux énergies alternatives

27

Commissariat à l'énergie atomique et aux énergies alternatives

On-line verification of safety properties

► No complex system can be considered as fault-free

- Unspecified situations may also induce a hazardous behavior
- Safety monitors observe the system and its environment, and trigger interventions to keep the system in a safe state

► Approaches

Automated generation of run-time monitors from property specifications (in models)

b.

Use the uncertainty from intermediate latent features for OoD detection in a semantic segmentation tasks

CEA built a (data-driven) monitoring function for OoD detection using latent-feature uncertainty

- "umbrella framework that collects a set of Papyrus-based DSLs and tools and supports the design of robotic systems in conformance with the RobMoSys approach"
- Support code generation to ROS2 with roundtrip engineering capabilities
- Provides plugins and bridges to external technologies to support safety assessment of autonomous systems

Identification of critical system functions based on safety standards

- Papyrus for Robotics supports HARA, FMEA, FTA

► Functional safety through anticipation of faults' impacts on the system

- Papyrus for Robotics supports simulation-based FI

► Guidance on measures to ensure the safety of the intended functionality (SOTIF)

- Combined process based on knowledge engineering and simulation for the identification and evaluation of unsafe scenarios in autonomous driving systems
- Run-time monitoring of safety properties
 - Automated generation of run-time monitors from property specifications (in models)
 - data-driven monitoring for OoD detection in a semantic segmentation tasks using latent-feature uncertain