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Abstract 

Circle Hough Transform (CHT) has found applications in biometrics, robotics, and image 

analysis. In this work, the focus is the development of a Field Programmable Gate Array 

(FPGA) based accelerator that performs a series of procedures and results in circle detection. 

The design is performed using Vivado High-Level Synthesis (HLS) tools and targeted for a 

Zynq UltraScale+ ZCU106. The implementation includes the following procedures: 

Gaussian filter, Sobel edge operator, thresholding, and finally the CHT algorithm. The 

performance is evaluated based on the execution time as compared to the software (Python 

code) execution and the analysis tools provided by Vivado HLS tool. The accuracy of 

detection is evaluated due to the approximation done for the sake of faster execution. The 

CHT requires a large amount of memory for its implementation, and thus the overall resource 

utilization is to be optimized. In this work we evaluate both the speed (time) and the number 

of logical blocks and memory components required for implementation. The core of the work 

is the efficient implementation of the Circle Hough Transform using High-Level Synthesis.  

Keywords: Circle Hough Transform · High-Level Synthesis · Circle Detection · Field 

Programmable Array 
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Chapter 1: Introduction 

 

Automatic circle detection is an important part of extracting information in computer 

vision. Circle Hough Transform (CHT) is one of the most popular algorithms for circle detection 

due to its tolerance to noise. It has been used in various fields including biometrics, robotics, and 

mobile applications.  

This work proposes a circle detection implementation of the CHT algorithm using 

Vivado High Level Synthesis (HLS), an Integrated Development Environment (IDE). The 

tool provided by Xilinx allows for automated compilation of high-level language code (i.e., 

C, C++) to hardware development languages, such as VHDL or Verilog. Cores can be 

synthesized and integrated using Vivado Design Suite to be utilized in embedded 

applications. In this study, we target the Zynq UltraScale+ ZCU106 development board 

because of its high-performance speed and resources, such as Look Up Tables (LUT) and 

Processor-less Block Ram (BRAM). 

A Gaussian filter, Sobel Detection, and thresholding procedures are utilized as 

preliminary steps to automatically detect circles in imagery. All three of the functions mentioned 

have been implemented by Xilinx in an xfOpenCV library similar to that of OpenCV. However, 

these functions have been accelerated using methods of parallelism only available to hardware, 

such as unrolling of loops, pipelining, and partitioning and reshaping arrays to improve speed 

and memory. 

 The speed that Programmable Logic (PL) brings to this step can then be coupled with 

procedures on the Processing System (PS) to perform more complex operations, such as 

execution of machine learning techniques and use of the CHT as a part of its post-processing 
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procedures. In other words, as a component of the whole. The CHT algorithm implemented in 

this work is not one that can be found in the xfOpenCV library. In this case, we explore the 

accuracy and performance of the high-level synthesis algorithm as the groundwork of a larger 

project. This can later be implemented on an FPGA using real-time video and software co-design 

to accelerate circle detection methods for embedded applications. 

The rest of the work is organized as follows: Chapter 2 discusses the related work. 

Chapter 3 describes the proposed CHT implementation and the circle detection process. Chapter 

4 describes the experiments and results. Finally, the work is concluded in Chapter 5. 
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Chapter 2: Related Works 

There have been several applications of the CHT algorithm that take advantage of its 

parallelism and result in real-time solutions. Some mobile devices which implement the CHT 

algorithm have been developed to accurately segment the iris in the biometrics field [6,10]. 

These designs are in demand so that they can be easily integrated into mobile personal or 

commercial applications and connected with other hardware. In these applications the hardware 

implementation is the only solution, such as one that is embedded into the iris detection and scan 

for security. The problems, such as detecting wheels and road signs [4], are among just a few for 

mobile applications. This excels over a software implementation as embedded solutions almost 

always provide a real-time performance upgrade.  

There have been several different methods proposed for effectively detecting circles. 

Methods based on the CHT are widely used due to their effectiveness, however, it requires huge 

computational and memory requirements. Some have sought to improve this with new 

implementations such as using an incremental CHT (ICHT) and a CORDIC algorithm that 

utilizes the parallel properties to decrease computation time and manage resources. Djekoune et 

al. presented a method of reusing the previously computed circle point coordinate values to 

derive the next circle point removing the trigonometric functions needed during the CHT voting 

process [3]. This greatly reduces the computing time required to achieve CHT.  

 Other works have shown that a gradient of the circles can be used instead of the original 

method of using trigonometric functions for the implementation of CHT. Chen et al.  [7] With 

the rising popularity of machine learning methods, studies have also shown ways to detect 
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circles, such as using a population-based system based on the Teaching Learning Based 

Optimization algorithm [2].  

Many architectures and algorithms have been proposed to accelerate the CHT 

algorithm [4]. One of these methods is on a Field Programmable Gate Array (FPGA), an 

embedded platform that has risen in popularity as a method to produce accelerated 

hardware products. In most recent works, Kumar et al. proposed a memory efficient CHT 

implementation on an FPGA for the implementation for iris localization. It utilizes 

320x240 sized images and an assortment of 1D and 2D accumulator arrays to find circle 

centers and reduce the memory required resulting in fast processing times. It also 

investigated that to make the circle detection more accurate the image must be 

preprocessed to reduce false edges before applying CHT [11]. 

While the section has discussed several existing CHT architectures, with a focus on 

FPGA, they can be modified and implemented on HLS. This allows for a for quick 

production of Intellectual Property (IP) cores for embedded systems that can speed up 

advanced algorithms and accurately measure the speed and memory usage of the 

implementation. Further work would require minimal work to the structure of code and 

algorithm instead of the hardware design achieving similar results to its counterparts.  
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Chapter 3: Circle Detection 

Image processing contains several steps to prepare the image for detection. Images 

must be enhanced, or features must be first extracted from the image itself. In this section, 

we describe the steps required to extract features necessary for the CHT algorithm to detect 

circles. Many of the preprocessor steps are implemented using OpenCV for Python and 

xfOpenCV for Vivado HLS as they are already optimized. However, the hardware 

implementation is discussed in the text. As a first step, the input images of size MxN are 

converted to the gray intensities.  

3.1 Circle Detection Procedure 

First, color images assumed to be of the size 320x240 have been converted to gray scale 

for the sake of the runtime saving without any considerable loss of accuracy. The conversion is 

performed by using an approximation of the actual color conversion equation (1). 

𝐼 =  .2989𝑅 + .5870𝐵 + .1140𝐵 (1) 

Changing the weights to powers of two for more efficient calculation result in (2).  

𝐼 =  .25𝑅 + .50𝐺 + .25𝐵 (2)  

 The image is then converted to an AXI4 stream, implemented by Vivado as a 

communication protocol between the processor, IP cores, and memory. Finally, the AXI4 stream 

of the image is then converted to a single channel matrix to begin processing. 

 Pre-processing before the CHT algorithm is performed as discussed. First, the Gaussian 

5x5 blur filter is applied using a kernel size of 5x5. The actual value of the edge depends on the 

magnitude of the gradient. The pixels with relatively high gradient values are considered an edge 
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point. This step is critical for further application of the transform; therefore, the threshold value 

is a parameter to be adjusted interactively or selected for the application. This value should be 

chosen carefully on a project basis. If the threshold is too low, many edge points will be found, 

including duplicates around the actual edge due to the natural image blur. This may be caused by 

the low contrast surrounding edges or objects of similar colors and intensities. On the other hand, 

very high threshold values can cause many edge points to be left behind. The edge points are the 

input values for the CHT; therefore, the more edges present the larger amount of memory to be 

consumed, adversely affecting the resources and the speed of the algorithm. If the threshold is 

too high, it will make detecting circles more difficult.  

The image goes through the CHT algorithm and an accumulator with all the votes is 

created for a range of radii. The range of the radii depend on the application and is limited by the 

amount of memory available described in later chapters. The visualization of the circle is done 

by looping through the accumulator over a kernel selecting the maximum value across the 

different radii. If the max value is above the threshold then the points are plotted in the image 

space creating an artificial circle over the image.  

3.2 Gaussian filter 

In a real word environment, images are not expected to be of perfect quality. In other 

words, the images are noisy. Charge-Couple Devices (CCD) imaging is known to have noise of 

various types (due to the camera heat and the electronic noise). It is modelled generally as an 

Additive White Gaussian Noise (AWGN). The Gaussian filter enhances the image by convolving 

the image window with the “bell-shape” Gaussian function that smoothens the noise. This allows 

the input into the Sobel Edge Detector to have a lower noise impact, and thus spurious edges due 
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to the noise are reduced. Also, a certain amount of blur reduces the chance of edges created by 

small details, such as texture and small objects, to be taken out of further processing. A kernel 

size of 5x5 and a 𝜎 = .8 were chosen, as it allowed for the best results from the end-result 

quality in our experiments.  

 Given the kernel, the smoothing is performed by convolving the filter with image 

pixels and producing a 5x5 window of image pixels in which the central pixel value is a 

sum of products divided by the normalization constant. The row and column margins are 

not processed. Alternatively, one can process the margins by padding with zeroes or values 

of neighboring pixels outside the boundaries of the image. For the xfOpenCV library 

function, the implementation replaces the floating-point arithmetic typically used with 

fixed point arithmetic using look-up tables (LUT) for multiplication. Fig 1 shows a 

comparison of results obtained by the edge detector and thresholding with and without the 

Gaussian filter.  

 

 

 

Fig 1. Noisy Image (Left) Edge Detector without filter (Center) Edge Detector with Filter (Right) 
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3.3 Sobel Edge Detection 

 Edge detection is a preliminary step in most methods in which the outline of 

objects is needed. This is especially crucial in the implementation of Hough Transform 

algorithms. In certain cases, the edge detection may be done during preprocessing in the 

FPGA Programmable Subsystem (PS) and pipelined to the Programmable Logic (PL) for 

further processing. This mainly applies to solutions in which memory is more of a concern 

than the speed. By applying Sobel Edge Detection, it will allow the CHT to find edges of 

the circle to vote on. 

The Vivado HLS 2019 suite provides several functions of OpenCV libraries, which 

includes xfOpenCV Sobel Edge Detection library function solution that is used in this 

work. This operation uses a 3x3 mask for calculating vertical and horizontal gradients as 

the sum of 3 pixels on the left and the right, as well as the difference of sums on the top 3 

and the bottom 3 pixels, weighted for normalization. 

The convolutions are shown in (1) and (2) in which Gx and Gy are the derivatives in 

the horizontal and vertical directions, respectively, and A is the 2-dimensional matrix of 

intensity values in a 3x3 window of the enhanced Gaussian image.  

𝐺𝑥 = [
+1 0 −1
+2 0 −2
+1 0 −1

]  (1) 

𝐺𝑦 = [
+1 +2 +1
0 0 0

−1 −2 −1
] (2) 

 At each point in the image, the approximation of the total gradient can be combined 

normally using (3). 
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𝐺 =  √𝐺𝑥
2 + 𝐺𝑦

2 (3) 

 However, taking the square root of an equation would require a lot of hardware and 

time. A function implemented by xfOpenCV takes a weighted sum in which both 

derivatives are weighted equally simplifying to (4).  

𝐺 = |𝐺𝑥| + |𝐺𝑦| (4) 

Fig 2 shows the results of the horizontal gradient (left), the vertical gradient 

(middle), and the weighted sum of the two (right). One can argue that a more sophisticated 

edge detector, which eliminates duplicate edges and considers only connected points to 

report edges, such as Canny edge detector, would result in more significant edge detection. 

However, for the sake of the acceleration of the overall algorithm, we do not consider it in 

this work.  

 

 

Fig 2. Sobel in the horizontal direction (Left) Sobel in the vertical direction (Center) Sobel summed 

together (Right)  
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3.4 Thresholding  

Thresholding is performed by Vivado HLS’s xfOpenCV library as well. The goal 

of thresholding is to ensure that only pixels above a certain threshold are selected creating 

a completely binary image. This also helps eliminate thick or false edges created by the 

Sobel Edge Detection. Thick edges could be further eliminated by using a morphological 

filter. The step function shown in (5) describes the thresholding used to discriminate 

between edge and non-edge pixels.  

 

 𝑑𝑠𝑡(𝐼) = {
𝑚𝑎𝑥𝑣𝑎𝑙

0
𝑖𝑓 𝑠𝑟𝑐(𝐼) > 𝑡ℎ𝑟𝑒𝑠ℎ

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   (5) 

 

For visualization, the edge points are displayed as white (value is 255) on a black 

background. This is a regular image binarization procedure required before the CHT is 

performed. The threshold needed depends on the image and may need to be adjusted per 

application. A threshold of 35 is used to result in Fig 3, which was found experimentally.  
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Fig 3. Thresholding in Python (Left) Thresholding in Vivado HLS (Right) 

 

 

3.5 Circle Hough Transform  

The Hough Transform utilizes the contour points resulting from edge detection and 

uses a voting process to detect patterns of points in binary image data. It was first patented 

by Paul Hough in 1962 and later suggested by Duda and Hart as a method which uses the 

polar coordinate representation of the line length, 𝜌 and orientation, 𝜃, of the normal vector 

to the line from the origin of the image [8]. The length of the line can be derived as shown 

in (6) in which x and y represent a coordinate pixel on the image.  

𝜌 =  𝑥 𝑐𝑜𝑠(𝜃)  + 𝑦 𝑠𝑖𝑛(𝜃)  (6) 

These polar coordinates can be visualized in Fig 4 as a relationship to (x,y). 
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Fig 4. Relationship between (x,y) [11] 

 

 

The method has then been adapted to detect parabolas and ellipses. For this work, the 

focus is on detecting circles with the CHT algorithm. The CHT implemented in this work 

consists of three parts. First, the image is scanned for the edges found after Gaussian 

smoothing and thresholding for edge detection. Then, circles of varying radii on the 

detected edges are calculated and accumulated in a bin in the parameter space. Finally, the 

accumulator array is iterated in windowed sections at a time to locate the local maxima and 

only draw the circle’s maximum value whose center is above the threshold. 

The principles for the CHT are as follows. The general equation of a circle is as 

follows: 

(𝑥 − 𝑎)2  +  (𝑏 − 𝑦)2  =  𝑟2 (7) 

 

Using the basics of trigonometry and a given radius, any point on a circle can be 

calculated by (8) and (9). 
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𝑎 = 𝑥 −  𝑅𝑐𝑜𝑠(𝑡) (8) 

𝑏 = 𝑦 −  𝑅𝑠𝑖𝑛(𝑡) (9) 

 

Where t is changes from 0 to 360 degrees and (a,b) are any one point around the circle of 

radius R centered at (x,y). Fig 5 shows the derivation of (8) and (9) using the unit circle and the 

Pythagorean Theorem. Knowing the center (x,y) and the radius, any circle can be drawn from 

those equations. 

 

 

Fig 5. Using Pythagorean Theorem to find a point on a circle 

 

 

Fig 6 shows points found within the edges of a circle. A blueprint of a circle is created 

around that point edge and the value of the pixels found are “voted” and incremented in an 

accumulator array the size of the image. Once the algorithm parses through the entire image, the 
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points with the most votes denote the existence of the center of a circle within the image at a 

given radius.  

 

 

Fig 6. Points in geometric space (left) and points in parametric space (right) [11] 

 

 

Although there are CORDIC algorithms for calculating many trigonometric functions, the 

decision is made to calculate sin and cos function by the simple look-up. This allows for 

reduction of the number of cycles taken by the iterative nature of CORDIC. Instead, two arrays 

were created for storing the calculations for every sin and cos values from 0 to 360 degrees. 

Reducing the amount of iterations by using a different incremental value can speed up the 

algorithm but reduce the accuracy of the circles detected and how they are visually drawn. 

In most cases, the actual radius of the circle is not known. This is an additional, but 

necessary parameter when detecting circles of varied radii which adds complexity to the 

algorithm. As seen in Fig 7, adding an unknown radius adds a third dimension to the 
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accumulator that keeps track of the votes at different radii thereby increasing the memory 

required. Knowing the radii of the circles in the imagery would greatly decrease the use of 

memory needed. An extensive search can be implemented without iterating through each radius 

by changing the increment variable.  

 

 

 

 

 

Fig 7. Multiple circles in the parameter space drawing at different radii form a cone [11] 

 

 

In the CHT voting algorithm, first, a 3D accumulator array the size of the image and 

of the number of radii must be initialized with zeroes. Then, look-up table arrays for every 
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angle from 0 to 360 degrees of sin and cos are initialized. The CHT algorithm below 

iterates through every pixel coordinate within the image bounds. If an edge was found, 

multiple circles of a range of radii are iterated, each incrementing the voting accumulator 

array. 

 

 

Algorithm 2.1 Circle Hough Transform Voting Algorithm 

1: Initialize: accum [Rows][Cols][Radius] = 0 

Initialize: sin [] and cos [] loop up table arrays for every angle n from 0 to 360 degrees 

2: for each x in Row do 

3:   for each y in Cols do 

4:      if cell(x,y) != 0 then //Look for edge 

5:       for each r in Radius do 

6:         for each 𝑛 ∈ (0,360) do  

7:          b = y – r * sin[n]  

8:          a = x – r * cos[n] 

9:          if a 𝜖 (Rows, Cols) and b 𝜖 (Rows, Cols) then 

10:            accum[x][y][r] += 1 //Voting 

11:          end if 

12:         end for 

13:       end for 

14:      end if 

15:    end for 

16:   end for 

17: end for  

 

 

 After the accumulator array is filled and each radius is accounted for, the algorithm 

searches and selects the highest vote in the accumulator array within a section of the image. 

Depending on the performance of the edge detection procedure, many centers can be detected 

causing false detections. To mitigate this, two methods are utilized. First, a threshold is set to 
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allow only votes higher than that threshold to be counted as centers. However, this could be 

insufficient because the centers for different radii could still be present. In this implementation of 

the CHT algorithm, a window is used to traverse through the accumulator array at different radii 

and select only the local maximum for that window.  
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If the maximum value passes the selected threshold, then a circle center is registered in that 

section of the image. This makes it so that if a “voted” accumulation point did surpass the 

threshold that only the circle with the most votes in that section is used to visualize the circle in 

Algorithm 2.2 Circle Hough Transform Selection Algorithm 

Require: Kernel Size 𝐾 > 0 is the size of the window to search through; Circle Threshold 

C is the threshold required to consider a vote a pixel. I_Dst(Rows,Cols) is the destination 

image. 

1: Initialize pixel which will keep track of the highest vote for the pixel in the 

accumulator array 

Initialize x0,y0,r0 which will keep track of the index of the highest voted pixel 

Initialize temp which will temporarily hold the highest vote  

2: for each x in Row do 

3:   for each y in Cols do 

4:    pixel = 0, temp = 0  

5:    for each i in K do 

6:      for each k in K do 

7:       for each r in Radius do 

8:         temp = accum[x+i][y+j][r] 

9:         if temp > pixel then 

10:           pixel = temp 

11:           x0 = x+i 

12:           y0 = y+j 

13:           r0 = r 

14:        end if 

15:       end for 

16:     end for 

17:      if 𝑝𝑖𝑥𝑒𝑙 > 𝐶 then  

18:       for each 𝑛 ∈ (0,360) do  

19:         b = y0 – r0 * sin[n]  

20:         a = x0 – r0 * cos[n] 

21:         if a and b 𝜖 (Rows, Cols) then 

22:           I_Dst(a,b) = 255  

23:         end if 

24:       end for 

25:      end if 

26:    end for 

27:   end for 

28: end for  
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(a) 

(b) 

(c) 

the image. The size of the window would depend on the range of radii. Fig 8 demonstrates the 

results of the CHT implementation. 
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Fig 8. (a) Original Image (b) HLS implementation of Circle Hough Transform (c) Python 

implementation of Circle Hough Transform 

 

 

3.6 HLS Implementation  

Reprogrammable FPGA based designs offer the design flexibility and low power 

implementation of hardware acceleration options compared to ASIC and GPUs. HLS allows the 

compilation of synthesizing circuits directly from the high-level languages, such as C and C++ 

codes. Images can be converted to an AXI4 stream which is Vivado’s communication protocol 

between the processor, Intellectual Property (IP) cores, and memory. This includes AXI4-Stream 

Video which is a subset of the streaming protocol specifically designed for the transportation of 

video frames. This greatly increases the speed of the development for software and hardware 

engineers to implement and make changes to IP cores designed for fabric.  

 Optimization options and tools only available with a hardware implementation can be 

used to improve the performance of the algorithm that would not be available in Python. For 

example, PRAGMA compiler directives are used for controlling the type of processing, unrolling 

the loops, pipelining, partitioning, and reshaping the arrays for attaining parallel and pipelined 

architectures. This means that some steps inside loops can be performed within the same clock 

cycle as others thereby reducing the latency. The Gaussian Filter, Sobel Edge Detection, and 

Thresholding have already been optimized by Xilinx’s xfOpenCV library for embedded systems. 

Two functions were implemented for the CHT algorithm that utilize the pipelining tools. 

First, the CircularVoting function initializes the accumulator array and scans the image of edges 
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at different radii to create an array of “votes”. The array has been completely partitioned in the 

third dimension, which splits the array into its individual elements for faster access. With the 

help of PRAGMAS, in Fig 9 the LOOPVOTE is pipelined. This means that the next (a,b) points 

can be calculated at an earlier time than that of the next circle being calculated. The ability to 

pipeline is a matter of dependencies. An 8-bit variable called votes was created to temporarily 

store the current vote form BRAM before updating the value since reading and writing the 

memory at the same time would cause a data hazard due to dependency that would prevent the 

loop from being pipelined.  
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01    LOOPR:for(ap_uint<10> r =R_MIN; r<R_MAX; r+=R_INCREMENT){ 
02#pragma HLS LOOP_TRIPCOUNT min=0 max=100 
03        row_index = 0; 
04        LOOPX:for(ap_uint<10> x = 0; x < height; x++ ){ 
05#pragma HLS LOOP_TRIPCOUNT min=1 max=ROWS 
06            XF_PTNAME(DEPTH) img_pixel_val; 
07            LOOPY:for(ap_uint<10> y = 0; y < width; y++){ 
08#pragma HLS LOOP_TRIPCOUNT min=1 max=COLS 
09#pragma HLS DEPENDENCE  array inter false 
10#pragma HLS LOOP_FLATTEN off 
11                img_pixel_val = _src_mat.read(row_index); // Reading 

next pixel 
12                if(img_pixel_val != 0) //Found Edge 
13                { 
14                    LOOPVOTE:for(ap_uint<10> n = 0; n < ANGLEN; n+=AN-

GLE_INCREMENT ){ 
15#pragma HLS LOOP_TRIPCOUNT min=0 max=360 
16#pragma HLS PIPELINE 
17                        b = y - r *  sinval[n]; 
18                        a = x - r * cosval[n]; 
19                        if(a >= 0 && a < height && b >= 0 && b < 

width){ 
20                            ap_uint<8> r_index = (r-R_MIN)/R_INCRE-

MENT; 
21                            votes = accum[a][b][r_index]; 
22                            votes = votes + 1; 
23                            accum[a][b][r_index] = votes; 
24                        } 
25                    }//END LOOPVOTE 
26                } 
27                row_index = row_index + 1; 
28            }//END LOOPY 
29        }//END LOOPX 
30    }//END LOOPR 
  

Fig 9. CircleVoting Function Implementation 

 

The results of pipelining can be analyzed using Vivado’s HLS Analysis tool. By inserting 

a LOOP_TRIPCOUNT to for loops inside the code, Vivado can estimate the latency required to 

complete the loop for variable number of iterations. Table 1 shows the latency results and the 

loops that were pipelined for the CircularVoting function. Without pipelining the max latency is 

almost more than half compared to pipelining. This latency measures the number of clock cycles 
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required for the function to compute all output values. LOOPR and LOOPVOTE have also been 

flattened together automatically to reduce timing. 

 

 

W/ 

Pipelining 

 

(a) 

W/O 

Pipelining 

 

(b) 

Table 1. Pipelining comparison for CircularVoting  

 

 

The second function, CircularSorting(), iterates through the array and finds whether a 

point is above the threshold. For every (x,y) in the image a window searches for the maximum 

value as it is done in Selection Sort. If there is a center that passes the CIRCLE_THRESHOLD, it 

is drawn.  
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01  LOOPX2:for(ap_uint<10> x = 0; x < height-KERNEL_SIZE; x+= KERNEL_SIZE){ 
02 #pragma HLS LOOP_TRIPCOUNT min=1 max=ROWS 
03      XF_PTNAME(DEPTH) img_pixel_val; 
04      LOOPY2:for(ap_uint<10> y = 0; y < width-KERNEL_SIZE; y+= KERNEL_SIZE){ 
05 #pragma HLS LOOP_TRIPCOUNT min=1 max=COLS 
06 #pragma HLS LOOP_FLATTEN off 
07          // Find the local maximum 
08          pixel = 0; 
09          temp = 0; 
10          LOOPi:for(ap_uint<13> i = 0; i < KERNEL_SIZE; i++){ 
11 #pragma HLS LOOP_TRIPCOUNT min=1 max=ROWS 
12              LOOPj:for(ap_uint<13> j=0; j< KERNEL_SIZE; j++){ 
13 #pragma HLS LOOP_TRIPCOUNT min=1 max=COLS 
14 #pragma HLS PIPELINE 
15                  LOOPR:for(ap_uint<13> r=R_MIN; r<R_MAX; r+=R_INCREMENT){ 
16 #pragma HLS LOOP_TRIPCOUNT min=1 max=100 
17                      ap_uint<8> r_test = (r-R_MIN)/R_INCREMENT; 
18                      ap_uint<10> x_i = x+i; 
19                      ap_uint<10> y_j = y+j; 
20                      temp = accum[x_i][y_j][r_test]; 
21  
22                      if(temp > pixel){ 
23                          pixel = temp; 
24                          x0 = x_i; 
25                          y0 = y_j; 
26                          r0 = r; 
27                      } 
28                  }//END LOOPR 
29              }//End LOOPI 
30          }//END LOOPJ 
31          if(pixel >= CIRCLE_THRESHOLD){ 
32              LOOPDRAW:for(ap_uint<10> n = 0; n < ANGLEN; n+= ANGLE_INCREMENT 

){ 
33 #pragma HLS LOOP_TRIPCOUNT min=0 max=360 
34 #pragma HLS PIPELINE 
35                  b = y0 - r0 * sinval[n]; 
36                  a = x0 - r0 * cosval[n]; 
37                  if(a >= 0 && a < height && b >= 0 && b < width){ 
38                      row_index = a*width + b; 
39                      _dst_mat.write(row_index, 255); 
40                  } 
41              }//END LOOPDRAW 
42          } 
43      }//END LOOPY 
44  }//END LOOPX 

 

Fig 10. CircularSorting Function Implementation 
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Again, the loops searching for the maximum value within the accumulator array and the 

drawing of the circles in the array have been pipelined.  

 

 

W/ 

Pipelining 

 

(a) 

W/O 

Pipelining 

 

(b) 
Table 2. Pipelining comparison for CircularSelection 

 

 

The synthesized circuit can then be packaged as an IP core and exported for the use in the 

Vivado IDE for integration with other cores and the PS. The C code is converted into a 

Hardware-Description language (HDL) such as Verilog. The tool allows to generate the HDL 

design modules. 
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Chapter 4: Experiments and Discussion 

4.1 Results 

The subjective quality of the outcome is evaluated by observing the results. The 

objective quality is measured by comparing the circle centers found by software and 

hardware, respectively. The hardware implementation is produced using the testbench 

code. The accuracy of the algorithm using the HLS is evaluated by performing the same 

steps taken using Python OpenCV on a PC and comparing the results. The Python script 

was created to replicate the algorithm for comparison on a i5-9600k CPU @ 3.70GHz and 

16 Gb of Ram on Windows 10.  

 Multiple images were explored using the Python and the Vivado HLS algorithms. 

Limitations and results of processing some of the images will be presented. The parameters 

used for the processing are provided per each solution. ThreshVal is the value used for 

thresholding in the preprocessing step. MaxKernelSize refers to the window size used to 

search for the max votes in the accumulator. R_Range is the radius range to search through 

where [R_Min, R_Max]. R_increment describes the iterator incrementation value used. 

Circle_Threshold is the allowed value for a max value from the accumulator array to be 

considered a circle. 

Experiments 1, 2, 3 (Table 3) are examples used for searching circles with different 

ranges of radii. Searching for a wide range of circle sizes has several different limitations. The 

main issue is the memory requirement. Since HLS has a limited amount of BRAM, only a small 

search range can be used. If a broad range is used, a larger R_increment is needed to reduce the 

accumulator array size. This, however, can miss circles whose radius lies in between the 
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increments causing inaccuracies in the data, such those in experiment 1 in which a circle was 

missed. The radius range should be set to an optimal value on an application to application basis 

as shown in experiment 2 in which the radius range and the kernel are limited to the size of the 

circles to detect. Moreover, the greater number of radii that need to be searched, the more time 

the algorithm will take as it must calculate a circle at each edge for every image.  

 

 

# Original Python Vivado HLS  

1 

(a) 
 

(b) 
 

(c) 

 ThreshVal = 65, MaxKernelSize = 70, R_Range = [4,60], R_increment = 4 

Circle_Threshold = 160 

2 

 
(d) 

 
(e) 

 
(f) 

 ThreshVal = 65, MaxKernelSize = 10, R_Range = [10,20], R_increment = 1, 

Circle_Threshold = 180 
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3 

 
(g) 

 
(h) 

 
(i) 

 ThreshVal = 35, MaxKernelSize = 50, R_Range = [20,80], R_increment = 4 

Circle_Threshold = 130 

Table 3. Experiments 1, 2, 3. Images for testing assorted sizes. 

 

 

Experiment 4 (Table 4) is an example of an application of the CHT on iris detection for 

the eye tracking and iris scanning. This can be used for real time solutions on an embedded 

platform. However, a limitation arises when trying to locate both the iris and the pupil. Since the 

pupil sits in the direct center of the eye, its center lies in the same location or approximately 

close to the same center as the iris. Typically, the larger radius will take precedence over the 

smaller because more pixel edges will cause a larger vote for that radius within similar areas.  

 

 

 

 

 

 



 

29 

 

 

 

# Original Python Vivado HLS  

4 

 
(a) 

 
(b) 

 
(c) 

 ThreshVal = 30, MaxKernelSize = 50, R_Range = [50,62], R_increment = 4 

Circle_Threshold = 210 

Table 4. Experiment 4 Iris Detection 

 

 

Autonomous driving has become a key point of study in many different fields. The 

application has strict timing requirements and must be implemented on embedded systems. In 

Experiments 5, 6, and 7 (Table 5) different common detections made for autonomous driving are 

explored highlighting the importance of the ability to implement a circle detection algorithm on 

an embedded system. This application can be used for bicycle counting on the roads, road sign 

detection and detecting of cars (garage or on the streets). 
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# Original Python Vivado HLS  

5 

 
(a) 

 
(b) 

 
(c) 

 ThreshVal = 85, MaxKernelSize = 100, R_Range = [50,60], R_increment = 2 

Circle_Threshold = 130 

6 

 
(d) 

 
(e) 

 
(f) 

 ThreshVal = 72, MaxKernelSize = 50, R_Range = [48,50], R_increment = 1, 

Circle_Threshold = 96 

7 

 
(g) 

 
(h) 

 
(i) 

 ThreshVal = 120, MaxKernelSize = 30, R_Range = [15,20], R_increment = 1, 

Circle_Threshold = 180 

 

Table 5. Experiments 5, 6, 7. Autonomous Driving applications. 
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4.2 Results Performance 

To evaluate the performance of the results the following detection metrics were 

used: True Positive (TP), an object is present in the ground truth (GT) and the experiment; 

False Positive (FP), an object was present in the experiment but not in the GT; and False 

Negative (FN), an object is present in the GT, but not in the experiment. Using (12), the 

Detection Rate (DR), which describes the number of true positives relative to the sum of 

the true positives and the false negatives, can be calculated to measure the percentage of 

true targets detected [1]. 

𝐷𝑅 =
𝐹𝑃

(𝐹𝑃+𝑇𝑁)
 (12) 

The results for each experiment are shown in the table below. 

 

 

 

 

 

 

 

  Python Vivado HLS 

# TP  FN FP DR TP FN FP DR 

1 0.875 0.125 0 87.5% 0.875 0.125 0 87.5% 

2 1 0 0 100.0% 0.982143 0.017857 0.214286 98.2% 

3 0.9 0.1 0.3 90.0% 0.9 0.1 0.4 90.0% 

4 1 0 0 100.0% 1 0 0 100.0% 

5 1 0 0 100.0% 1 0 0 100.0% 

6 1 0 1 100.0% 1 0 1 100.0% 

7 1 0 0 100.0% 1 0 0 100.0% 
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Table 6. Detection Metric Results 

 

 

Overall, the results demonstrate a high DR for both the Vivado HLS and Python 

implementations when each is compared to the original image with an average of 96.5% 

and 96.7%, respectively. This means that the CHT implementation can be used as an 

efficient tool for the detection of circles. The algorithm did not perform as well when there 

was a large range of radii to search for, such as in the third experiment, and when many 

edges in the background caused inaccurate false positives, illustrated in experiment 6.  

One of the main reasons that the two solutions would yield different results is that 

the approximations at different steps of implementations made to account for speed and 

memory are affected when targeting an embedded platform. If detection could have been 

performed after application of more sophisticated algorithms for edge detection, such as in 

Canny Edge Detection, one could expect a better result. The Vivado HLS resultant images 

drew less than perfect (more pixelated) circles compared to the Python solution since it 

used a smaller range of angles to visualize them. The effects of this can be seen when 

taking the absolute difference between the two images (Fig 11).  
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Fig 11. HLS Result (Left) Python Result (Center) Absolute Difference (Right) 

 

 

4.3 Timing Analysis 

Timing of the algorithm varies greatly on the amount of edges detected and the radius 

count. For each pixel in an edge, the CHT algorithm must find a circle for each radius in the 

radius range. Vivado provides an estimate of the latency given the parameters described in this 

work for the run time of the algorithm on the targeted system (UltraScale+ ZCU106 board) at 

100MHz. This report is shown in Fig 12 for experiment 1 in Table 4Error! Reference source 

not found. 
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Fig 12. Timing and Latency report from Vivado HLS. Pipelined (Left) Not Pipelined (Right) 

 

 

Comparison between the two platforms for experiment 3 is shown in Table 7. As 

tabulated, the minimum and maximum values are the same for the Python PC 

implementation referred to in the beginning of the results as we can measure the time 

elapsed between the entire process. However, Vivado HLS only provides an estimate of the 

time it would take. The results show a clear difference even in the worst-case scenario 

between a software implementation versus an embedded one. Timing would vary on the 

loops required to iterate through the different radii. 

 

 

Platform Time Analysis min (seconds) Time Analysis max (seconds) 

Vivado HLS .0364 8.354 

Python  5.69 86.71 

Difference (%) 99.36 90.37 

Table 7. Platform Timing Analysis 
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4.4 Memory analysis 

The biggest issue with the Hough Transform is the large accumulation of votes for each pixel 

and consequently the large memory. The design shows 582 of the BRAM_18k is mainly used to 

handle the voting array, 8 DSP48E for arithmetic operations, 2857 Flip Flops (FF), and 9994 

Look Up Tables (LUT) in Fig 13 for experiment 3. 

 

 

 

Fig 13. Memory usage of entire application provided by Vivado HLS  

 

 

Large image sizes and high amount of edges increase the BRAM usage, which is why a 

relatively low image size and a relatively high threshold value is used for detection. 

Therefore, only 8-bit banks are needed. Fig 14 shows an experiment that 15 instances were 

created of 38 BRAM_18K. In this case the array is an 8-bit array of 320x240 which is 

76800 words and a radius of 15. The reading and writing of the BRAM are implemented 

using a true dual-port RAM with the control for both read and write on both ports. This 
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allows for a smaller number of cycles for reading the memory but also increases the 

amount of BRAM needed. 

 

 

 

Fig 14. Memory usage of entire application provided by Vivado HLS 

 

 

 

After Synthesis, the project can be exported, and the real timing and routing of the design can 

be measured. Fig 15 shows the actual resources used required for implementation if placed in a 

Vivado project. The results tend to use more BRAM but optimizes the resource allocation in FFs 

and LUTs. 
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Fig 15. Export output usage for targeted device IP core 
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Chapter 5: Conclusion 

5.1 Limitations 

When working on embedded platforms there will always be a tradeoff between 

memory, speed, and the accuracy. As discussed in the experiments, there are several 

limitations of implementing the Circle Hough Transform. The most critical issue is a large 

amount of memory needed for data storage. When searching a broad range of radii, the 

need for BRAM greatly increases. If larger images are needed, the size of the BRAM could 

be a bottleneck and the solution is to use the external memory (SDRAM), which will 

increase the latency. If images have too many edges, the voting array implementation is 

limited to an 8-bit counter. Many scenarios need to be considered when using this 

implementation to a specific application. However, the design turns out to be highly 

advantageous where speed is a concern.  

5.2 Recommendation 

To improve the algorithm, a more efficient edge detection algorithm would need to 

be implemented into the HLS solution. Algorithms such as Harris or Canny Edge detection 

could provide more edges to count during the accumulation process. Fig 16 is an 

experimental result using one test that could be used for autonomous driving detection 

using Canny in Python instead of Sobel Edge detection.  
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Fig 16. Python Canny Edge Recommendation 

 

 

After some improvements have been made, the future of this work would be to 

implement the exported HDL core into an embedded system and test it using either pre-

loaded images or real-time video from a camera. Furthermore, not every range of radii can 

be searched and is limited by the size of the image being processed. It would be most 

beneficial to know the exact radius being searched by preprocessing the image and 

predetermining the parameters for the best performance.  

The Gaussian Blur has been optimized by the xfOpenCv but could also be further 

improved by implementing shifts. The sum of products can be implemented by MAC (multiply 

accumulate) or calculated in parallel using 24 full adders. This can be further optimized using the 

hierarchy of Carry-save adders. The actual kernel weights are approximated using powers of two 

instead of the floating-point numbers in the actual 5x5 Gaussian kernel below. 
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0.003765 0.015019 0.023792 0.015019 0.003765 

0.015019 0.059912 0.094907 0.059912 0.015019 

0.023792 0.094907 0.150342 0.094907 0.023792 

0.015019 0.059912 0.094907 0.059912 0.015019 

0.003765 0.015019 0.023792 0.015019 0.003765 
Table 8. Actual Gaussian Filter Kernel 

 

 

 1 1 2 1 1 

 1 4 8 4 1 

1/84 x 2 8 16 8 2 

 1 4 8 4 1 

 1 1 2 1 1 
Table 9. Integer approximation of Gaussian Filter for the circuit implementation 

 

 

The result is divided once by the normalization constant which is the sum of all 

weights in 5x5. This is 84 to keep the output range within the actual range of pixel values 

and is an integer division which can be implemented by a parallel array divider (no 

remainder).  

5.3 Conclusions 

In this work we have investigated and designed the circuit for the implementation of 

Circle Hough Transform. The design has been performed in Vivado’s High Level 

Synthesis targeting the UltraScale+ ZCU106 board. The analysis demonstrates a significant 
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speed up factor of 85.4% using pipelining, which is proceeded by loop unrolling and array 

partitioning. While this solution sacrifices some accuracy compared to its Python 

implementation, it performs at the accelerated speeds. The accelerator can be used as a part 

or a stand-alone product (IP) for detecting circles for a variety of applications, wherein this 

type of processing is an end product or an intermediate step for the analysis including iris 

detection for scanning and subsequent analysis, detecting bicycles and cars on the roads, 

and many more other exciting tasks. 
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