

A CIRCLE HOUGH TRANSFORM IMPLEMENTATION USING HIGH-LEVEL

SYNTHESIS

By

Carlos Lemus

Bachelor of Computer Engineering

University of Nevada Las Vegas

2018

A thesis submitted in partial fulfillment

of the requirements for the

Master of Science in Engineering - Electrical Engineering

Department of Electrical and Computer Engineering

Howard R. Hughes College of Engineering

The Graduate College

University of Nevada, Las Vegas

December 2020

ii

Thesis Approval

The Graduate College

The University of Nevada, Las Vegas

November 24, 2020

This thesis prepared by

Carlos Lemus

entitled

A Circle Hough Transform Implementation Using High-Level Synthesis

is approved in partial fulfillment of the requirements for the degree of

Master of Science in Engineering - Electrical Engineering

Department of Electrical and Computer Engineering

Emma Regentova, Ph.D. Kathryn Hausbeck Korgan, Ph.D.
Examination Committee Chair Graduate College Dean

Venkatesan Muthukumar, Ph.D.
Examination Committee Member

Mei Yang, Ph.D.
Examination Committee Member

Yoohwan Kim, Ph.D.
Graduate College Faculty Representative

iii

Abstract

Circle Hough Transform (CHT) has found applications in biometrics, robotics, and image

analysis. In this work, the focus is the development of a Field Programmable Gate Array

(FPGA) based accelerator that performs a series of procedures and results in circle detection.

The design is performed using Vivado High-Level Synthesis (HLS) tools and targeted for a

Zynq UltraScale+ ZCU106. The implementation includes the following procedures:

Gaussian filter, Sobel edge operator, thresholding, and finally the CHT algorithm. The

performance is evaluated based on the execution time as compared to the software (Python

code) execution and the analysis tools provided by Vivado HLS tool. The accuracy of

detection is evaluated due to the approximation done for the sake of faster execution. The

CHT requires a large amount of memory for its implementation, and thus the overall resource

utilization is to be optimized. In this work we evaluate both the speed (time) and the number

of logical blocks and memory components required for implementation. The core of the work

is the efficient implementation of the Circle Hough Transform using High-Level Synthesis.

Keywords: Circle Hough Transform · High-Level Synthesis · Circle Detection · Field

Programmable Array

iv

Acknowledgments

First, I would like to thank Dr. Regentova for being an incredible mentor and a

pillar of support throughout my entire collegiate career. It has been a long journey to get to

where I am at right now and it is because of her help and guidance that I have been able to

accomplish my goals.

I would also like to thank my friends and family for being a constant source of

encouragement. Particularly, my friends Brandon and Prentyce for letting me pick their

brains to workout solutions during this process. Finally, I would like to give an incredibly

special thanks to my parents, Axel and Lissette, and my sister, Daniela, for keeping me on

track and being the reason that I have made it this far.

Thank you

Carlos Lemus

University of Nevada Las Vegas,

December 2020

v

Table of Contents

Acknowledgments iv

List of Figures vii

Chapter 1: Introduction 1

Chapter 2: Related Works 3

Chapter 3: Circle Detection 5

3.1 Circle Detection Procedure 5

3.2 Gaussian filter 6

3.3 Sobel Edge Detection 8

3.4 Thresholding 10

3.5 Circle Hough Transform 11

3.6 HLS Implementation 20

Chapter 4: Experiments and Discussion 26

4.1 Results 26

4.2 Results Performance 31

4.3 Timing Analysis 33

4.4 Memory analysis 35

Chapter 5: Conclusion 38

5.1 Limitations 38

5.2 Recommendation 38

5.3 Conclusions 40

References 42

Curriculum Vitae 43

vi

List of Tables

Table 1. Pipelining comparison for CircularVoting 23

Table 2. Pipelining comparison for CircularSelection 25

Table 3. Experiments 1,2, 3. Images for testing assorted sizes. 28

Table 4. Experiment 4 Iris Detection 29

Table 5. Experiments 5,6,7. Autonomous Driving applications. 30

Table 6. Detection Metric Results 32

Table 7. Platform Timing Analysis 34

Table 8. Actual Gaussian Filter Kernel 40

Table 9. Integer approximation of Gaussian Filter for the circuit implementation 40

vii

List of Figures

Fig 1. Noisy Image (Left) Edge Detector without filter (Center) Edge Detector with Filter

(Right) 7

Fig 2. Sobel in the horizontal direction (Left) Sobel in the vertical direction (Center) Sobel

summed together (Right) 9

Fig 3. Thresholding in Python (Left) Thresholding in Vivado HLS (Right) 11

Fig 4. Relationship between (x,y) [10] 12

Fig 5. Using Pythagorean theorem to find a point on a circle 13

Fig 6. Points in geometric space (left) and points in parametric space (right) [10] 14

Fig 7. Multiple circles in the parameter space drawing at different radii form a cone [10] 15

Fig 8. (a) Original Image (b) HLS implementation of Circle Hough Transform (c) Python

implementation of Circle Hough Transform 20

Fig 9. CircleVoting Function Implementation 22

Fig 10. CircularSorting Function Implementation 24

Fig 11. HLS Result (Left) Python Result (Center) Absolute Difference (Right) 33

Fig 12. Timing and Latency report from Vivado HLS. Pipelined (Left) Not Pipelined

(Right) 34

Fig 13. Memory usage of entire application provided by Vivado HLS 35

Fig 14. Memory usage of entire application provided by Vivado HLS 36

Fig 15. Export output usage for targeted device IP core 37

Fig 16. Python Canny Edge Recommendation 39

1

Chapter 1: Introduction

Automatic circle detection is an important part of extracting information in computer

vision. Circle Hough Transform (CHT) is one of the most popular algorithms for circle detection

due to its tolerance to noise. It has been used in various fields including biometrics, robotics, and

mobile applications.

This work proposes a circle detection implementation of the CHT algorithm using

Vivado High Level Synthesis (HLS), an Integrated Development Environment (IDE). The

tool provided by Xilinx allows for automated compilation of high-level language code (i.e.,

C, C++) to hardware development languages, such as VHDL or Verilog. Cores can be

synthesized and integrated using Vivado Design Suite to be utilized in embedded

applications. In this study, we target the Zynq UltraScale+ ZCU106 development board

because of its high-performance speed and resources, such as Look Up Tables (LUT) and

Processor-less Block Ram (BRAM).

A Gaussian filter, Sobel Detection, and thresholding procedures are utilized as

preliminary steps to automatically detect circles in imagery. All three of the functions mentioned

have been implemented by Xilinx in an xfOpenCV library similar to that of OpenCV. However,

these functions have been accelerated using methods of parallelism only available to hardware,

such as unrolling of loops, pipelining, and partitioning and reshaping arrays to improve speed

and memory.

 The speed that Programmable Logic (PL) brings to this step can then be coupled with

procedures on the Processing System (PS) to perform more complex operations, such as

execution of machine learning techniques and use of the CHT as a part of its post-processing

2

procedures. In other words, as a component of the whole. The CHT algorithm implemented in

this work is not one that can be found in the xfOpenCV library. In this case, we explore the

accuracy and performance of the high-level synthesis algorithm as the groundwork of a larger

project. This can later be implemented on an FPGA using real-time video and software co-design

to accelerate circle detection methods for embedded applications.

The rest of the work is organized as follows: Chapter 2 discusses the related work.

Chapter 3 describes the proposed CHT implementation and the circle detection process. Chapter

4 describes the experiments and results. Finally, the work is concluded in Chapter 5.

3

Chapter 2: Related Works

There have been several applications of the CHT algorithm that take advantage of its

parallelism and result in real-time solutions. Some mobile devices which implement the CHT

algorithm have been developed to accurately segment the iris in the biometrics field [6,10].

These designs are in demand so that they can be easily integrated into mobile personal or

commercial applications and connected with other hardware. In these applications the hardware

implementation is the only solution, such as one that is embedded into the iris detection and scan

for security. The problems, such as detecting wheels and road signs [4], are among just a few for

mobile applications. This excels over a software implementation as embedded solutions almost

always provide a real-time performance upgrade.

There have been several different methods proposed for effectively detecting circles.

Methods based on the CHT are widely used due to their effectiveness, however, it requires huge

computational and memory requirements. Some have sought to improve this with new

implementations such as using an incremental CHT (ICHT) and a CORDIC algorithm that

utilizes the parallel properties to decrease computation time and manage resources. Djekoune et

al. presented a method of reusing the previously computed circle point coordinate values to

derive the next circle point removing the trigonometric functions needed during the CHT voting

process [3]. This greatly reduces the computing time required to achieve CHT.

 Other works have shown that a gradient of the circles can be used instead of the original

method of using trigonometric functions for the implementation of CHT. Chen et al. [7] With

the rising popularity of machine learning methods, studies have also shown ways to detect

4

circles, such as using a population-based system based on the Teaching Learning Based

Optimization algorithm [2].

Many architectures and algorithms have been proposed to accelerate the CHT

algorithm [4]. One of these methods is on a Field Programmable Gate Array (FPGA), an

embedded platform that has risen in popularity as a method to produce accelerated

hardware products. In most recent works, Kumar et al. proposed a memory efficient CHT

implementation on an FPGA for the implementation for iris localization. It utilizes

320x240 sized images and an assortment of 1D and 2D accumulator arrays to find circle

centers and reduce the memory required resulting in fast processing times. It also

investigated that to make the circle detection more accurate the image must be

preprocessed to reduce false edges before applying CHT [11].

While the section has discussed several existing CHT architectures, with a focus on

FPGA, they can be modified and implemented on HLS. This allows for a for quick

production of Intellectual Property (IP) cores for embedded systems that can speed up

advanced algorithms and accurately measure the speed and memory usage of the

implementation. Further work would require minimal work to the structure of code and

algorithm instead of the hardware design achieving similar results to its counterparts.

5

Chapter 3: Circle Detection

Image processing contains several steps to prepare the image for detection. Images

must be enhanced, or features must be first extracted from the image itself. In this section,

we describe the steps required to extract features necessary for the CHT algorithm to detect

circles. Many of the preprocessor steps are implemented using OpenCV for Python and

xfOpenCV for Vivado HLS as they are already optimized. However, the hardware

implementation is discussed in the text. As a first step, the input images of size MxN are

converted to the gray intensities.

3.1 Circle Detection Procedure

First, color images assumed to be of the size 320x240 have been converted to gray scale

for the sake of the runtime saving without any considerable loss of accuracy. The conversion is

performed by using an approximation of the actual color conversion equation (1).

𝐼 = .2989𝑅 + .5870𝐵 + .1140𝐵 (1)

Changing the weights to powers of two for more efficient calculation result in (2).

𝐼 = .25𝑅 + .50𝐺 + .25𝐵 (2)

 The image is then converted to an AXI4 stream, implemented by Vivado as a

communication protocol between the processor, IP cores, and memory. Finally, the AXI4 stream

of the image is then converted to a single channel matrix to begin processing.

 Pre-processing before the CHT algorithm is performed as discussed. First, the Gaussian

5x5 blur filter is applied using a kernel size of 5x5. The actual value of the edge depends on the

magnitude of the gradient. The pixels with relatively high gradient values are considered an edge

6

point. This step is critical for further application of the transform; therefore, the threshold value

is a parameter to be adjusted interactively or selected for the application. This value should be

chosen carefully on a project basis. If the threshold is too low, many edge points will be found,

including duplicates around the actual edge due to the natural image blur. This may be caused by

the low contrast surrounding edges or objects of similar colors and intensities. On the other hand,

very high threshold values can cause many edge points to be left behind. The edge points are the

input values for the CHT; therefore, the more edges present the larger amount of memory to be

consumed, adversely affecting the resources and the speed of the algorithm. If the threshold is

too high, it will make detecting circles more difficult.

The image goes through the CHT algorithm and an accumulator with all the votes is

created for a range of radii. The range of the radii depend on the application and is limited by the

amount of memory available described in later chapters. The visualization of the circle is done

by looping through the accumulator over a kernel selecting the maximum value across the

different radii. If the max value is above the threshold then the points are plotted in the image

space creating an artificial circle over the image.

3.2 Gaussian filter

In a real word environment, images are not expected to be of perfect quality. In other

words, the images are noisy. Charge-Couple Devices (CCD) imaging is known to have noise of

various types (due to the camera heat and the electronic noise). It is modelled generally as an

Additive White Gaussian Noise (AWGN). The Gaussian filter enhances the image by convolving

the image window with the “bell-shape” Gaussian function that smoothens the noise. This allows

the input into the Sobel Edge Detector to have a lower noise impact, and thus spurious edges due

7

to the noise are reduced. Also, a certain amount of blur reduces the chance of edges created by

small details, such as texture and small objects, to be taken out of further processing. A kernel

size of 5x5 and a 𝜎 = .8 were chosen, as it allowed for the best results from the end-result

quality in our experiments.

 Given the kernel, the smoothing is performed by convolving the filter with image

pixels and producing a 5x5 window of image pixels in which the central pixel value is a

sum of products divided by the normalization constant. The row and column margins are

not processed. Alternatively, one can process the margins by padding with zeroes or values

of neighboring pixels outside the boundaries of the image. For the xfOpenCV library

function, the implementation replaces the floating-point arithmetic typically used with

fixed point arithmetic using look-up tables (LUT) for multiplication. Fig 1 shows a

comparison of results obtained by the edge detector and thresholding with and without the

Gaussian filter.

Fig 1. Noisy Image (Left) Edge Detector without filter (Center) Edge Detector with Filter (Right)

8

3.3 Sobel Edge Detection

 Edge detection is a preliminary step in most methods in which the outline of

objects is needed. This is especially crucial in the implementation of Hough Transform

algorithms. In certain cases, the edge detection may be done during preprocessing in the

FPGA Programmable Subsystem (PS) and pipelined to the Programmable Logic (PL) for

further processing. This mainly applies to solutions in which memory is more of a concern

than the speed. By applying Sobel Edge Detection, it will allow the CHT to find edges of

the circle to vote on.

The Vivado HLS 2019 suite provides several functions of OpenCV libraries, which

includes xfOpenCV Sobel Edge Detection library function solution that is used in this

work. This operation uses a 3x3 mask for calculating vertical and horizontal gradients as

the sum of 3 pixels on the left and the right, as well as the difference of sums on the top 3

and the bottom 3 pixels, weighted for normalization.

The convolutions are shown in (1) and (2) in which Gx and Gy are the derivatives in

the horizontal and vertical directions, respectively, and A is the 2-dimensional matrix of

intensity values in a 3x3 window of the enhanced Gaussian image.

𝐺𝑥 = [
+1 0 −1
+2 0 −2
+1 0 −1

] (1)

𝐺𝑦 = [
+1 +2 +1
0 0 0

−1 −2 −1
] (2)

 At each point in the image, the approximation of the total gradient can be combined

normally using (3).

9

𝐺 = √𝐺𝑥
2 + 𝐺𝑦

2 (3)

 However, taking the square root of an equation would require a lot of hardware and

time. A function implemented by xfOpenCV takes a weighted sum in which both

derivatives are weighted equally simplifying to (4).

𝐺 = |𝐺𝑥| + |𝐺𝑦| (4)

Fig 2 shows the results of the horizontal gradient (left), the vertical gradient

(middle), and the weighted sum of the two (right). One can argue that a more sophisticated

edge detector, which eliminates duplicate edges and considers only connected points to

report edges, such as Canny edge detector, would result in more significant edge detection.

However, for the sake of the acceleration of the overall algorithm, we do not consider it in

this work.

Fig 2. Sobel in the horizontal direction (Left) Sobel in the vertical direction (Center) Sobel summed

together (Right)

10

3.4 Thresholding

Thresholding is performed by Vivado HLS’s xfOpenCV library as well. The goal

of thresholding is to ensure that only pixels above a certain threshold are selected creating

a completely binary image. This also helps eliminate thick or false edges created by the

Sobel Edge Detection. Thick edges could be further eliminated by using a morphological

filter. The step function shown in (5) describes the thresholding used to discriminate

between edge and non-edge pixels.

 𝑑𝑠𝑡(𝐼) = {
𝑚𝑎𝑥𝑣𝑎𝑙

0
𝑖𝑓 𝑠𝑟𝑐(𝐼) > 𝑡ℎ𝑟𝑒𝑠ℎ

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (5)

For visualization, the edge points are displayed as white (value is 255) on a black

background. This is a regular image binarization procedure required before the CHT is

performed. The threshold needed depends on the image and may need to be adjusted per

application. A threshold of 35 is used to result in Fig 3, which was found experimentally.

11

Fig 3. Thresholding in Python (Left) Thresholding in Vivado HLS (Right)

3.5 Circle Hough Transform

The Hough Transform utilizes the contour points resulting from edge detection and

uses a voting process to detect patterns of points in binary image data. It was first patented

by Paul Hough in 1962 and later suggested by Duda and Hart as a method which uses the

polar coordinate representation of the line length, 𝜌 and orientation, 𝜃, of the normal vector

to the line from the origin of the image [8]. The length of the line can be derived as shown

in (6) in which x and y represent a coordinate pixel on the image.

𝜌 = 𝑥 𝑐𝑜𝑠(𝜃) + 𝑦 𝑠𝑖𝑛(𝜃) (6)

These polar coordinates can be visualized in Fig 4 as a relationship to (x,y).

12

Fig 4. Relationship between (x,y) [11]

The method has then been adapted to detect parabolas and ellipses. For this work, the

focus is on detecting circles with the CHT algorithm. The CHT implemented in this work

consists of three parts. First, the image is scanned for the edges found after Gaussian

smoothing and thresholding for edge detection. Then, circles of varying radii on the

detected edges are calculated and accumulated in a bin in the parameter space. Finally, the

accumulator array is iterated in windowed sections at a time to locate the local maxima and

only draw the circle’s maximum value whose center is above the threshold.

The principles for the CHT are as follows. The general equation of a circle is as

follows:

(𝑥 − 𝑎)2 + (𝑏 − 𝑦)2 = 𝑟2 (7)

Using the basics of trigonometry and a given radius, any point on a circle can be

calculated by (8) and (9).

13

𝑎 = 𝑥 − 𝑅𝑐𝑜𝑠(𝑡) (8)

𝑏 = 𝑦 − 𝑅𝑠𝑖𝑛(𝑡) (9)

Where t is changes from 0 to 360 degrees and (a,b) are any one point around the circle of

radius R centered at (x,y). Fig 5 shows the derivation of (8) and (9) using the unit circle and the

Pythagorean Theorem. Knowing the center (x,y) and the radius, any circle can be drawn from

those equations.

Fig 5. Using Pythagorean Theorem to find a point on a circle

Fig 6 shows points found within the edges of a circle. A blueprint of a circle is created

around that point edge and the value of the pixels found are “voted” and incremented in an

accumulator array the size of the image. Once the algorithm parses through the entire image, the

14

points with the most votes denote the existence of the center of a circle within the image at a

given radius.

Fig 6. Points in geometric space (left) and points in parametric space (right) [11]

Although there are CORDIC algorithms for calculating many trigonometric functions, the

decision is made to calculate sin and cos function by the simple look-up. This allows for

reduction of the number of cycles taken by the iterative nature of CORDIC. Instead, two arrays

were created for storing the calculations for every sin and cos values from 0 to 360 degrees.

Reducing the amount of iterations by using a different incremental value can speed up the

algorithm but reduce the accuracy of the circles detected and how they are visually drawn.

In most cases, the actual radius of the circle is not known. This is an additional, but

necessary parameter when detecting circles of varied radii which adds complexity to the

algorithm. As seen in Fig 7, adding an unknown radius adds a third dimension to the

15

accumulator that keeps track of the votes at different radii thereby increasing the memory

required. Knowing the radii of the circles in the imagery would greatly decrease the use of

memory needed. An extensive search can be implemented without iterating through each radius

by changing the increment variable.

Fig 7. Multiple circles in the parameter space drawing at different radii form a cone [11]

In the CHT voting algorithm, first, a 3D accumulator array the size of the image and

of the number of radii must be initialized with zeroes. Then, look-up table arrays for every

16

angle from 0 to 360 degrees of sin and cos are initialized. The CHT algorithm below

iterates through every pixel coordinate within the image bounds. If an edge was found,

multiple circles of a range of radii are iterated, each incrementing the voting accumulator

array.

Algorithm 2.1 Circle Hough Transform Voting Algorithm

1: Initialize: accum [Rows][Cols][Radius] = 0

Initialize: sin [] and cos [] loop up table arrays for every angle n from 0 to 360 degrees

2: for each x in Row do

3: for each y in Cols do

4: if cell(x,y) != 0 then //Look for edge

5: for each r in Radius do

6: for each 𝑛 ∈ (0,360) do

7: b = y – r * sin[n]

8: a = x – r * cos[n]

9: if a 𝜖 (Rows, Cols) and b 𝜖 (Rows, Cols) then

10: accum[x][y][r] += 1 //Voting

11: end if

12: end for

13: end for

14: end if

15: end for

16: end for

17: end for

 After the accumulator array is filled and each radius is accounted for, the algorithm

searches and selects the highest vote in the accumulator array within a section of the image.

Depending on the performance of the edge detection procedure, many centers can be detected

causing false detections. To mitigate this, two methods are utilized. First, a threshold is set to

17

allow only votes higher than that threshold to be counted as centers. However, this could be

insufficient because the centers for different radii could still be present. In this implementation of

the CHT algorithm, a window is used to traverse through the accumulator array at different radii

and select only the local maximum for that window.

18

If the maximum value passes the selected threshold, then a circle center is registered in that

section of the image. This makes it so that if a “voted” accumulation point did surpass the

threshold that only the circle with the most votes in that section is used to visualize the circle in

Algorithm 2.2 Circle Hough Transform Selection Algorithm

Require: Kernel Size 𝐾 > 0 is the size of the window to search through; Circle Threshold

C is the threshold required to consider a vote a pixel. I_Dst(Rows,Cols) is the destination

image.

1: Initialize pixel which will keep track of the highest vote for the pixel in the

accumulator array

Initialize x0,y0,r0 which will keep track of the index of the highest voted pixel

Initialize temp which will temporarily hold the highest vote

2: for each x in Row do

3: for each y in Cols do

4: pixel = 0, temp = 0

5: for each i in K do

6: for each k in K do

7: for each r in Radius do

8: temp = accum[x+i][y+j][r]

9: if temp > pixel then

10: pixel = temp

11: x0 = x+i

12: y0 = y+j

13: r0 = r

14: end if

15: end for

16: end for

17: if 𝑝𝑖𝑥𝑒𝑙 > 𝐶 then

18: for each 𝑛 ∈ (0,360) do

19: b = y0 – r0 * sin[n]

20: a = x0 – r0 * cos[n]

21: if a and b 𝜖 (Rows, Cols) then

22: I_Dst(a,b) = 255

23: end if

24: end for

25: end if

26: end for

27: end for

28: end for

19

(a)

(b)

(c)

the image. The size of the window would depend on the range of radii. Fig 8 demonstrates the

results of the CHT implementation.

20

Fig 8. (a) Original Image (b) HLS implementation of Circle Hough Transform (c) Python

implementation of Circle Hough Transform

3.6 HLS Implementation

Reprogrammable FPGA based designs offer the design flexibility and low power

implementation of hardware acceleration options compared to ASIC and GPUs. HLS allows the

compilation of synthesizing circuits directly from the high-level languages, such as C and C++

codes. Images can be converted to an AXI4 stream which is Vivado’s communication protocol

between the processor, Intellectual Property (IP) cores, and memory. This includes AXI4-Stream

Video which is a subset of the streaming protocol specifically designed for the transportation of

video frames. This greatly increases the speed of the development for software and hardware

engineers to implement and make changes to IP cores designed for fabric.

 Optimization options and tools only available with a hardware implementation can be

used to improve the performance of the algorithm that would not be available in Python. For

example, PRAGMA compiler directives are used for controlling the type of processing, unrolling

the loops, pipelining, partitioning, and reshaping the arrays for attaining parallel and pipelined

architectures. This means that some steps inside loops can be performed within the same clock

cycle as others thereby reducing the latency. The Gaussian Filter, Sobel Edge Detection, and

Thresholding have already been optimized by Xilinx’s xfOpenCV library for embedded systems.

Two functions were implemented for the CHT algorithm that utilize the pipelining tools.

First, the CircularVoting function initializes the accumulator array and scans the image of edges

21

at different radii to create an array of “votes”. The array has been completely partitioned in the

third dimension, which splits the array into its individual elements for faster access. With the

help of PRAGMAS, in Fig 9 the LOOPVOTE is pipelined. This means that the next (a,b) points

can be calculated at an earlier time than that of the next circle being calculated. The ability to

pipeline is a matter of dependencies. An 8-bit variable called votes was created to temporarily

store the current vote form BRAM before updating the value since reading and writing the

memory at the same time would cause a data hazard due to dependency that would prevent the

loop from being pipelined.

22

01 LOOPR:for(ap_uint<10> r =R_MIN; r<R_MAX; r+=R_INCREMENT){
02#pragma HLS LOOP_TRIPCOUNT min=0 max=100
03 row_index = 0;
04 LOOPX:for(ap_uint<10> x = 0; x < height; x++){
05#pragma HLS LOOP_TRIPCOUNT min=1 max=ROWS
06 XF_PTNAME(DEPTH) img_pixel_val;
07 LOOPY:for(ap_uint<10> y = 0; y < width; y++){
08#pragma HLS LOOP_TRIPCOUNT min=1 max=COLS
09#pragma HLS DEPENDENCE array inter false
10#pragma HLS LOOP_FLATTEN off
11 img_pixel_val = _src_mat.read(row_index); // Reading

next pixel
12 if(img_pixel_val != 0) //Found Edge
13 {
14 LOOPVOTE:for(ap_uint<10> n = 0; n < ANGLEN; n+=AN-

GLE_INCREMENT){
15#pragma HLS LOOP_TRIPCOUNT min=0 max=360
16#pragma HLS PIPELINE
17 b = y - r * sinval[n];
18 a = x - r * cosval[n];
19 if(a >= 0 && a < height && b >= 0 && b <

width){
20 ap_uint<8> r_index = (r-R_MIN)/R_INCRE-

MENT;
21 votes = accum[a][b][r_index];
22 votes = votes + 1;
23 accum[a][b][r_index] = votes;
24 }
25 }//END LOOPVOTE
26 }
27 row_index = row_index + 1;
28 }//END LOOPY
29 }//END LOOPX
30 }//END LOOPR

Fig 9. CircleVoting Function Implementation

The results of pipelining can be analyzed using Vivado’s HLS Analysis tool. By inserting

a LOOP_TRIPCOUNT to for loops inside the code, Vivado can estimate the latency required to

complete the loop for variable number of iterations. Table 1 shows the latency results and the

loops that were pipelined for the CircularVoting function. Without pipelining the max latency is

almost more than half compared to pipelining. This latency measures the number of clock cycles

23

required for the function to compute all output values. LOOPR and LOOPVOTE have also been

flattened together automatically to reduce timing.

W/

Pipelining

(a)

W/O

Pipelining

(b)

Table 1. Pipelining comparison for CircularVoting

The second function, CircularSorting(), iterates through the array and finds whether a

point is above the threshold. For every (x,y) in the image a window searches for the maximum

value as it is done in Selection Sort. If there is a center that passes the CIRCLE_THRESHOLD, it

is drawn.

24

01 LOOPX2:for(ap_uint<10> x = 0; x < height-KERNEL_SIZE; x+= KERNEL_SIZE){
02 #pragma HLS LOOP_TRIPCOUNT min=1 max=ROWS
03 XF_PTNAME(DEPTH) img_pixel_val;
04 LOOPY2:for(ap_uint<10> y = 0; y < width-KERNEL_SIZE; y+= KERNEL_SIZE){
05 #pragma HLS LOOP_TRIPCOUNT min=1 max=COLS
06 #pragma HLS LOOP_FLATTEN off
07 // Find the local maximum
08 pixel = 0;
09 temp = 0;
10 LOOPi:for(ap_uint<13> i = 0; i < KERNEL_SIZE; i++){
11 #pragma HLS LOOP_TRIPCOUNT min=1 max=ROWS
12 LOOPj:for(ap_uint<13> j=0; j< KERNEL_SIZE; j++){
13 #pragma HLS LOOP_TRIPCOUNT min=1 max=COLS
14 #pragma HLS PIPELINE
15 LOOPR:for(ap_uint<13> r=R_MIN; r<R_MAX; r+=R_INCREMENT){
16 #pragma HLS LOOP_TRIPCOUNT min=1 max=100
17 ap_uint<8> r_test = (r-R_MIN)/R_INCREMENT;
18 ap_uint<10> x_i = x+i;
19 ap_uint<10> y_j = y+j;
20 temp = accum[x_i][y_j][r_test];
21
22 if(temp > pixel){
23 pixel = temp;
24 x0 = x_i;
25 y0 = y_j;
26 r0 = r;
27 }
28 }//END LOOPR
29 }//End LOOPI
30 }//END LOOPJ
31 if(pixel >= CIRCLE_THRESHOLD){
32 LOOPDRAW:for(ap_uint<10> n = 0; n < ANGLEN; n+= ANGLE_INCREMENT

){
33 #pragma HLS LOOP_TRIPCOUNT min=0 max=360
34 #pragma HLS PIPELINE
35 b = y0 - r0 * sinval[n];
36 a = x0 - r0 * cosval[n];
37 if(a >= 0 && a < height && b >= 0 && b < width){
38 row_index = a*width + b;
39 _dst_mat.write(row_index, 255);
40 }
41 }//END LOOPDRAW
42 }
43 }//END LOOPY
44 }//END LOOPX

Fig 10. CircularSorting Function Implementation

25

Again, the loops searching for the maximum value within the accumulator array and the

drawing of the circles in the array have been pipelined.

W/

Pipelining

(a)

W/O

Pipelining

(b)
Table 2. Pipelining comparison for CircularSelection

The synthesized circuit can then be packaged as an IP core and exported for the use in the

Vivado IDE for integration with other cores and the PS. The C code is converted into a

Hardware-Description language (HDL) such as Verilog. The tool allows to generate the HDL

design modules.

26

Chapter 4: Experiments and Discussion

4.1 Results

The subjective quality of the outcome is evaluated by observing the results. The

objective quality is measured by comparing the circle centers found by software and

hardware, respectively. The hardware implementation is produced using the testbench

code. The accuracy of the algorithm using the HLS is evaluated by performing the same

steps taken using Python OpenCV on a PC and comparing the results. The Python script

was created to replicate the algorithm for comparison on a i5-9600k CPU @ 3.70GHz and

16 Gb of Ram on Windows 10.

 Multiple images were explored using the Python and the Vivado HLS algorithms.

Limitations and results of processing some of the images will be presented. The parameters

used for the processing are provided per each solution. ThreshVal is the value used for

thresholding in the preprocessing step. MaxKernelSize refers to the window size used to

search for the max votes in the accumulator. R_Range is the radius range to search through

where [R_Min, R_Max]. R_increment describes the iterator incrementation value used.

Circle_Threshold is the allowed value for a max value from the accumulator array to be

considered a circle.

Experiments 1, 2, 3 (Table 3) are examples used for searching circles with different

ranges of radii. Searching for a wide range of circle sizes has several different limitations. The

main issue is the memory requirement. Since HLS has a limited amount of BRAM, only a small

search range can be used. If a broad range is used, a larger R_increment is needed to reduce the

accumulator array size. This, however, can miss circles whose radius lies in between the

27

increments causing inaccuracies in the data, such those in experiment 1 in which a circle was

missed. The radius range should be set to an optimal value on an application to application basis

as shown in experiment 2 in which the radius range and the kernel are limited to the size of the

circles to detect. Moreover, the greater number of radii that need to be searched, the more time

the algorithm will take as it must calculate a circle at each edge for every image.

Original Python Vivado HLS

1

(a)

(b)

(c)

 ThreshVal = 65, MaxKernelSize = 70, R_Range = [4,60], R_increment = 4

Circle_Threshold = 160

2

(d)

(e)

(f)

 ThreshVal = 65, MaxKernelSize = 10, R_Range = [10,20], R_increment = 1,

Circle_Threshold = 180

28

3

(g)

(h)

(i)

 ThreshVal = 35, MaxKernelSize = 50, R_Range = [20,80], R_increment = 4

Circle_Threshold = 130

Table 3. Experiments 1, 2, 3. Images for testing assorted sizes.

Experiment 4 (Table 4) is an example of an application of the CHT on iris detection for

the eye tracking and iris scanning. This can be used for real time solutions on an embedded

platform. However, a limitation arises when trying to locate both the iris and the pupil. Since the

pupil sits in the direct center of the eye, its center lies in the same location or approximately

close to the same center as the iris. Typically, the larger radius will take precedence over the

smaller because more pixel edges will cause a larger vote for that radius within similar areas.

29

Original Python Vivado HLS

4

(a)

(b)

(c)

 ThreshVal = 30, MaxKernelSize = 50, R_Range = [50,62], R_increment = 4

Circle_Threshold = 210

Table 4. Experiment 4 Iris Detection

Autonomous driving has become a key point of study in many different fields. The

application has strict timing requirements and must be implemented on embedded systems. In

Experiments 5, 6, and 7 (Table 5) different common detections made for autonomous driving are

explored highlighting the importance of the ability to implement a circle detection algorithm on

an embedded system. This application can be used for bicycle counting on the roads, road sign

detection and detecting of cars (garage or on the streets).

30

Original Python Vivado HLS

5

(a)

(b)

(c)

 ThreshVal = 85, MaxKernelSize = 100, R_Range = [50,60], R_increment = 2

Circle_Threshold = 130

6

(d)

(e)

(f)

 ThreshVal = 72, MaxKernelSize = 50, R_Range = [48,50], R_increment = 1,

Circle_Threshold = 96

7

(g)

(h)

(i)

 ThreshVal = 120, MaxKernelSize = 30, R_Range = [15,20], R_increment = 1,

Circle_Threshold = 180

Table 5. Experiments 5, 6, 7. Autonomous Driving applications.

31

4.2 Results Performance

To evaluate the performance of the results the following detection metrics were

used: True Positive (TP), an object is present in the ground truth (GT) and the experiment;

False Positive (FP), an object was present in the experiment but not in the GT; and False

Negative (FN), an object is present in the GT, but not in the experiment. Using (12), the

Detection Rate (DR), which describes the number of true positives relative to the sum of

the true positives and the false negatives, can be calculated to measure the percentage of

true targets detected [1].

𝐷𝑅 =
𝐹𝑃

(𝐹𝑃+𝑇𝑁)
 (12)

The results for each experiment are shown in the table below.

 Python Vivado HLS

TP FN FP DR TP FN FP DR

1 0.875 0.125 0 87.5% 0.875 0.125 0 87.5%

2 1 0 0 100.0% 0.982143 0.017857 0.214286 98.2%

3 0.9 0.1 0.3 90.0% 0.9 0.1 0.4 90.0%

4 1 0 0 100.0% 1 0 0 100.0%

5 1 0 0 100.0% 1 0 0 100.0%

6 1 0 1 100.0% 1 0 1 100.0%

7 1 0 0 100.0% 1 0 0 100.0%

32

Table 6. Detection Metric Results

Overall, the results demonstrate a high DR for both the Vivado HLS and Python

implementations when each is compared to the original image with an average of 96.5%

and 96.7%, respectively. This means that the CHT implementation can be used as an

efficient tool for the detection of circles. The algorithm did not perform as well when there

was a large range of radii to search for, such as in the third experiment, and when many

edges in the background caused inaccurate false positives, illustrated in experiment 6.

One of the main reasons that the two solutions would yield different results is that

the approximations at different steps of implementations made to account for speed and

memory are affected when targeting an embedded platform. If detection could have been

performed after application of more sophisticated algorithms for edge detection, such as in

Canny Edge Detection, one could expect a better result. The Vivado HLS resultant images

drew less than perfect (more pixelated) circles compared to the Python solution since it

used a smaller range of angles to visualize them. The effects of this can be seen when

taking the absolute difference between the two images (Fig 11).

33

Fig 11. HLS Result (Left) Python Result (Center) Absolute Difference (Right)

4.3 Timing Analysis

Timing of the algorithm varies greatly on the amount of edges detected and the radius

count. For each pixel in an edge, the CHT algorithm must find a circle for each radius in the

radius range. Vivado provides an estimate of the latency given the parameters described in this

work for the run time of the algorithm on the targeted system (UltraScale+ ZCU106 board) at

100MHz. This report is shown in Fig 12 for experiment 1 in Table 4Error! Reference source

not found.

34

Fig 12. Timing and Latency report from Vivado HLS. Pipelined (Left) Not Pipelined (Right)

Comparison between the two platforms for experiment 3 is shown in Table 7. As

tabulated, the minimum and maximum values are the same for the Python PC

implementation referred to in the beginning of the results as we can measure the time

elapsed between the entire process. However, Vivado HLS only provides an estimate of the

time it would take. The results show a clear difference even in the worst-case scenario

between a software implementation versus an embedded one. Timing would vary on the

loops required to iterate through the different radii.

Platform Time Analysis min (seconds) Time Analysis max (seconds)

Vivado HLS .0364 8.354

Python 5.69 86.71

Difference (%) 99.36 90.37

Table 7. Platform Timing Analysis

35

4.4 Memory analysis

The biggest issue with the Hough Transform is the large accumulation of votes for each pixel

and consequently the large memory. The design shows 582 of the BRAM_18k is mainly used to

handle the voting array, 8 DSP48E for arithmetic operations, 2857 Flip Flops (FF), and 9994

Look Up Tables (LUT) in Fig 13 for experiment 3.

Fig 13. Memory usage of entire application provided by Vivado HLS

Large image sizes and high amount of edges increase the BRAM usage, which is why a

relatively low image size and a relatively high threshold value is used for detection.

Therefore, only 8-bit banks are needed. Fig 14 shows an experiment that 15 instances were

created of 38 BRAM_18K. In this case the array is an 8-bit array of 320x240 which is

76800 words and a radius of 15. The reading and writing of the BRAM are implemented

using a true dual-port RAM with the control for both read and write on both ports. This

36

allows for a smaller number of cycles for reading the memory but also increases the

amount of BRAM needed.

Fig 14. Memory usage of entire application provided by Vivado HLS

After Synthesis, the project can be exported, and the real timing and routing of the design can

be measured. Fig 15 shows the actual resources used required for implementation if placed in a

Vivado project. The results tend to use more BRAM but optimizes the resource allocation in FFs

and LUTs.

37

Fig 15. Export output usage for targeted device IP core

38

Chapter 5: Conclusion

5.1 Limitations

When working on embedded platforms there will always be a tradeoff between

memory, speed, and the accuracy. As discussed in the experiments, there are several

limitations of implementing the Circle Hough Transform. The most critical issue is a large

amount of memory needed for data storage. When searching a broad range of radii, the

need for BRAM greatly increases. If larger images are needed, the size of the BRAM could

be a bottleneck and the solution is to use the external memory (SDRAM), which will

increase the latency. If images have too many edges, the voting array implementation is

limited to an 8-bit counter. Many scenarios need to be considered when using this

implementation to a specific application. However, the design turns out to be highly

advantageous where speed is a concern.

5.2 Recommendation

To improve the algorithm, a more efficient edge detection algorithm would need to

be implemented into the HLS solution. Algorithms such as Harris or Canny Edge detection

could provide more edges to count during the accumulation process. Fig 16 is an

experimental result using one test that could be used for autonomous driving detection

using Canny in Python instead of Sobel Edge detection.

39

Fig 16. Python Canny Edge Recommendation

After some improvements have been made, the future of this work would be to

implement the exported HDL core into an embedded system and test it using either pre-

loaded images or real-time video from a camera. Furthermore, not every range of radii can

be searched and is limited by the size of the image being processed. It would be most

beneficial to know the exact radius being searched by preprocessing the image and

predetermining the parameters for the best performance.

The Gaussian Blur has been optimized by the xfOpenCv but could also be further

improved by implementing shifts. The sum of products can be implemented by MAC (multiply

accumulate) or calculated in parallel using 24 full adders. This can be further optimized using the

hierarchy of Carry-save adders. The actual kernel weights are approximated using powers of two

instead of the floating-point numbers in the actual 5x5 Gaussian kernel below.

40

0.003765 0.015019 0.023792 0.015019 0.003765

0.015019 0.059912 0.094907 0.059912 0.015019

0.023792 0.094907 0.150342 0.094907 0.023792

0.015019 0.059912 0.094907 0.059912 0.015019

0.003765 0.015019 0.023792 0.015019 0.003765
Table 8. Actual Gaussian Filter Kernel

 1 1 2 1 1

 1 4 8 4 1

1/84 x 2 8 16 8 2

 1 4 8 4 1

 1 1 2 1 1
Table 9. Integer approximation of Gaussian Filter for the circuit implementation

The result is divided once by the normalization constant which is the sum of all

weights in 5x5. This is 84 to keep the output range within the actual range of pixel values

and is an integer division which can be implemented by a parallel array divider (no

remainder).

5.3 Conclusions

In this work we have investigated and designed the circuit for the implementation of

Circle Hough Transform. The design has been performed in Vivado’s High Level

Synthesis targeting the UltraScale+ ZCU106 board. The analysis demonstrates a significant

41

speed up factor of 85.4% using pipelining, which is proceeded by loop unrolling and array

partitioning. While this solution sacrifices some accuracy compared to its Python

implementation, it performs at the accelerated speeds. The accelerator can be used as a part

or a stand-alone product (IP) for detecting circles for a variety of applications, wherein this

type of processing is an end product or an intermediate step for the analysis including iris

detection for scanning and subsequent analysis, detecting bicycles and cars on the roads,

and many more other exciting tasks.

42

References

1. A. Godil, W. Shackleford, M. Shneier, R. Bostelman, and T. Hong, “Performance

Metrics for Evaluating Object and Human Detection and Tracking Systems,” 2014.

2. A. Lopez-Martinez and F. J. Cuevas, “Automatic circle detection on images using

the Teaching Learning Based Optimization algorithm and gradient analysis,” Applied

Intelligence, vol. 49, no. 5, pp. 2001–2016, 2018.

3. A. O. Djekoune, K. Messaoudi, and K. Amara, “Incremental circle hough transform:

An improved method for circle detection,” Optik, vol. 133, pp. 17–31, 2017.

4. A. Tarik, M. Boussaid, A. Karim, and A. Abdelah, “Improving Road Signs Detection

performance by Combining the Features of Hough Transform and

Texture,” International Journal of Computer Applications, vol. 73, no. 9, pp. 5–9,

2013.

5. F. Ferhat-taleb Alim, K. Messaoudi, S. Seddiki and O. Kerdjidj, "Modified circular

Hough transform using FPGA," 2012 24th International Conference on

Microelectronics (ICM), Algiers, 2012, pp. 1-4, doi: 10.1109/ICM.2012.6471412.

6. J. Avey, “An FPGA-based hardware accelerator for iris segmentation.”

7. L. Wang and L.-Q. Chen, “Concentric circle detection based on chord midpoint

Hough transform,” Journal of Computer Applications, vol. 29, no. 7, pp. 1937–1939,

2009.

8. R. O. Duda, “Use of the Hough transformation to detect lines and curves in

pictures,” Communications of the ACM, 01-Jan-1972.

9. S.-C. Pei and J.-H. Horng, “Circle arc detection based on Hough transform,” Pattern

Recognition Letters, 15-Jul-2002.

10. V. Kumar, A. Asati, and A. Gupta, “Hardware Accelerators for Iris Localization,”

Journal of Signal Processing Systems, vol. 90, no. 4, pp. 655–671, 2017.

11. V. Kumar, A. Asati, and A. Gupta, “Memory-efficient architecture of circle Hough

transform and its FPGA implementation for iris localisation,” Memory-efficient

architecture of circle Hough transform and its FPGA implementation for iris localisation

- IET Journals & Magazine, 2018.

12. X. Chen, L. Lu and Y. Gao, "A new concentric circle detection method based on

Hough transform," 2012 7th International Conference on Computer Science &

Education (ICCSE), Melbourne, VIC, 2012, pp. 753-758, doi:

10.1109/ICCSE.2012.6295182.

43

Curriculum Vitae

Graduate College,

University of Nevada, Las Vegas

Carlos Lemus

Email: carlosslemus@yahoo.com

Degrees:

 Bachelor of Computer Engineering, 2018

 University of Nevada, Las Vegas

Dissertation Title: A Circle Hough Transform Implementation using High Level Synthesis

Dissertation Examination Committee:

 Chairperson, Dr. Emma Regentova, Ph.D.

 Committee Member, Dr. Venkatesan Muthukumar, Ph.D.

 Committee Member, Dr. Mei Yang, Ph.D.

 Graduate Faculty Representative, Dr. Yoohwan Kim, Ph.D.

mailto:carlosslemus@yahoo.com

