/***************************************************************************** * CACTI 7.0 * SOFTWARE LICENSE AGREEMENT * Copyright 2015 Hewlett-Packard Development Company, L.P. * All Rights Reserved * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are * met: redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer; * redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution; * neither the name of the copyright holders nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.” * ***************************************************************************/ #include #include #include #include "io.h" #include "area.h" #include "basic_circuit.h" #include "parameter.h" #include "Ucache.h" #include "nuca.h" #include "crossbar.h" #include "arbiter.h" //#include "highradix.h" #include "TSV.h" #include "memorybus.h" #include "version_cacti.h" #include "extio.h" #include "extio_technology.h" #include "memcad.h" using namespace std; InputParameter::InputParameter() : array_power_gated(false), bitline_floating(false), wl_power_gated(false), cl_power_gated(false), interconect_power_gated(false), power_gating(false), cl_vertical (true) { } /* Parses "cache.cfg" file */ void InputParameter::parse_cfg(const string & in_file) { FILE *fp = fopen(in_file.c_str(), "r"); char line[5000]; char jk[5000]; char temp_var[5000]; if(!fp) { cout << in_file << " is missing!\n"; exit(-1); } while(fscanf(fp, "%[^\n]\n", line) != EOF) { if (!strncmp("-size", line, strlen("-size"))) { sscanf(line, "-size %[(:-~)*]%u", jk, &(cache_sz)); if (g_ip->print_detail_debug) cout << "cache size: " << g_ip->cache_sz << "GB" << endl; continue; } if (!strncmp("-page size", line, strlen("-page size"))) { sscanf(line, "-page size %[(:-~)*]%u", jk, &(page_sz_bits)); continue; } if (!strncmp("-burst length", line, strlen("-burst length"))) { sscanf(line, "-burst %[(:-~)*]%u", jk, &(burst_len)); continue; } if (!strncmp("-internal prefetch width", line, strlen("-internal prefetch width"))) { sscanf(line, "-internal prefetch %[(:-~)*]%u", jk, &(int_prefetch_w)); continue; } if (!strncmp("-block", line, strlen("-block"))) { sscanf(line, "-block size (bytes) %d", &(line_sz)); continue; } if (!strncmp("-associativity", line, strlen("-associativity"))) { sscanf(line, "-associativity %d", &(assoc)); continue; } if (!strncmp("-read-write", line, strlen("-read-write"))) { sscanf(line, "-read-write port %d", &(num_rw_ports)); continue; } if (!strncmp("-exclusive read", line, strlen("exclusive read"))) { sscanf(line, "-exclusive read port %d", &(num_rd_ports)); continue; } if(!strncmp("-exclusive write", line, strlen("-exclusive write"))) { sscanf(line, "-exclusive write port %d", &(num_wr_ports)); continue; } if (!strncmp("-single ended", line, strlen("-single ended"))) { sscanf(line, "-single %[(:-~)*]%d", jk, &(num_se_rd_ports)); continue; } if (!strncmp("-search", line, strlen("-search"))) { sscanf(line, "-search port %d", &(num_search_ports)); continue; } if (!strncmp("-UCA bank", line, strlen("-UCA bank"))) { sscanf(line, "-UCA bank%[((:-~)| )*]%d", jk, &(nbanks)); continue; } if (!strncmp("-technology", line, strlen("-technology"))) { sscanf(line, "-technology (u) %lf", &(F_sz_um)); F_sz_nm = F_sz_um*1000; continue; } if (!strncmp("-output/input", line, strlen("-output/input"))) { sscanf(line, "-output/input bus %[(:-~)*]%d", jk, &(out_w)); continue; } if (!strncmp("-operating temperature", line, strlen("-operating temperature"))) { sscanf(line, "-operating temperature %[(:-~)*]%d", jk, &(temp)); continue; } if (!strncmp("-cache type", line, strlen("-cache type"))) { sscanf(line, "-cache type%[^\"]\"%[^\"]\"", jk, temp_var); if (!strncmp("cache", temp_var, sizeof("cache"))) { is_cache = true; } else { is_cache = false; } if (!strncmp("main memory", temp_var, sizeof("main memory"))) { is_main_mem = true; } else { is_main_mem = false; } if (!strncmp("3D memory or 2D main memory", temp_var, sizeof("3D memory or 2D main memory"))) { is_3d_mem = true; is_main_mem = true; } else { is_3d_mem = false; //is_main_mem = false; } if (g_ip->print_detail_debug) {cout << "io.cc: is_3d_mem = " << is_3d_mem << endl;} if (!strncmp("cam", temp_var, sizeof("cam"))) { pure_cam = true; } else { pure_cam = false; } if (!strncmp("ram", temp_var, sizeof("ram"))) { pure_ram = true; } else { if (!is_main_mem) pure_ram = false; else pure_ram = true; } continue; } if (!strncmp("-print option", line, strlen("-print option"))) { sscanf(line, "-print option%[^\"]\"%[^\"]\"", jk, temp_var); if (!strncmp("debug detail", temp_var, sizeof("debug detail"))) { print_detail_debug = true; } else { print_detail_debug = false; } if (g_ip->print_detail_debug) {cout << "io.cc: print_detail_debug = " << print_detail_debug << endl;} continue; } if (!strncmp("-burst depth", line, strlen("-burst depth"))) { sscanf(line, "-burst %[(:-~)*]%u", jk, &(burst_depth)); continue; } if (!strncmp("-IO width", line, strlen("-IO width"))) { sscanf(line, "-IO %[(:-~)*]%u", jk, &(io_width)); continue; } if (!strncmp("-system frequency", line, strlen("-system frequency"))) { sscanf(line, "-system frequency %[(:-~)*]%u", jk, &(sys_freq_MHz)); if(g_ip->print_detail_debug) cout << "system frequency: " << g_ip->sys_freq_MHz << endl; continue; } if (!strncmp("-stacked die", line, strlen("-stacked die"))) { sscanf(line, "-stacked die %[(:-~)*]%u", jk, &(num_die_3d)); if(g_ip->print_detail_debug) cout << "num_die_3d: " << g_ip->num_die_3d << endl; continue; } if (!strncmp("-partitioning granularity", line, strlen("-partitioning granularity"))) { sscanf(line, "-partitioning %[(:-~)*]%u", jk, &(partition_gran)); if(g_ip->print_detail_debug) cout << "partitioning granularity: " << g_ip->partition_gran << endl; continue; } if (!strncmp("-TSV projection", line, strlen("-TSV projection"))) { sscanf(line, "-TSV %[(:-~)*]%u", jk, &(TSV_proj_type)); if(g_ip->print_detail_debug) cout << "TSV projection: " << g_ip->TSV_proj_type << endl; continue; } //g_ip->print_detail_debug = debug_detail; //g_ip->partition_gran = 1; // --- These two parameters are supposed for bank level partitioning, currently not shown to public g_ip->num_tier_row_sprd = 1; g_ip->num_tier_col_sprd = 1; if (!strncmp("-tag size", line, strlen("-tag size"))) { sscanf(line, "-tag size%[^\"]\"%[^\"]\"", jk, temp_var); if (!strncmp("default", temp_var, sizeof("default"))) { specific_tag = false; tag_w = 42; /* the actual value is calculated * later based on the cache size, bank count, and associativity */ } else { specific_tag = true; sscanf(line, "-tag size (b) %d", &(tag_w)); } continue; } if (!strncmp("-access mode", line, strlen("-access mode"))) { sscanf(line, "-access %[^\"]\"%[^\"]\"", jk, temp_var); if (!strncmp("fast", temp_var, strlen("fast"))) { access_mode = 2; } else if (!strncmp("sequential", temp_var, strlen("sequential"))) { access_mode = 1; } else if(!strncmp("normal", temp_var, strlen("normal"))) { access_mode = 0; } else { cout << "ERROR: Invalid access mode!\n"; exit(0); } continue; } if (!strncmp("-Data array cell type", line, strlen("-Data array cell type"))) { sscanf(line, "-Data array cell type %[^\"]\"%[^\"]\"", jk, temp_var); if(!strncmp("itrs-hp", temp_var, strlen("itrs-hp"))) { data_arr_ram_cell_tech_type = 0; } else if(!strncmp("itrs-lstp", temp_var, strlen("itrs-lstp"))) { data_arr_ram_cell_tech_type = 1; } else if(!strncmp("itrs-lop", temp_var, strlen("itrs-lop"))) { data_arr_ram_cell_tech_type = 2; } else if(!strncmp("lp-dram", temp_var, strlen("lp-dram"))) { data_arr_ram_cell_tech_type = 3; } else if(!strncmp("comm-dram", temp_var, strlen("comm-dram"))) { data_arr_ram_cell_tech_type = 4; } else { cout << "ERROR: Invalid type!\n"; exit(0); } continue; } if (!strncmp("-Data array peripheral type", line, strlen("-Data array peripheral type"))) { sscanf(line, "-Data array peripheral type %[^\"]\"%[^\"]\"", jk, temp_var); if(!strncmp("itrs-hp", temp_var, strlen("itrs-hp"))) { data_arr_peri_global_tech_type = 0; } else if(!strncmp("itrs-lstp", temp_var, strlen("itrs-lstp"))) { data_arr_peri_global_tech_type = 1; } else if(!strncmp("itrs-lop", temp_var, strlen("itrs-lop"))) { data_arr_peri_global_tech_type = 2; } else { cout << "ERROR: Invalid type!\n"; exit(0); } continue; } if (!strncmp("-Tag array cell type", line, strlen("-Tag array cell type"))) { sscanf(line, "-Tag array cell type %[^\"]\"%[^\"]\"", jk, temp_var); if(!strncmp("itrs-hp", temp_var, strlen("itrs-hp"))) { tag_arr_ram_cell_tech_type = 0; } else if(!strncmp("itrs-lstp", temp_var, strlen("itrs-lstp"))) { tag_arr_ram_cell_tech_type = 1; } else if(!strncmp("itrs-lop", temp_var, strlen("itrs-lop"))) { tag_arr_ram_cell_tech_type = 2; } else if(!strncmp("lp-dram", temp_var, strlen("lp-dram"))) { tag_arr_ram_cell_tech_type = 3; } else if(!strncmp("comm-dram", temp_var, strlen("comm-dram"))) { tag_arr_ram_cell_tech_type = 4; } else { cout << "ERROR: Invalid type!\n"; exit(0); } continue; } if (!strncmp("-Tag array peripheral type", line, strlen("-Tag array peripheral type"))) { sscanf(line, "-Tag array peripheral type %[^\"]\"%[^\"]\"", jk, temp_var); if(!strncmp("itrs-hp", temp_var, strlen("itrs-hp"))) { tag_arr_peri_global_tech_type = 0; } else if(!strncmp("itrs-lstp", temp_var, strlen("itrs-lstp"))) { tag_arr_peri_global_tech_type = 1; } else if(!strncmp("itrs-lop", temp_var, strlen("itrs-lop"))) { tag_arr_peri_global_tech_type = 2; } else { cout << "ERROR: Invalid type!\n"; exit(0); } continue; } if(!strncmp("-design", line, strlen("-design"))) { sscanf(line, "-%[((:-~)| |,)*]%d:%d:%d:%d:%d", jk, &(delay_wt), &(dynamic_power_wt), &(leakage_power_wt), &(cycle_time_wt), &(area_wt)); continue; } if(!strncmp("-deviate", line, strlen("-deviate"))) { sscanf(line, "-%[((:-~)| |,)*]%d:%d:%d:%d:%d", jk, &(delay_dev), &(dynamic_power_dev), &(leakage_power_dev), &(cycle_time_dev), &(area_dev)); continue; } if(!strncmp("-Optimize", line, strlen("-Optimize"))) { sscanf(line, "-Optimize %[^\"]\"%[^\"]\"", jk, temp_var); if(!strncmp("ED^2", temp_var, strlen("ED^2"))) { ed = 2; } else if(!strncmp("ED", temp_var, strlen("ED"))) { ed = 1; } else { ed = 0; } } if(!strncmp("-NUCAdesign", line, strlen("-NUCAdesign"))) { sscanf(line, "-%[((:-~)| |,)*]%d:%d:%d:%d:%d", jk, &(delay_wt_nuca), &(dynamic_power_wt_nuca), &(leakage_power_wt_nuca), &(cycle_time_wt_nuca), &(area_wt_nuca)); continue; } if(!strncmp("-NUCAdeviate", line, strlen("-NUCAdeviate"))) { sscanf(line, "-%[((:-~)| |,)*]%d:%d:%d:%d:%d", jk, &(delay_dev_nuca), &(dynamic_power_dev_nuca), &(leakage_power_dev_nuca), &(cycle_time_dev_nuca), &(area_dev_nuca)); continue; } if(!strncmp("-Cache model", line, strlen("-cache model"))) { sscanf(line, "-Cache model %[^\"]\"%[^\"]\"", jk, temp_var); if (!strncmp("UCA", temp_var, strlen("UCA"))) { nuca = 0; } else { nuca = 1; } continue; } if(!strncmp("-NUCA bank", line, strlen("-NUCA bank"))) { sscanf(line, "-NUCA bank count %d", &(nuca_bank_count)); if (nuca_bank_count != 0) { force_nuca_bank = 1; } continue; } if(!strncmp("-Wire inside mat", line, strlen("-Wire inside mat"))) { sscanf(line, "-Wire%[^\"]\"%[^\"]\"", jk, temp_var); if (!strncmp("global", temp_var, strlen("global"))) { wire_is_mat_type = 2; continue; } else if (!strncmp("local", temp_var, strlen("local"))) { wire_is_mat_type = 0; continue; } else { wire_is_mat_type = 1; continue; } } if(!strncmp("-Wire outside mat", line, strlen("-Wire outside mat"))) { sscanf(line, "-Wire%[^\"]\"%[^\"]\"", jk, temp_var); if (!strncmp("global", temp_var, strlen("global"))) { wire_os_mat_type = 2; } else { wire_os_mat_type = 1; } continue; } if(!strncmp("-Interconnect projection", line, strlen("-Interconnect projection"))) { sscanf(line, "-Interconnect projection%[^\"]\"%[^\"]\"", jk, temp_var); if (!strncmp("aggressive", temp_var, strlen("aggressive"))) { ic_proj_type = 0; } else { ic_proj_type = 1; } continue; } if(!strncmp("-Wire signaling", line, strlen("-wire signaling"))) { sscanf(line, "-Wire%[^\"]\"%[^\"]\"", jk, temp_var); if (!strncmp("default", temp_var, strlen("default"))) { force_wiretype = 0; wt = Global; } else if (!(strncmp("Global_10", temp_var, strlen("Global_10")))) { force_wiretype = 1; wt = Global_10; } else if (!(strncmp("Global_20", temp_var, strlen("Global_20")))) { force_wiretype = 1; wt = Global_20; } else if (!(strncmp("Global_30", temp_var, strlen("Global_30")))) { force_wiretype = 1; wt = Global_30; } else if (!(strncmp("Global_5", temp_var, strlen("Global_5")))) { force_wiretype = 1; wt = Global_5; } else if (!(strncmp("Global", temp_var, strlen("Global")))) { force_wiretype = 1; wt = Global; } else if (!(strncmp("fullswing", temp_var, strlen("fullswing")))) { force_wiretype = 1; wt = Full_swing; } else if (!(strncmp("lowswing", temp_var, strlen("lowswing")))) { force_wiretype = 1; wt = Low_swing; } else { cout << "Unknown wire type!\n"; exit(0); } continue; } if(!strncmp("-Core", line, strlen("-Core"))) { sscanf(line, "-Core count %d\n", &(cores)); if (cores > 16) { printf("No. of cores should be less than 16!\n"); } continue; } if(!strncmp("-Cache level", line, strlen("-Cache level"))) { sscanf(line, "-Cache l%[^\"]\"%[^\"]\"", jk, temp_var); if (!strncmp("L2", temp_var, strlen("L2"))) { cache_level = 0; } else { cache_level = 1; } } if(!strncmp("-Print level", line, strlen("-Print level"))) { sscanf(line, "-Print l%[^\"]\"%[^\"]\"", jk, temp_var); if (!strncmp("DETAILED", temp_var, strlen("DETAILED"))) { print_detail = 1; } else { print_detail = 0; } } if(!strncmp("-Add ECC", line, strlen("-Add ECC"))) { sscanf(line, "-Add ECC %[^\"]\"%[^\"]\"", jk, temp_var); if (!strncmp("true", temp_var, strlen("true"))) { add_ecc_b_ = true; } else { add_ecc_b_ = false; } } if(!strncmp("-CLDriver vertical", line, strlen("-CLDriver vertical"))) { sscanf(line, "-CLDriver vertical %[^\"]\"%[^\"]\"", jk, temp_var); if (!strncmp("true", temp_var, strlen("true"))) { cl_vertical = true; } else { cl_vertical = false; } } if(!strncmp("-Array Power Gating", line, strlen("-Array Power Gating"))) { sscanf(line, "-Array Power Gating %[^\"]\"%[^\"]\"", jk, temp_var); if (!strncmp("true", temp_var, strlen("true"))) { array_power_gated = true; } else { array_power_gated = false; } } if(!strncmp("-Bitline floating", line, strlen("-Bitline floating"))) { sscanf(line, "-Bitline floating %[^\"]\"%[^\"]\"", jk, temp_var); if (!strncmp("true", temp_var, strlen("true"))) { bitline_floating = true; } else { bitline_floating = false; } } if(!strncmp("-WL Power Gating", line, strlen("-WL Power Gating"))) { sscanf(line, "-WL Power Gating %[^\"]\"%[^\"]\"", jk, temp_var); if (!strncmp("true", temp_var, strlen("true"))) { wl_power_gated = true; } else { wl_power_gated = false; } } if(!strncmp("-CL Power Gating", line, strlen("-CL Power Gating"))) { sscanf(line, "-CL Power Gating %[^\"]\"%[^\"]\"", jk, temp_var); if (!strncmp("true", temp_var, strlen("true"))) { cl_power_gated = true; } else { cl_power_gated = false; } } if(!strncmp("-Interconnect Power Gating", line, strlen("-Interconnect Power Gating"))) { sscanf(line, "-Interconnect Power Gating %[^\"]\"%[^\"]\"", jk, temp_var); if (!strncmp("true", temp_var, strlen("true"))) { interconect_power_gated = true; } else { interconect_power_gated = false; } } if(!strncmp("-Power Gating Performance Loss", line, strlen("-Power Gating Performance Loss"))) { sscanf(line, "-Power Gating Performance Loss %lf", &(perfloss)); continue; } if(!strncmp("-Print input parameters", line, strlen("-Print input parameters"))) { sscanf(line, "-Print input %[^\"]\"%[^\"]\"", jk, temp_var); if (!strncmp("true", temp_var, strlen("true"))) { print_input_args = true; } else { print_input_args = false; } } if(!strncmp("-Force cache config", line, strlen("-Force cache config"))) { sscanf(line, "-Force cache %[^\"]\"%[^\"]\"", jk, temp_var); if (!strncmp("true", temp_var, strlen("true"))) { force_cache_config = true; } else { force_cache_config = false; } } if(!strncmp("-Ndbl", line, strlen("-Ndbl"))) { sscanf(line, "-Ndbl %d\n", &(ndbl)); continue; } if(!strncmp("-Ndwl", line, strlen("-Ndwl"))) { sscanf(line, "-Ndwl %d\n", &(ndwl)); continue; } if(!strncmp("-Nspd", line, strlen("-Nspd"))) { sscanf(line, "-Nspd %d\n", &(nspd)); continue; } if(!strncmp("-Ndsam1", line, strlen("-Ndsam1"))) { sscanf(line, "-Ndsam1 %d\n", &(ndsam1)); continue; } if(!strncmp("-Ndsam2", line, strlen("-Ndsam2"))) { sscanf(line, "-Ndsam2 %d\n", &(ndsam2)); continue; } if(!strncmp("-Ndcm", line, strlen("-Ndcm"))) { sscanf(line, "-Ndcm %d\n", &(ndcm)); continue; } // Parameters related to off-chip interconnect if(!strncmp("-dram type", line, strlen("-dram type"))) { sscanf(line, "-dram type%[^\"]\"%[^\"]\"", jk, temp_var); if (!strncmp("DDR3", temp_var, strlen("DDR3"))) { io_type = DDR3; } else if(!strncmp("DDR4", temp_var, strlen("DDR4"))) { io_type = DDR4; } else if(!strncmp("LPDDR2", temp_var, strlen("LPDDR2"))) { io_type = LPDDR2; } else if(!strncmp("WideIO", temp_var, strlen("WideIO"))) { io_type = WideIO; } else if(!strncmp("Low_Swing_Diff", temp_var, strlen("Low_Swing_Diff"))) { io_type = Low_Swing_Diff; } else if(!strncmp("Serial", temp_var, strlen("Serial"))) { io_type = Serial; } else { cout << "Invalid Input for dram type!" << endl; exit(1); } // sscanf(line, "-io_type \"%c\"\n", &(io_type)); } if(!strncmp("-io state", line, strlen("-io state"))) { sscanf(line, "-io state%[^\"]\"%[^\"]\"", jk, temp_var); if (!strncmp("READ", temp_var, strlen("READ"))) { iostate = READ; } else if(!strncmp("WRITE", temp_var, strlen("WRITE"))) { iostate = WRITE; } else if(!strncmp("IDLE", temp_var, strlen("IDLE"))) { iostate = IDLE; } else if(!strncmp("SLEEP", temp_var, strlen("SLEEP"))) { iostate = SLEEP; } else { cout << "Invalid Input for io state!" << endl; exit(1); } //sscanf(line, "-iostate \"%c\"\n", &(iostate)); } if(!strncmp("-addr_timing", line, strlen("-addr_timing"))) { sscanf(line, "-addr_timing %lf", &(addr_timing)); } if(!strncmp("-dram ecc", line, strlen("-dram ecc"))) { sscanf(line, "-dram ecc%[^\"]\"%[^\"]\"", jk, temp_var); if (!strncmp("NO_ECC", temp_var, strlen("NO_ECC"))) { dram_ecc = NO_ECC; } else if(!strncmp("SECDED", temp_var, strlen("SECDED"))) { dram_ecc = SECDED; } else if(!strncmp("CHIP_KILL", temp_var, strlen("CHIP_KILL"))) { dram_ecc = CHIP_KILL; } else { cout << "Invalid Input for dram ecc!" << endl; exit(1); } //sscanf(line, "-dram_ecc \"%c\"\n", &(dram_ecc)); } if(!strncmp("-dram dimm", line, strlen("-dram dimm"))) { sscanf(line, "-dram dimm%[^\"]\"%[^\"]\"", jk, temp_var); if (!strncmp("UDIMM", temp_var, strlen("UDIMM"))) { dram_dimm = UDIMM; } else if(!strncmp("RDIMM", temp_var, strlen("RDIMM"))) { dram_dimm = RDIMM; } else if(!strncmp("LRDIMM", temp_var, strlen("LRDIMM"))) { dram_dimm = LRDIMM; } else { cout << "Invalid Input for dram dimm!" << endl; exit(1); } //sscanf(line, "-dram_ecc \"%c\"\n", &(dram_ecc)); } if(!strncmp("-bus_bw", line, strlen("-bus_bw"))) { sscanf(line, "-bus_bw %lf", &(bus_bw)); } if(!strncmp("-duty_cycle", line, strlen("-duty_cycle"))) { sscanf(line, "-duty_cycle %lf", &(duty_cycle)); } if(!strncmp("-mem_density", line, strlen("-mem_density"))) { sscanf(line, "-mem_density %lf", &(mem_density)); } if(!strncmp("-activity_dq", line, strlen("-activity_dq"))) { sscanf(line, "-activity_dq %lf", &activity_dq); } if(!strncmp("-activity_ca", line, strlen("-activity_ca"))) { sscanf(line, "-activity_ca %lf", &activity_ca); } if(!strncmp("-bus_freq", line, strlen("-bus_freq"))) { sscanf(line, "-bus_freq %lf", &bus_freq); } if(!strncmp("-num_dq", line, strlen("-num_dq"))) { sscanf(line, "-num_dq %d", &num_dq); } if(!strncmp("-num_dqs", line, strlen("-num_dqs"))) { sscanf(line, "-num_dqs %d", &num_dqs); } if(!strncmp("-num_ca", line, strlen("-num_ca"))) { sscanf(line, "-num_ca %d", &num_ca); } if(!strncmp("-num_clk", line, strlen("-num_clk"))) { sscanf(line, "-num_clk %d", &num_clk); if(num_clk<=0) { cout << "num_clk should be greater than zero!\n"; exit(1); } } if(!strncmp("-num_mem_dq", line, strlen("-num_mem_dq"))) { sscanf(line, "-num_mem_dq %d", &num_mem_dq); } if(!strncmp("-mem_data_width", line, strlen("-mem_data_width"))) { sscanf(line, "-mem_data_width %d", &mem_data_width); } // added just for memcad if(!strncmp("-num_bobs", line, strlen("-num_bobs"))) { sscanf(line, "-num_bobs %d", &num_bobs); } if(!strncmp("-capacity", line, strlen("-capacity"))) { sscanf(line, "-capacity %d", &capacity); } if(!strncmp("-num_channels_per_bob", line, strlen("-num_channels_per_bob"))) { sscanf(line, "-num_channels_per_bob %d", &num_channels_per_bob); } if(!strncmp("-first metric", line, strlen("-first metric"))) { sscanf(line, "-first metric%[^\"]\"%[^\"]\"", jk, temp_var); if (!strncmp("Cost", temp_var, strlen("Cost"))) { first_metric = Cost; } else if(!strncmp("Energy", temp_var, strlen("Energy"))) { first_metric = Energy; } else if(!strncmp("Bandwidth", temp_var, strlen("Bandwidth"))) { first_metric = Bandwidth; } else { cout << "Invalid Input for first metric!" << endl; exit(1); } } if(!strncmp("-second metric", line, strlen("-second metric"))) { sscanf(line, "-second metric%[^\"]\"%[^\"]\"", jk, temp_var); if (!strncmp("Cost", temp_var, strlen("Cost"))) { second_metric = Cost; } else if(!strncmp("Energy", temp_var, strlen("Energy"))) { second_metric = Energy; } else if(!strncmp("Bandwidth", temp_var, strlen("Bandwidth"))) { second_metric = Bandwidth; } else { cout << "Invalid Input for second metric!" << endl; exit(1); } } if(!strncmp("-third metric", line, strlen("-third metric"))) { sscanf(line, "-third metric%[^\"]\"%[^\"]\"", jk, temp_var); if (!strncmp("Cost", temp_var, strlen("Cost"))) { third_metric = Cost; } else if(!strncmp("Energy", temp_var, strlen("Energy"))) { third_metric = Energy; } else if(!strncmp("Bandwidth", temp_var, strlen("Bandwidth"))) { third_metric = Bandwidth; } else { cout << "Invalid Input for third metric!" << endl; exit(1); } } if(!strncmp("-DIMM model", line, strlen("-DIMM model"))) { sscanf(line, "-DIMM model%[^\"]\"%[^\"]\"", jk, temp_var); if (!strncmp("JUST_UDIMM", temp_var, strlen("JUST_UDIMM"))) { dimm_model = JUST_UDIMM; } else if(!strncmp("JUST_RDIMM", temp_var, strlen("JUST_RDIMM"))) { dimm_model = JUST_RDIMM; } else if(!strncmp("JUST_LRDIMM", temp_var, strlen("JUST_LRDIMM"))) { dimm_model = JUST_LRDIMM; } else if(!strncmp("ALL", temp_var, strlen("ALL"))) { dimm_model = ALL; } else { cout << "Invalid Input for DIMM model!" << endl; exit(1); } } if(!strncmp("-Low Power Permitted", line, strlen("-Low Power Permitted"))) { sscanf(line, "-Low Power Permitted%[^\"]\"%[^\"]\"", jk, temp_var); if (!strncmp("T", temp_var, strlen("T"))) { low_power_permitted = true; } else if(!strncmp("F", temp_var, strlen("F"))) { low_power_permitted = false; } else { cout << "Invalid Input for Low Power Permitted!" << endl; exit(1); } } if(!strncmp("-load", line, strlen("-load"))) { sscanf(line, "-load %lf", &(load)); } if(!strncmp("-row_buffer_hit_rate", line, strlen("-row_buffer_hit_rate"))) { sscanf(line, "-row_buffer_hit_rate %lf", &(row_buffer_hit_rate)); } if(!strncmp("-rd_2_wr_ratio", line, strlen("-rd_2_wr_ratio"))) { sscanf(line, "-rd_2_wr_ratio %lf", &(rd_2_wr_ratio)); } if(!strncmp("-same_bw_in_bob", line, strlen("-same_bw_in_bob"))) { sscanf(line, "-same_bw_in_bob%[^\"]\"%[^\"]\"", jk, temp_var); if (!strncmp("T", temp_var, strlen("T"))) { same_bw_in_bob = true; } else if(!strncmp("F", temp_var, strlen("F"))) { same_bw_in_bob = false; } else { cout << "Invalid Input for same_bw_in_bob!" << endl; exit(1); } } if(!strncmp("-mirror_in_bob", line, strlen("-mirror_in_bob"))) { sscanf(line, "-mirror_in_bob%[^\"]\"%[^\"]\"", jk, temp_var); if (!strncmp("T", temp_var, strlen("T"))) { mirror_in_bob = true; } else if(!strncmp("F", temp_var, strlen("F"))) { mirror_in_bob = false; } else { cout << "Invalid Input for mirror_in_bob!" << endl; exit(1); } } if(!strncmp("-total_power", line, strlen("-total_power"))) { sscanf(line, "-total_power%[^\"]\"%[^\"]\"", jk, temp_var); if (!strncmp("T", temp_var, strlen("T"))) { total_power = true; } else if(!strncmp("F", temp_var, strlen("F"))) { total_power = false; } else { cout << "Invalid Input for total_power!" << endl; exit(1); } } if(!strncmp("-verbose", line, strlen("-verbose"))) { sscanf(line, "-verbose%[^\"]\"%[^\"]\"", jk, temp_var); if (!strncmp("T", temp_var, strlen("T"))) { verbose = true; } else if(!strncmp("F", temp_var, strlen("F"))) { verbose = false; } else { cout << "Invalid Input for same_bw_in_bob!" << endl; exit(1); } } } rpters_in_htree = true; fclose(fp); } void InputParameter::display_ip() { cout << "Cache size : " << cache_sz << endl; cout << "Block size : " << line_sz << endl; cout << "Associativity : " << assoc << endl; cout << "Read only ports : " << num_rd_ports << endl; cout << "Write only ports : " << num_wr_ports << endl; cout << "Read write ports : " << num_rw_ports << endl; cout << "Single ended read ports : " << num_se_rd_ports << endl; if (fully_assoc||pure_cam) { cout << "Search ports : " << num_search_ports << endl; } cout << "Cache banks (UCA) : " << nbanks << endl; cout << "Technology : " << F_sz_um << endl; cout << "Temperature : " << temp << endl; cout << "Tag size : " << tag_w << endl; if (is_cache) { cout << "array type : " << "Cache" << endl; } if (pure_ram) { cout << "array type : " << "Scratch RAM" << endl; } if (pure_cam) { cout << "array type : " << "CAM" << endl; } cout << "Model as memory : " << is_main_mem << endl; cout << "Model as 3D memory : " << is_3d_mem << endl; cout << "Access mode : " << access_mode << endl; cout << "Data array cell type : " << data_arr_ram_cell_tech_type << endl; cout << "Data array peripheral type : " << data_arr_peri_global_tech_type << endl; cout << "Tag array cell type : " << tag_arr_ram_cell_tech_type << endl; cout << "Tag array peripheral type : " << tag_arr_peri_global_tech_type << endl; cout << "Optimization target : " << ed << endl; cout << "Design objective (UCA wt) : " << delay_wt << " " << dynamic_power_wt << " " << leakage_power_wt << " " << cycle_time_wt << " " << area_wt << endl; cout << "Design objective (UCA dev) : " << delay_dev << " " << dynamic_power_dev << " " << leakage_power_dev << " " << cycle_time_dev << " " << area_dev << endl; if (nuca) { cout << "Cores : " << cores << endl; cout << "Design objective (NUCA wt) : " << delay_wt_nuca << " " << dynamic_power_wt_nuca << " " << leakage_power_wt_nuca << " " << cycle_time_wt_nuca << " " << area_wt_nuca << endl; cout << "Design objective (NUCA dev) : " << delay_dev_nuca << " " << dynamic_power_dev_nuca << " " << leakage_power_dev_nuca << " " << cycle_time_dev_nuca << " " << area_dev_nuca << endl; } cout << "Cache model : " << nuca << endl; cout << "Nuca bank : " << nuca_bank_count << endl; cout << "Wire inside mat : " << wire_is_mat_type << endl; cout << "Wire outside mat : " << wire_os_mat_type << endl; cout << "Interconnect projection : " << ic_proj_type << endl; cout << "Wire signaling : " << force_wiretype << endl; cout << "Print level : " << print_detail << endl; cout << "ECC overhead : " << add_ecc_b_ << endl; cout << "Page size : " << page_sz_bits << endl; cout << "Burst length : " << burst_len << endl; cout << "Internal prefetch width : " << int_prefetch_w << endl; cout << "Force cache config : " << g_ip->force_cache_config << endl; if (g_ip->force_cache_config) { cout << "Ndwl : " << g_ip->ndwl << endl; cout << "Ndbl : " << g_ip->ndbl << endl; cout << "Nspd : " << g_ip->nspd << endl; cout << "Ndcm : " << g_ip->ndcm << endl; cout << "Ndsam1 : " << g_ip->ndsam1 << endl; cout << "Ndsam2 : " << g_ip->ndsam2 << endl; } cout << "Subarray Driver direction : " << g_ip->cl_vertical << endl; // CACTI-I/O cout << "iostate : " ; switch(iostate) { case(READ): cout << "READ" << endl; break; case(WRITE): cout << "WRITE" << endl; break; case(IDLE): cout << "IDLE" << endl; break; case(SLEEP): cout << "SLEEP" << endl; break; default: assert(false); } cout << "dram_ecc : " ; switch(dram_ecc) { case(NO_ECC): cout << "NO_ECC" << endl; break; case(SECDED): cout << "SECDED" << endl; break; case(CHIP_KILL): cout << "CHIP_KILL" << endl; break; default: assert(false); } cout << "io_type : " ; switch(io_type) { case(DDR3): cout << "DDR3" << endl; break; case(DDR4): cout << "DDR4" << endl; break; case(LPDDR2): cout << "LPDDR2" << endl; break; case(WideIO): cout << "WideIO" << endl; break; case(Low_Swing_Diff): cout << "Low_Swing_Diff" << endl; break; default: assert(false); } cout << "dram_dimm : " ; switch(dram_dimm) { case(UDIMM): cout << "UDIMM" << endl; break; case(RDIMM): cout << "RDIMM" << endl; break; case(LRDIMM): cout << "LRDIMM" << endl; break; default: assert(false); } } powerComponents operator+(const powerComponents & x, const powerComponents & y) { powerComponents z; z.dynamic = x.dynamic + y.dynamic; z.leakage = x.leakage + y.leakage; z.gate_leakage = x.gate_leakage + y.gate_leakage; z.short_circuit = x.short_circuit + y.short_circuit; z.longer_channel_leakage = x.longer_channel_leakage + y.longer_channel_leakage; return z; } powerComponents operator*(const powerComponents & x, double const * const y) { powerComponents z; z.dynamic = x.dynamic*y[0]; z.leakage = x.leakage*y[1]; z.gate_leakage = x.gate_leakage*y[2]; z.short_circuit = x.short_circuit*y[3]; z.longer_channel_leakage = x.longer_channel_leakage*y[1];//longer channel leakage has the same behavior as normal leakage return z; } powerDef operator+(const powerDef & x, const powerDef & y) { powerDef z; z.readOp = x.readOp + y.readOp; z.writeOp = x.writeOp + y.writeOp; z.searchOp = x.searchOp + y.searchOp; return z; } powerDef operator*(const powerDef & x, double const * const y) { powerDef z; z.readOp = x.readOp*y; z.writeOp = x.writeOp*y; z.searchOp = x.searchOp*y; return z; } uca_org_t cacti_interface(const string & infile_name) { //cout<<"TSV_proj_type: " << g_ip->TSV_proj_type << endl; uca_org_t fin_res; //uca_org_t result; fin_res.valid = false; g_ip = new InputParameter(); g_ip->parse_cfg(infile_name); if(!g_ip->error_checking()) exit(0); // if (g_ip->print_input_args) g_ip->display_ip(); init_tech_params(g_ip->F_sz_um, false); Wire winit; // Do not delete this line. It initializes wires. // cout << winit.wire_res(256*8*64e-9) << endl; // exit(0); //CACTI3DD // --- These two parameters are supposed for two different TSV technologies within one DRAM fabrication, currently assume one individual TSV geometry size for cost efficiency g_ip->tsv_is_subarray_type = g_ip->TSV_proj_type; g_ip->tsv_os_bank_type = g_ip->TSV_proj_type; TSV tsv_test(Coarse);// ********* double len_ /* in um*/, double diam_, double TSV_pitch_, if(g_ip->print_detail_debug) { tsv_test.print_TSV(); } // For HighRadix Only // //// Wire wirea(g_ip->wt, 1000); // //// wirea.print_wire(); // //// cout << "Wire Area " << wirea.area.get_area() << " sq. u" << endl; // // winit.print_wire(); // // // HighRadix *hr; // hr = new HighRadix(); // hr->compute_power(); // hr->print_router(); // exit(0); // // double sub_switch_sz = 2; // double rows = 32; // for (int i=0; i<6; i++) { // sub_switch_sz = pow(2, i); // rows = 64/sub_switch_sz; // hr = new HighRadix(sub_switch_sz, rows, .8/* freq */, 64, 2, 64, 0.7); // hr->compute_power(); // hr->print_router(); // delete hr; // } // // HighRadix yarc; // // yarc.compute_power(); // // yarc.print_router(); // winit.print_wire(); // exit(0); // For HighRadix Only End if (g_ip->nuca == 1) { Nuca n(&g_tp.peri_global); n.sim_nuca(); } //g_ip->display_ip(); IOTechParam iot(g_ip, g_ip->io_type, g_ip->num_mem_dq, g_ip->mem_data_width, g_ip->num_dq,g_ip->dram_dimm, 1,g_ip->bus_freq ); Extio testextio(&iot); testextio.extio_area(); testextio.extio_eye(); testextio.extio_power_dynamic(); testextio.extio_power_phy(); testextio.extio_power_term(); /* int freq[][4]={{400,533,667,800},{800,933,1066,1200}}; Mem_IO_type types[2]={DDR3,DDR4}; int max_load[3]={3,3,8}; for(int j=0;j<1;j++) { for(int connection=0;connection<3;connection++) { for(int frq=3;frq<4;frq++) { for(int load=1;load<=max_load[connection];load++) { IOTechParam iot(g_ip, types[j], load, 8, 72, connection, load, freq[j][frq]); Extio testextio(&iot); // testextio.extio_area(); // testextio.extio_eye(); testextio.extio_power_dynamic(); testextio.extio_power_phy(); testextio.extio_power_term(); } cout << endl; } cout << endl; } cout << endl; } */ ///double total_io_p, total_phy_p, total_io_area, total_vmargin, total_tmargin; //testextio.extio_power_area_timing(total_io_p, total_phy_p, total_io_area, total_vmargin, total_tmargin); solve(&fin_res); output_UCA(&fin_res); output_data_csv(fin_res, infile_name + ".out"); // Memcad Optimization MemCadParameters memcad_params(g_ip); solve_memcad(&memcad_params); delete (g_ip); return fin_res; } //CACTI3DD's plain interface, please keep !!! uca_org_t cacti_interface( int dram_cap_tot_byte, int line_size, int associativity, int rw_ports, int excl_read_ports,// para5 int excl_write_ports, int single_ended_read_ports, int search_ports, int banks, double tech_node,//para10 int output_width, int specific_tag, int tag_width, int access_mode, int cache, //para15 int main_mem, int obj_func_delay, int obj_func_dynamic_power, int obj_func_leakage_power, int obj_func_cycle_time, //para20 int obj_func_area, int dev_func_delay, int dev_func_dynamic_power, int dev_func_leakage_power, int dev_func_area, //para25 int dev_func_cycle_time, int ed_ed2_none, // 0 - ED, 1 - ED^2, 2 - use weight and deviate int temp, int wt, //0 - default(search across everything), 1 - global, 2 - 5% delay penalty, 3 - 10%, 4 - 20 %, 5 - 30%, 6 - low-swing int data_arr_ram_cell_tech_flavor_in,//para30 int data_arr_peri_global_tech_flavor_in, int tag_arr_ram_cell_tech_flavor_in, int tag_arr_peri_global_tech_flavor_in, int interconnect_projection_type_in, int wire_inside_mat_type_in,//para35 int wire_outside_mat_type_in, int REPEATERS_IN_HTREE_SEGMENTS_in, int VERTICAL_HTREE_WIRES_OVER_THE_ARRAY_in, int BROADCAST_ADDR_DATAIN_OVER_VERTICAL_HTREES_in, int PAGE_SIZE_BITS_in,//para40 int BURST_LENGTH_in, int INTERNAL_PREFETCH_WIDTH_in, int force_wiretype, int wiretype, int force_config,//para45 int ndwl, int ndbl, int nspd, int ndcm, int ndsam1,//para50 int ndsam2, int ecc, int is_3d_dram, int burst_depth, int IO_width, int sys_freq, int debug_detail, int num_dies, int tsv_gran_is_subarray, int tsv_gran_os_bank, int num_tier_row_sprd, int num_tier_col_sprd, int partition_level ) { g_ip = new InputParameter(); uca_org_t fin_res; fin_res.valid = false; g_ip->data_arr_ram_cell_tech_type = data_arr_ram_cell_tech_flavor_in; g_ip->data_arr_peri_global_tech_type = data_arr_peri_global_tech_flavor_in; g_ip->tag_arr_ram_cell_tech_type = tag_arr_ram_cell_tech_flavor_in; g_ip->tag_arr_peri_global_tech_type = tag_arr_peri_global_tech_flavor_in; g_ip->ic_proj_type = interconnect_projection_type_in; g_ip->wire_is_mat_type = wire_inside_mat_type_in; g_ip->wire_os_mat_type = wire_outside_mat_type_in; g_ip->burst_len = BURST_LENGTH_in; g_ip->int_prefetch_w = INTERNAL_PREFETCH_WIDTH_in; g_ip->page_sz_bits = PAGE_SIZE_BITS_in; g_ip->num_die_3d = num_dies; g_ip->cache_sz = dram_cap_tot_byte; g_ip->line_sz = line_size; g_ip->assoc = associativity; g_ip->nbanks = banks; g_ip->out_w = output_width; g_ip->specific_tag = specific_tag; if (specific_tag == 0) { g_ip->tag_w = 42; } else { g_ip->tag_w = tag_width; } g_ip->access_mode = access_mode; g_ip->delay_wt = obj_func_delay; g_ip->dynamic_power_wt = obj_func_dynamic_power; g_ip->leakage_power_wt = obj_func_leakage_power; g_ip->area_wt = obj_func_area; g_ip->cycle_time_wt = obj_func_cycle_time; g_ip->delay_dev = dev_func_delay; g_ip->dynamic_power_dev = dev_func_dynamic_power; g_ip->leakage_power_dev = dev_func_leakage_power; g_ip->area_dev = dev_func_area; g_ip->cycle_time_dev = dev_func_cycle_time; g_ip->temp = temp; g_ip->ed = ed_ed2_none; g_ip->F_sz_nm = tech_node; g_ip->F_sz_um = tech_node / 1000; g_ip->is_main_mem = (main_mem != 0) ? true : false; g_ip->is_cache = (cache ==1) ? true : false; g_ip->pure_ram = (cache ==0) ? true : false; g_ip->pure_cam = (cache ==2) ? true : false; g_ip->rpters_in_htree = (REPEATERS_IN_HTREE_SEGMENTS_in != 0) ? true : false; g_ip->ver_htree_wires_over_array = VERTICAL_HTREE_WIRES_OVER_THE_ARRAY_in; g_ip->broadcast_addr_din_over_ver_htrees = BROADCAST_ADDR_DATAIN_OVER_VERTICAL_HTREES_in; g_ip->num_rw_ports = rw_ports; g_ip->num_rd_ports = excl_read_ports; g_ip->num_wr_ports = excl_write_ports; g_ip->num_se_rd_ports = single_ended_read_ports; g_ip->num_search_ports = search_ports; g_ip->print_detail = 1; g_ip->nuca = 0; if (force_wiretype == 0) { g_ip->wt = Global; g_ip->force_wiretype = false; } else { g_ip->force_wiretype = true; if (wiretype==10) { g_ip->wt = Global_10; } if (wiretype==20) { g_ip->wt = Global_20; } if (wiretype==30) { g_ip->wt = Global_30; } if (wiretype==5) { g_ip->wt = Global_5; } if (wiretype==0) { g_ip->wt = Low_swing; } } //g_ip->wt = Global_5; if (force_config == 0) { g_ip->force_cache_config = false; } else { g_ip->force_cache_config = true; g_ip->ndbl=ndbl; g_ip->ndwl=ndwl; g_ip->nspd=nspd; g_ip->ndcm=ndcm; g_ip->ndsam1=ndsam1; g_ip->ndsam2=ndsam2; } if (ecc==0){ g_ip->add_ecc_b_=false; } else { g_ip->add_ecc_b_=true; } //CACTI3DD g_ip->is_3d_mem = is_3d_dram; g_ip->burst_depth = burst_depth; g_ip->io_width =IO_width; g_ip->sys_freq_MHz = sys_freq; g_ip->print_detail_debug = debug_detail; g_ip->tsv_is_subarray_type = tsv_gran_is_subarray; g_ip->tsv_os_bank_type = tsv_gran_os_bank; g_ip->partition_gran = partition_level; g_ip->num_tier_row_sprd = num_tier_row_sprd; g_ip->num_tier_col_sprd = num_tier_col_sprd; if(partition_level == 3) g_ip->fine_gran_bank_lvl = true; else g_ip->fine_gran_bank_lvl = false; if(!g_ip->error_checking()) exit(0); init_tech_params(g_ip->F_sz_um, false); Wire winit; // Do not delete this line. It initializes wires. //tsv //TSV tsv_test(Coarse); //tsv_test.print_TSV(); g_ip->display_ip(); solve(&fin_res); output_UCA(&fin_res); output_data_csv_3dd(fin_res); delete (g_ip); return fin_res; } //cacti6.5's plain interface, please keep !!! uca_org_t cacti_interface( int cache_size, int line_size, int associativity, int rw_ports, int excl_read_ports, int excl_write_ports, int single_ended_read_ports, int banks, double tech_node, // in nm int page_sz, int burst_length, int pre_width, int output_width, int specific_tag, int tag_width, int access_mode, //0 normal, 1 seq, 2 fast int cache, //scratch ram or cache int main_mem, int obj_func_delay, int obj_func_dynamic_power, int obj_func_leakage_power, int obj_func_area, int obj_func_cycle_time, int dev_func_delay, int dev_func_dynamic_power, int dev_func_leakage_power, int dev_func_area, int dev_func_cycle_time, int ed_ed2_none, // 0 - ED, 1 - ED^2, 2 - use weight and deviate int temp, int wt, //0 - default(search across everything), 1 - global, 2 - 5% delay penalty, 3 - 10%, 4 - 20 %, 5 - 30%, 6 - low-swing int data_arr_ram_cell_tech_flavor_in, // 0-4 int data_arr_peri_global_tech_flavor_in, int tag_arr_ram_cell_tech_flavor_in, int tag_arr_peri_global_tech_flavor_in, int interconnect_projection_type_in, // 0 - aggressive, 1 - normal int wire_inside_mat_type_in, int wire_outside_mat_type_in, int is_nuca, // 0 - UCA, 1 - NUCA int core_count, int cache_level, // 0 - L2, 1 - L3 int nuca_bank_count, int nuca_obj_func_delay, int nuca_obj_func_dynamic_power, int nuca_obj_func_leakage_power, int nuca_obj_func_area, int nuca_obj_func_cycle_time, int nuca_dev_func_delay, int nuca_dev_func_dynamic_power, int nuca_dev_func_leakage_power, int nuca_dev_func_area, int nuca_dev_func_cycle_time, int REPEATERS_IN_HTREE_SEGMENTS_in,//TODO for now only wires with repeaters are supported int p_input) { g_ip = new InputParameter(); g_ip->add_ecc_b_ = true; g_ip->data_arr_ram_cell_tech_type = data_arr_ram_cell_tech_flavor_in; g_ip->data_arr_peri_global_tech_type = data_arr_peri_global_tech_flavor_in; g_ip->tag_arr_ram_cell_tech_type = tag_arr_ram_cell_tech_flavor_in; g_ip->tag_arr_peri_global_tech_type = tag_arr_peri_global_tech_flavor_in; g_ip->ic_proj_type = interconnect_projection_type_in; g_ip->wire_is_mat_type = wire_inside_mat_type_in; g_ip->wire_os_mat_type = wire_outside_mat_type_in; g_ip->burst_len = burst_length; g_ip->int_prefetch_w = pre_width; g_ip->page_sz_bits = page_sz; g_ip->cache_sz = cache_size; g_ip->line_sz = line_size; g_ip->assoc = associativity; g_ip->nbanks = banks; g_ip->out_w = output_width; g_ip->specific_tag = specific_tag; if (tag_width == 0) { g_ip->tag_w = 42; } else { g_ip->tag_w = tag_width; } g_ip->access_mode = access_mode; g_ip->delay_wt = obj_func_delay; g_ip->dynamic_power_wt = obj_func_dynamic_power; g_ip->leakage_power_wt = obj_func_leakage_power; g_ip->area_wt = obj_func_area; g_ip->cycle_time_wt = obj_func_cycle_time; g_ip->delay_dev = dev_func_delay; g_ip->dynamic_power_dev = dev_func_dynamic_power; g_ip->leakage_power_dev = dev_func_leakage_power; g_ip->area_dev = dev_func_area; g_ip->cycle_time_dev = dev_func_cycle_time; g_ip->ed = ed_ed2_none; switch(wt) { case (0): g_ip->force_wiretype = 0; g_ip->wt = Global; break; case (1): g_ip->force_wiretype = 1; g_ip->wt = Global; break; case (2): g_ip->force_wiretype = 1; g_ip->wt = Global_5; break; case (3): g_ip->force_wiretype = 1; g_ip->wt = Global_10; break; case (4): g_ip->force_wiretype = 1; g_ip->wt = Global_20; break; case (5): g_ip->force_wiretype = 1; g_ip->wt = Global_30; break; case (6): g_ip->force_wiretype = 1; g_ip->wt = Low_swing; break; default: cout << "Unknown wire type!\n"; exit(0); } g_ip->delay_wt_nuca = nuca_obj_func_delay; g_ip->dynamic_power_wt_nuca = nuca_obj_func_dynamic_power; g_ip->leakage_power_wt_nuca = nuca_obj_func_leakage_power; g_ip->area_wt_nuca = nuca_obj_func_area; g_ip->cycle_time_wt_nuca = nuca_obj_func_cycle_time; g_ip->delay_dev_nuca = dev_func_delay; g_ip->dynamic_power_dev_nuca = nuca_dev_func_dynamic_power; g_ip->leakage_power_dev_nuca = nuca_dev_func_leakage_power; g_ip->area_dev_nuca = nuca_dev_func_area; g_ip->cycle_time_dev_nuca = nuca_dev_func_cycle_time; g_ip->nuca = is_nuca; g_ip->nuca_bank_count = nuca_bank_count; if(nuca_bank_count > 0) { g_ip->force_nuca_bank = 1; } g_ip->cores = core_count; g_ip->cache_level = cache_level; g_ip->temp = temp; g_ip->F_sz_nm = tech_node; g_ip->F_sz_um = tech_node / 1000; g_ip->is_main_mem = (main_mem != 0) ? true : false; g_ip->is_cache = (cache != 0) ? true : false; g_ip->rpters_in_htree = (REPEATERS_IN_HTREE_SEGMENTS_in != 0) ? true : false; g_ip->num_rw_ports = rw_ports; g_ip->num_rd_ports = excl_read_ports; g_ip->num_wr_ports = excl_write_ports; g_ip->num_se_rd_ports = single_ended_read_ports; g_ip->print_detail = 1; g_ip->nuca = 0; g_ip->wt = Global_5; g_ip->force_cache_config = false; g_ip->force_wiretype = false; g_ip->print_input_args = p_input; uca_org_t fin_res; fin_res.valid = false; if (g_ip->error_checking() == false) exit(0); if (g_ip->print_input_args) g_ip->display_ip(); init_tech_params(g_ip->F_sz_um, false); Wire winit; // Do not delete this line. It initializes wires. if (g_ip->nuca == 1) { Nuca n(&g_tp.peri_global); n.sim_nuca(); } solve(&fin_res); output_UCA(&fin_res); delete (g_ip); return fin_res; } //McPAT's plain interface, please keep !!! uca_org_t cacti_interface( int cache_size, int line_size, int associativity, int rw_ports, int excl_read_ports,// para5 int excl_write_ports, int single_ended_read_ports, int search_ports, int banks, double tech_node,//para10 int output_width, int specific_tag, int tag_width, int access_mode, int cache, //para15 int main_mem, int obj_func_delay, int obj_func_dynamic_power, int obj_func_leakage_power, int obj_func_cycle_time, //para20 int obj_func_area, int dev_func_delay, int dev_func_dynamic_power, int dev_func_leakage_power, int dev_func_area, //para25 int dev_func_cycle_time, int ed_ed2_none, // 0 - ED, 1 - ED^2, 2 - use weight and deviate int temp, int wt, //0 - default(search across everything), 1 - global, 2 - 5% delay penalty, 3 - 10%, 4 - 20 %, 5 - 30%, 6 - low-swing int data_arr_ram_cell_tech_flavor_in,//para30 int data_arr_peri_global_tech_flavor_in, int tag_arr_ram_cell_tech_flavor_in, int tag_arr_peri_global_tech_flavor_in, int interconnect_projection_type_in, int wire_inside_mat_type_in,//para35 int wire_outside_mat_type_in, int REPEATERS_IN_HTREE_SEGMENTS_in, int VERTICAL_HTREE_WIRES_OVER_THE_ARRAY_in, int BROADCAST_ADDR_DATAIN_OVER_VERTICAL_HTREES_in, int PAGE_SIZE_BITS_in,//para40 int BURST_LENGTH_in, int INTERNAL_PREFETCH_WIDTH_in, int force_wiretype, int wiretype, int force_config,//para45 int ndwl, int ndbl, int nspd, int ndcm, int ndsam1,//para50 int ndsam2, int ecc) { g_ip = new InputParameter(); uca_org_t fin_res; fin_res.valid = false; g_ip->data_arr_ram_cell_tech_type = data_arr_ram_cell_tech_flavor_in; g_ip->data_arr_peri_global_tech_type = data_arr_peri_global_tech_flavor_in; g_ip->tag_arr_ram_cell_tech_type = tag_arr_ram_cell_tech_flavor_in; g_ip->tag_arr_peri_global_tech_type = tag_arr_peri_global_tech_flavor_in; g_ip->ic_proj_type = interconnect_projection_type_in; g_ip->wire_is_mat_type = wire_inside_mat_type_in; g_ip->wire_os_mat_type = wire_outside_mat_type_in; g_ip->burst_len = BURST_LENGTH_in; g_ip->int_prefetch_w = INTERNAL_PREFETCH_WIDTH_in; g_ip->page_sz_bits = PAGE_SIZE_BITS_in; g_ip->cache_sz = cache_size; g_ip->line_sz = line_size; g_ip->assoc = associativity; g_ip->nbanks = banks; g_ip->out_w = output_width; g_ip->specific_tag = specific_tag; if (specific_tag == 0) { g_ip->tag_w = 42; } else { g_ip->tag_w = tag_width; } g_ip->access_mode = access_mode; g_ip->delay_wt = obj_func_delay; g_ip->dynamic_power_wt = obj_func_dynamic_power; g_ip->leakage_power_wt = obj_func_leakage_power; g_ip->area_wt = obj_func_area; g_ip->cycle_time_wt = obj_func_cycle_time; g_ip->delay_dev = dev_func_delay; g_ip->dynamic_power_dev = dev_func_dynamic_power; g_ip->leakage_power_dev = dev_func_leakage_power; g_ip->area_dev = dev_func_area; g_ip->cycle_time_dev = dev_func_cycle_time; g_ip->temp = temp; g_ip->ed = ed_ed2_none; g_ip->F_sz_nm = tech_node; g_ip->F_sz_um = tech_node / 1000; g_ip->is_main_mem = (main_mem != 0) ? true : false; g_ip->is_cache = (cache ==1) ? true : false; g_ip->pure_ram = (cache ==0) ? true : false; g_ip->pure_cam = (cache ==2) ? true : false; g_ip->rpters_in_htree = (REPEATERS_IN_HTREE_SEGMENTS_in != 0) ? true : false; g_ip->ver_htree_wires_over_array = VERTICAL_HTREE_WIRES_OVER_THE_ARRAY_in; g_ip->broadcast_addr_din_over_ver_htrees = BROADCAST_ADDR_DATAIN_OVER_VERTICAL_HTREES_in; g_ip->num_rw_ports = rw_ports; g_ip->num_rd_ports = excl_read_ports; g_ip->num_wr_ports = excl_write_ports; g_ip->num_se_rd_ports = single_ended_read_ports; g_ip->num_search_ports = search_ports; g_ip->print_detail = 1; g_ip->nuca = 0; if (force_wiretype == 0) { g_ip->wt = Global; g_ip->force_wiretype = false; } else { g_ip->force_wiretype = true; if (wiretype==10) { g_ip->wt = Global_10; } if (wiretype==20) { g_ip->wt = Global_20; } if (wiretype==30) { g_ip->wt = Global_30; } if (wiretype==5) { g_ip->wt = Global_5; } if (wiretype==0) { g_ip->wt = Low_swing; } } //g_ip->wt = Global_5; if (force_config == 0) { g_ip->force_cache_config = false; } else { g_ip->force_cache_config = true; g_ip->ndbl=ndbl; g_ip->ndwl=ndwl; g_ip->nspd=nspd; g_ip->ndcm=ndcm; g_ip->ndsam1=ndsam1; g_ip->ndsam2=ndsam2; } if (ecc==0){ g_ip->add_ecc_b_=false; } else { g_ip->add_ecc_b_=true; } if(!g_ip->error_checking()) exit(0); init_tech_params(g_ip->F_sz_um, false); Wire winit; // Do not delete this line. It initializes wires. g_ip->display_ip(); solve(&fin_res); output_UCA(&fin_res); output_data_csv(fin_res); delete (g_ip); return fin_res; } bool InputParameter::error_checking() { int A; bool seq_access = false; fast_access = true; switch (access_mode) { case 0: seq_access = false; fast_access = false; break; case 1: seq_access = true; fast_access = false; break; case 2: seq_access = false; fast_access = true; break; } if(is_main_mem) { if(ic_proj_type == 0 && !g_ip->is_3d_mem) { cerr << "DRAM model supports only conservative interconnect projection!\n\n"; return false; } } uint32_t B = line_sz; if (B < 1) { cerr << "Block size must >= 1" << endl; return false; } else if (B*8 < out_w) { cerr << "Block size must be at least " << out_w/8 << endl; return false; } if (F_sz_um <= 0) { cerr << "Feature size must be > 0" << endl; return false; } else if (F_sz_um > 0.091) { cerr << "Feature size must be <= 90 nm" << endl; return false; } uint32_t RWP = num_rw_ports; uint32_t ERP = num_rd_ports; uint32_t EWP = num_wr_ports; uint32_t NSER = num_se_rd_ports; uint32_t SCHP = num_search_ports; //TODO: revisit this. This is an important feature. thought this should be used // // If multiple banks and multiple ports are specified, then if number of ports is less than or equal to // // the number of banks, we assume that the multiple ports are implemented via the multiple banks. // // In such a case we assume that each bank has 1 RWP port. // if ((RWP + ERP + EWP) <= nbanks && nbanks>1) // { // RWP = 1; // ERP = 0; // EWP = 0; // NSER = 0; // } // else if ((RWP < 0) || (EWP < 0) || (ERP < 0)) // { // cerr << "Ports must >=0" << endl; // return false; // } // else if (RWP > 2) // { // cerr << "Maximum of 2 read/write ports" << endl; // return false; // } // else if ((RWP+ERP+EWP) < 1) // Changed to new implementation: // The number of ports specified at input is per bank if ((RWP+ERP+EWP) < 1) { cerr << "Must have at least one port" << endl; return false; } if (is_pow2(nbanks) == false) { cerr << "Number of subbanks should be greater than or equal to 1 and should be a power of 2" << endl; return false; } int C = cache_sz/nbanks; if (C < 64 && !g_ip->is_3d_mem) { cerr << "Cache size must >=64" << endl; return false; } //TODO: revisit this // if (pure_ram==true && assoc!=1) // { // cerr << "Pure RAM must have assoc as 1" << endl; // return false; // } //fully assoc and cam check if (is_cache && assoc==0) fully_assoc =true; else fully_assoc = false; if (pure_cam==true && assoc!=0) { cerr << "Pure CAM must have associativity as 0" << endl; return false; } if (assoc==0 && (pure_cam==false && is_cache ==false)) { cerr << "Only CAM or Fully associative cache can have associativity as 0" << endl; return false; } if ((fully_assoc==true || pure_cam==true) && (data_arr_ram_cell_tech_type!= tag_arr_ram_cell_tech_type || data_arr_peri_global_tech_type != tag_arr_peri_global_tech_type )) { cerr << "CAM and fully associative cache must have same device type for both data and tag array" << endl; return false; } if ((fully_assoc==true || pure_cam==true) && (data_arr_ram_cell_tech_type== lp_dram || data_arr_ram_cell_tech_type== comm_dram)) { cerr << "DRAM based CAM and fully associative cache are not supported" << endl; return false; } if ((fully_assoc==true || pure_cam==true) && (is_main_mem==true)) { cerr << "CAM and fully associative cache cannot be as main memory" << endl; return false; } if ((fully_assoc || pure_cam) && SCHP<1) { cerr << "CAM and fully associative must have at least 1 search port" << endl; return false; } if (RWP==0 && ERP==0 && SCHP>0 && ((fully_assoc || pure_cam))) { ERP=SCHP; } // if ((!(fully_assoc || pure_cam)) && SCHP>=1) // { // cerr << "None CAM and fully associative cannot have search ports" << endl; // return false; // } if (assoc == 0) { A = C/B; //fully_assoc = true; } else { if (assoc == 1) { A = 1; //fully_assoc = false; } else { //fully_assoc = false; A = assoc; if (is_pow2(A) == false) { cerr << "Associativity must be a power of 2" << endl; return false; } } } if (C/(B*A) <= 1 && assoc!=0 && !g_ip->is_3d_mem) { cerr << "Number of sets is too small: " << endl; cerr << " Need to either increase cache size, or decrease associativity or block size" << endl; cerr << " (or use fully associative cache)" << endl; return false; } block_sz = B; /*dt: testing sequential access mode*/ if(seq_access) { tag_assoc = A; data_assoc = 1; is_seq_acc = true; } else { tag_assoc = A; data_assoc = A; is_seq_acc = false; } if (assoc==0) { data_assoc = 1; } num_rw_ports = RWP; num_rd_ports = ERP; num_wr_ports = EWP; num_se_rd_ports = NSER; if (!(fully_assoc || pure_cam)) num_search_ports = 0; nsets = C/(B*A); if (temp < 300 || temp > 400 || temp%10 != 0) { cerr << temp << " Temperature must be between 300 and 400 Kelvin and multiple of 10." << endl; return false; } if (nsets < 1 && !g_ip->is_3d_mem) { cerr << "Less than one set..." << endl; return false; } power_gating = (array_power_gated || bitline_floating || wl_power_gated || cl_power_gated || interconect_power_gated)?true:false; return true; } void output_data_csv_3dd(const uca_org_t & fin_res) { //TODO: the csv output should remain fstream file("out.csv", ios::in); bool print_index = file.fail(); file.close(); file.open("out.csv", ios::out|ios::app); if (file.fail() == true) { cerr << "File out.csv could not be opened successfully" << endl; } else { //print_index = false; if (print_index == true) { file << "Tech node (nm), "; file << "Number of tiers, "; file << "Capacity (MB) per die, "; file << "Number of banks, "; file << "Page size in bits, "; //file << "Output width (bits), "; file << "Burst depth, "; file << "IO width, "; file << "Ndwl, "; file << "Ndbl, "; file << "N rows in subarray, "; file << "N cols in subarray, "; // file << "Access time (ns), "; // file << "Random cycle time (ns), "; // file << "Multisubbank interleave cycle time (ns), "; // file << "Delay request network (ns), "; // file << "Delay inside mat (ns), "; // file << "Delay reply network (ns), "; // file << "Tag array access time (ns), "; // file << "Data array access time (ns), "; // file << "Refresh period (microsec), "; // file << "DRAM array availability (%), "; // file << "Dynamic search energy (nJ), "; // file << "Dynamic read energy (nJ), "; // file << "Dynamic write energy (nJ), "; // file << "Tag Dynamic read energy (nJ), "; // file << "Data Dynamic read energy (nJ), "; // file << "Dynamic read power (mW), "; // file << "Standby leakage per bank(mW), "; // file << "Leakage per bank with leak power management (mW), "; // file << "Leakage per bank with leak power management (mW), "; // file << "Refresh power as percentage of standby leakage, "; file << "Area (mm2), "; // file << "Nspd, "; // file << "Ndcm, "; // file << "Ndsam_level_1, "; // file << "Ndsam_level_2, "; file << "Data arrary area efficiency %, "; // file << "Ntwl, "; // file << "Ntbl, "; // file << "Ntspd, "; // file << "Ntcm, "; // file << "Ntsam_level_1, "; // file << "Ntsam_level_2, "; // file << "Tag arrary area efficiency %, "; // file << "Resistance per unit micron (ohm-micron), "; // file << "Capacitance per unit micron (fF per micron), "; // file << "Unit-length wire delay (ps), "; // file << "FO4 delay (ps), "; // file << "delay route to bank (including crossb delay) (ps), "; // file << "Crossbar delay (ps), "; // file << "Dyn read energy per access from closed page (nJ), "; // file << "Dyn read energy per access from open page (nJ), "; // file << "Leak power of an subbank with page closed (mW), "; // file << "Leak power of a subbank with page open (mW), "; // file << "Leak power of request and reply networks (mW), "; // file << "Number of subbanks, "; file << "Number of TSVs in total, "; file << "Delay of TSVs (ns) worst case, "; file << "Area of TSVs (mm2) in total, "; file << "Energy of TSVs (nJ) per access, "; file << "t_RCD (ns), "; file << "t_RAS (ns), "; file << "t_RC (ns), "; file << "t_CAS (ns), "; file << "t_RP (ns), "; file << "Activate energy (nJ), "; file << "Read energy (nJ), "; file << "Write energy (nJ), "; file << "Precharge energy (nJ), "; //file << "tRCD, "; //file << "CAS latency, "; //file << "Precharge delay, "; // file << "Perc dyn energy bitlines, "; // file << "perc dyn energy wordlines, "; // file << "perc dyn energy outside mat, "; // file << "Area opt (perc), "; // file << "Delay opt (perc), "; // file << "Repeater opt (perc), "; //file << "Aspect ratio"; file << "t_RRD (ns), "; file << "Number tiers for a row, "; file << "Number tiers for a column, "; file << "delay_row_activate_net, " ; file << "delay_row_predecode_driver_and_block, " ; file << "delay_row_decoder, " ; file << "delay_local_wordline , " ; file << "delay_bitlines, " ; file << "delay_sense_amp, " ; file << "delay_column_access_net, " ; file << "delay_column_predecoder, " ; file << "delay_column_decoder, " ; file << "delay_column_selectline, " ; file << "delay_datapath_net, " ; file << "delay_global_data, " ; file << "delay_local_data_and_drv, " ; file << "delay_data_buffer, " ; file << "delay_subarray_output_driver, " ; file << "energy_row_activate_net, "; file << "energy_row_predecode_driver_and_block, "; file << "energy_row_decoder, "; file << "energy_local_wordline, "; file << "energy_bitlines, "; file << "energy_sense_amp, "; file << "energy_column_access_net, "; file << "energy_column_predecoder, "; file << "energy_column_decoder, "; file << "energy_column_selectline, "; file << "energy_datapath_net, "; file << "energy_global_data, "; file << "energy_local_data_and_drv, "; file << "energy_subarray_output_driver, "; file << "energy_data_buffer, "; file << "area_subarray, "; file << "area_lwl_drv, "; file << "area_row_predec_dec, "; file << "area_col_predec_dec, "; file << "area_bus, "; file << "area_address_bus, "; file << "area_data_bus, "; file << "area_data_drv, "; file << "area_IOSA, "; file << endl; } file << g_ip->F_sz_nm << ", "; file << g_ip->num_die_3d << ", "; file << g_ip->cache_sz * 1024 / g_ip->num_die_3d << ", "; file << g_ip->nbanks << ", "; file << g_ip->page_sz_bits << ", " ; // file << g_ip->tag_assoc << ", "; //file << g_ip->out_w << ", "; file << g_ip->burst_depth << ", "; file << g_ip->io_width << ", "; file << fin_res.data_array2->Ndwl << ", "; file << fin_res.data_array2->Ndbl << ", "; file << fin_res.data_array2->num_row_subarray << ", "; file << fin_res.data_array2->num_col_subarray << ", "; // file << fin_res.access_time*1e+9 << ", "; // file << fin_res.cycle_time*1e+9 << ", "; // file << fin_res.data_array2->multisubbank_interleave_cycle_time*1e+9 << ", "; // file << fin_res.data_array2->delay_request_network*1e+9 << ", "; // file << fin_res.data_array2->delay_inside_mat*1e+9 << ", "; // file << fin_res.data_array2.delay_reply_network*1e+9 << ", "; // if (!(g_ip->fully_assoc || g_ip->pure_cam || g_ip->pure_ram)) // { // file << fin_res.tag_array2->access_time*1e+9 << ", "; // } // else // { // file << 0 << ", "; // } // file << fin_res.data_array2->access_time*1e+9 << ", "; // file << fin_res.data_array2->dram_refresh_period*1e+6 << ", "; // file << fin_res.data_array2->dram_array_availability << ", "; /* if (g_ip->fully_assoc || g_ip->pure_cam) { file << fin_res.power.searchOp.dynamic*1e+9 << ", "; } else { file << "N/A" << ", "; } */ // file << fin_res.power.readOp.dynamic*1e+9 << ", "; // file << fin_res.power.writeOp.dynamic*1e+9 << ", "; // if (!(g_ip->fully_assoc || g_ip->pure_cam || g_ip->pure_ram)) // { // file << fin_res.tag_array2->power.readOp.dynamic*1e+9 << ", "; // } // else // { // file << "NA" << ", "; // } // file << fin_res.data_array2->power.readOp.dynamic*1e+9 << ", "; // if (g_ip->fully_assoc || g_ip->pure_cam) // { // file << fin_res.power.searchOp.dynamic*1000/fin_res.cycle_time << ", "; // } // else // { // file << fin_res.power.readOp.dynamic*1000/fin_res.cycle_time << ", "; // } // file <<( fin_res.power.readOp.leakage + fin_res.power.readOp.gate_leakage )*1000 << ", "; // file << fin_res.leak_power_with_sleep_transistors_in_mats*1000 << ", "; // file << fin_res.data_array.refresh_power / fin_res.data_array.total_power.readOp.leakage << ", "; file << fin_res.data_array2->area *1e-6 << ", "; // file << fin_res.data_array2->Nspd << ", "; // file << fin_res.data_array2->deg_bl_muxing << ", "; // file << fin_res.data_array2->Ndsam_lev_1 << ", "; // file << fin_res.data_array2->Ndsam_lev_2 << ", "; file << fin_res.data_array2->area_efficiency << ", "; /* if (!(g_ip->fully_assoc || g_ip->pure_cam || g_ip->pure_ram)) { file << fin_res.tag_array2->Ndwl << ", "; file << fin_res.tag_array2->Ndbl << ", "; file << fin_res.tag_array2->Nspd << ", "; file << fin_res.tag_array2->deg_bl_muxing << ", "; file << fin_res.tag_array2->Ndsam_lev_1 << ", "; file << fin_res.tag_array2->Ndsam_lev_2 << ", "; file << fin_res.tag_array2->area_efficiency << ", "; } else { file << "N/A" << ", "; file << "N/A"<< ", "; file << "N/A" << ", "; file << "N/A" << ", "; file << "N/A" << ", "; file << "N/A" << ", "; file << "N/A" << ", "; } */ file << fin_res.data_array2->num_TSV_tot << ", "; file << fin_res.data_array2->delay_TSV_tot *1e9 << ", "; file << fin_res.data_array2->area_TSV_tot *1e-6 << ", "; file << fin_res.data_array2->dyn_pow_TSV_per_access *1e9 << ", "; file << fin_res.data_array2->t_RCD *1e9 << ", "; file << fin_res.data_array2->t_RAS *1e9 << ", "; file << fin_res.data_array2->t_RC *1e9 << ", "; file << fin_res.data_array2->t_CAS *1e9 << ", "; file << fin_res.data_array2->t_RP *1e9 << ", "; // file << g_tp.wire_inside_mat.R_per_um << ", "; // file << g_tp.wire_inside_mat.C_per_um / 1e-15 << ", "; // file << g_tp.unit_len_wire_del / 1e-12 << ", "; // file << g_tp.FO4 / 1e-12 << ", "; // file << fin_res.data_array.delay_route_to_bank / 1e-9 << ", "; // file << fin_res.data_array.delay_crossbar / 1e-9 << ", "; // file << fin_res.data_array.dyn_read_energy_from_closed_page / 1e-9 << ", "; // file << fin_res.data_array.dyn_read_energy_from_open_page / 1e-9 << ", "; // file << fin_res.data_array.leak_power_subbank_closed_page / 1e-3 << ", "; // file << fin_res.data_array.leak_power_subbank_open_page / 1e-3 << ", "; // file << fin_res.data_array.leak_power_request_and_reply_networks / 1e-3 << ", "; // file << fin_res.data_array.number_subbanks << ", " ; //file << fin_res.data_array.page_size_in_bits << ", " ; file << fin_res.data_array2->activate_energy * 1e9 << ", " ; file << fin_res.data_array2->read_energy * 1e9 << ", " ; file << fin_res.data_array2->write_energy * 1e9 << ", " ; file << fin_res.data_array2->precharge_energy * 1e9 << ", " ; //file << fin_res.data_array.trcd * 1e9 << ", " ; //file << fin_res.data_array.cas_latency * 1e9 << ", " ; //file << fin_res.data_array.precharge_delay * 1e9 << ", " ; //file << fin_res.data_array.all_banks_height / fin_res.data_array.all_banks_width; file << fin_res.data_array2->t_RRD * 1e9 << ", " ; file << g_ip->num_tier_row_sprd << ", " ; file << g_ip->num_tier_col_sprd << ", " ; file << fin_res.data_array2->delay_row_activate_net * 1e9 << ", " ; file << fin_res.data_array2->delay_row_predecode_driver_and_block * 1e9 << ", " ; file << fin_res.data_array2->delay_row_decoder * 1e9 << ", " ; file << fin_res.data_array2->delay_local_wordline * 1e9 << ", " ; file << fin_res.data_array2->delay_bitlines * 1e9 << ", " ; file << fin_res.data_array2->delay_sense_amp * 1e9 << ", " ; file << fin_res.data_array2->delay_column_access_net * 1e9 << ", " ; file << fin_res.data_array2->delay_column_predecoder * 1e9 << ", " ; file << fin_res.data_array2->delay_column_decoder * 1e9 << ", " ; file << fin_res.data_array2->delay_column_selectline * 1e9 << ", " ; file << fin_res.data_array2->delay_datapath_net * 1e9 << ", " ; file << fin_res.data_array2->delay_global_data * 1e9 << ", " ; file << fin_res.data_array2->delay_local_data_and_drv * 1e9 << ", " ; file << fin_res.data_array2->delay_data_buffer * 1e9 << ", " ; file << fin_res.data_array2->delay_subarray_output_driver * 1e9 << ", " ; file << fin_res.data_array2->energy_row_activate_net * 1e9 << ", " ; file << fin_res.data_array2->energy_row_predecode_driver_and_block * 1e9 << ", " ; file << fin_res.data_array2->energy_row_decoder * 1e9 << ", " ; file << fin_res.data_array2->energy_local_wordline * 1e9 << ", " ; file << fin_res.data_array2->energy_bitlines * 1e9 << ", " ; file << fin_res.data_array2->energy_sense_amp * 1e9 << ", " ; file << fin_res.data_array2->energy_column_access_net * 1e9 << ", " ; file << fin_res.data_array2->energy_column_predecoder * 1e9 << ", " ; file << fin_res.data_array2->energy_column_decoder * 1e9 << ", " ; file << fin_res.data_array2->energy_column_selectline * 1e9 << ", " ; file << fin_res.data_array2->energy_datapath_net * 1e9 << ", " ; file << fin_res.data_array2->energy_global_data * 1e9 << ", " ; file << fin_res.data_array2->energy_local_data_and_drv * 1e9 << ", " ; file << fin_res.data_array2->energy_subarray_output_driver * 1e9 << ", " ; file << fin_res.data_array2->energy_data_buffer * 1e9 << ", " ; file << fin_res.data_array2->area_subarray / 1e6 << ", " ; file << fin_res.data_array2->area_lwl_drv / 1e6 << ", " ; file << fin_res.data_array2->area_row_predec_dec / 1e6 << ", " ; file << fin_res.data_array2->area_col_predec_dec / 1e6 << ", " ; file << fin_res.data_array2->area_bus / 1e6 << ", " ; file << fin_res.data_array2->area_address_bus / 1e6 << ", " ; file << fin_res.data_array2->area_data_bus / 1e6 << ", " ; file << fin_res.data_array2->area_data_drv / 1e6 << ", " ; file << fin_res.data_array2->area_IOSA / 1e6 << ", " ; file << fin_res.data_array2->area_sense_amp / 1e6 << ", " ; file<F_sz_nm << ", "; file << g_ip->cache_sz << ", "; file << g_ip->nbanks << ", "; file << g_ip->tag_assoc << ", "; file << g_ip->out_w << ", "; file << fin_res.access_time*1e+9 << ", "; file << fin_res.cycle_time*1e+9 << ", "; // file << fin_res.data_array2->multisubbank_interleave_cycle_time*1e+9 << ", "; // file << fin_res.data_array2->delay_request_network*1e+9 << ", "; // file << fin_res.data_array2->delay_inside_mat*1e+9 << ", "; // file << fin_res.data_array2.delay_reply_network*1e+9 << ", "; // if (!(g_ip->fully_assoc || g_ip->pure_cam || g_ip->pure_ram)) // { // file << fin_res.tag_array2->access_time*1e+9 << ", "; // } // else // { // file << 0 << ", "; // } // file << fin_res.data_array2->access_time*1e+9 << ", "; // file << fin_res.data_array2->dram_refresh_period*1e+6 << ", "; // file << fin_res.data_array2->dram_array_availability << ", "; if (g_ip->fully_assoc || g_ip->pure_cam) { file << fin_res.power.searchOp.dynamic*1e+9 << ", "; } else { file << "N/A" << ", "; } file << fin_res.power.readOp.dynamic*1e+9 << ", "; file << fin_res.power.writeOp.dynamic*1e+9 << ", "; // if (!(g_ip->fully_assoc || g_ip->pure_cam || g_ip->pure_ram)) // { // file << fin_res.tag_array2->power.readOp.dynamic*1e+9 << ", "; // } // else // { // file << "NA" << ", "; // } // file << fin_res.data_array2->power.readOp.dynamic*1e+9 << ", "; // if (g_ip->fully_assoc || g_ip->pure_cam) // { // file << fin_res.power.searchOp.dynamic*1000/fin_res.cycle_time << ", "; // } // else // { // file << fin_res.power.readOp.dynamic*1000/fin_res.cycle_time << ", "; // } file <<( fin_res.power.readOp.leakage + fin_res.power.readOp.gate_leakage )*1000 << ", "; // file << fin_res.leak_power_with_sleep_transistors_in_mats*1000 << ", "; // file << fin_res.data_array.refresh_power / fin_res.data_array.total_power.readOp.leakage << ", "; file << fin_res.area*1e-6 << ", "; file << fin_res.data_array2->Ndwl << ", "; file << fin_res.data_array2->Ndbl << ", "; file << fin_res.data_array2->Nspd << ", "; file << fin_res.data_array2->deg_bl_muxing << ", "; file << fin_res.data_array2->Ndsam_lev_1 << ", "; file << fin_res.data_array2->Ndsam_lev_2 << ", "; file << fin_res.data_array2->area_efficiency << ", "; if (!(g_ip->fully_assoc || g_ip->pure_cam || g_ip->pure_ram)) { file << fin_res.tag_array2->Ndwl << ", "; file << fin_res.tag_array2->Ndbl << ", "; file << fin_res.tag_array2->Nspd << ", "; file << fin_res.tag_array2->deg_bl_muxing << ", "; file << fin_res.tag_array2->Ndsam_lev_1 << ", "; file << fin_res.tag_array2->Ndsam_lev_2 << ", "; file << fin_res.tag_array2->area_efficiency << ", "; } else { file << "N/A" << ", "; file << "N/A"<< ", "; file << "N/A" << ", "; file << "N/A" << ", "; file << "N/A" << ", "; file << "N/A" << ", "; file << "N/A" << ", "; } // file << g_tp.wire_inside_mat.R_per_um << ", "; // file << g_tp.wire_inside_mat.C_per_um / 1e-15 << ", "; // file << g_tp.unit_len_wire_del / 1e-12 << ", "; // file << g_tp.FO4 / 1e-12 << ", "; // file << fin_res.data_array.delay_route_to_bank / 1e-9 << ", "; // file << fin_res.data_array.delay_crossbar / 1e-9 << ", "; // file << fin_res.data_array.dyn_read_energy_from_closed_page / 1e-9 << ", "; // file << fin_res.data_array.dyn_read_energy_from_open_page / 1e-9 << ", "; // file << fin_res.data_array.leak_power_subbank_closed_page / 1e-3 << ", "; // file << fin_res.data_array.leak_power_subbank_open_page / 1e-3 << ", "; // file << fin_res.data_array.leak_power_request_and_reply_networks / 1e-3 << ", "; // file << fin_res.data_array.number_subbanks << ", " ; // file << fin_res.data_array.page_size_in_bits << ", " ; // file << fin_res.data_array.activate_energy * 1e9 << ", " ; // file << fin_res.data_array.read_energy * 1e9 << ", " ; // file << fin_res.data_array.write_energy * 1e9 << ", " ; // file << fin_res.data_array.precharge_energy * 1e9 << ", " ; // file << fin_res.data_array.trcd * 1e9 << ", " ; // file << fin_res.data_array.cas_latency * 1e9 << ", " ; // file << fin_res.data_array.precharge_delay * 1e9 << ", " ; // file << fin_res.data_array.all_banks_height / fin_res.data_array.all_banks_width; file<is_3d_mem) { cout<<"------- CACTI (version "<< VER_MAJOR_CACTI <<"."<< VER_MINOR_CACTI<<"."VER_COMMENT_CACTI << " of " << VER_UPDATE_CACTI << ") 3D DRAM Main Memory -------"<cache_sz) << endl; if(g_ip->num_die_3d>1) { cout << " Stacked die count: " << (int) g_ip->num_die_3d << endl; if(g_ip->TSV_proj_type == 1) cout << " TSV projection: industrial conservative" << endl; else cout << " TSV projection: ITRS aggressive" << endl; } cout << " Number of banks: " << (int) g_ip->nbanks << endl; cout << " Technology size (nm): " << g_ip->F_sz_nm << endl; cout << " Page size (bits): " << g_ip->page_sz_bits << endl; cout << " Burst depth: " << g_ip->burst_depth << endl; cout << " Chip IO width: " << g_ip->io_width << endl; cout << " Best Ndwl: " << fr->data_array2->Ndwl << endl; cout << " Best Ndbl: " << fr->data_array2->Ndbl << endl; cout << " # rows in subarray: " << fr->data_array2->num_row_subarray << endl; cout << " # columns in subarray: " << fr->data_array2->num_col_subarray << endl; cout <<"\nResults:\n"; cout<<"Timing Components:"<data_array2->t_RCD * 1e9 << " ns" <data_array2->t_RAS * 1e9 << " ns" <data_array2->t_RC * 1e9 << " ns" <data_array2->t_CAS * 1e9 << " ns" <data_array2->t_RP* 1e9 << " ns" <data_array2->t_RRD* 1e9 << " ns" <data_array2->t_RRD * 1e9 << " ns"<data_array2->activate_energy * 1e9 << " nJ" <data_array2->read_energy * 1e9 << " nJ" <data_array2->write_energy * 1e9 << " nJ" <data_array2->precharge_energy * 1e9 << " nJ" <data_array2->activate_power * 1e3 << " mW" <data_array2->read_power * 1e3 << " mW" <data_array2->write_power * 1e3 << " mW" <burst_depth)/(g_ip->sys_freq_MHz*1e6)/2) * 1e3 << " mW" <data_array2->area/1e6<<" mm2"<partition_gran>0) ? fr->data_array2->area : (fr->data_array2->area/0.5); double DRAM_area_per_die = (g_ip->partition_gran>0) ? fr->data_array2->area : (fr->data_array2->area + fr->data_array2->area_ram_cells*0.65); //double DRAM_area_per_die = (g_ip->partition_gran>0) ? fr->data_array2->area : (fr->data_array2->area + 2.5e9*(double)(g_ip->F_sz_um)*(g_ip->F_sz_um)); double area_efficiency_per_die = (g_ip->partition_gran>0) ? fr->data_array2->area_efficiency : (fr->data_array2->area_ram_cells / DRAM_area_per_die *100); double DRAM_width = (g_ip->partition_gran>0) ? fr->data_array2->all_banks_width : (fr->data_array2->all_banks_width + (DRAM_area_per_die-fr->data_array2->area)/fr->data_array2->all_banks_height); cout<<" DRAM core area: "<< fr->data_array2->area/1e6 <<" mm2"<partition_gran == 0) cout<<" DRAM area per die: "<< DRAM_area_per_die/1e6 <<" mm2"<data_array2->all_banks_height/1e3 <<" mm"<num_die_3d>1) { cout<<"TSV Components:"<data_array2->area_TSV_tot /1e6 <<" mm2"<data_array2->delay_TSV_tot * 1e9 <<" ns"<data_array2->dyn_pow_TSV_per_access * 1e9 <<" nJ"<is_3d_mem) { // if (NUCA) if (0) { cout << "\n\n Detailed Bank Stats:\n"; cout << " Bank Size (bytes): %d\n" << (int) (g_ip->cache_sz); } else { if (g_ip->data_arr_ram_cell_tech_type == 3) { cout << "\n---------- CACTI (version "<< VER_MAJOR_CACTI <<"."<< VER_MINOR_CACTI<<"."VER_COMMENT_CACTI << " of " << VER_UPDATE_CACTI << "), Uniform Cache Access " << "Logic Process Based DRAM Model ----------\n"; } else if (g_ip->data_arr_ram_cell_tech_type == 4) { cout << "\n---------- CACTI (version "<< VER_MAJOR_CACTI <<"."<< VER_MINOR_CACTI<<"."VER_COMMENT_CACTI << " of " << VER_UPDATE_CACTI << "), Uniform" << "Cache Access Commodity DRAM Model ----------\n"; } else { cout << "\n---------- CACTI (version "<< VER_MAJOR_CACTI <<"."<< VER_MINOR_CACTI<<"."VER_COMMENT_CACTI << " of " << VER_UPDATE_CACTI << "), Uniform Cache Access " "SRAM Model ----------\n"; } cout << "\nCache Parameters:\n"; cout << " Total cache size (bytes): " << (int) (g_ip->cache_sz) << endl; } cout << " Number of banks: " << (int) g_ip->nbanks << endl; if (g_ip->fully_assoc|| g_ip->pure_cam) cout << " Associativity: fully associative\n"; else { if (g_ip->tag_assoc == 1) cout << " Associativity: direct mapped\n"; else cout << " Associativity: " << g_ip->tag_assoc << endl; } cout << " Block size (bytes): " << g_ip->line_sz << endl; cout << " Read/write Ports: " << g_ip->num_rw_ports << endl; cout << " Read ports: " << g_ip->num_rd_ports << endl; cout << " Write ports: " << g_ip->num_wr_ports << endl; if (g_ip->fully_assoc|| g_ip->pure_cam) cout << " search ports: " << g_ip->num_search_ports << endl; cout << " Technology size (nm): " << g_ip->F_sz_nm << endl << endl; cout << " Access time (ns): " << fr->access_time*1e9 << endl; cout << " Cycle time (ns): " << fr->cycle_time*1e9 << endl; if (g_ip->data_arr_ram_cell_tech_type >= 4) { cout << " Precharge Delay (ns): " << fr->data_array2->precharge_delay*1e9 << endl; cout << " Activate Energy (nJ): " << fr->data_array2->activate_energy*1e9 << endl; cout << " Read Energy (nJ): " << fr->data_array2->read_energy*1e9 << endl; cout << " Write Energy (nJ): " << fr->data_array2->write_energy*1e9 << endl; cout << " Precharge Energy (nJ): " << fr->data_array2->precharge_energy*1e9 << endl; cout << " Leakage Power Closed Page (mW): " << fr->data_array2->leak_power_subbank_closed_page*1e3 << endl; cout << " Leakage Power Open Page (mW): " << fr->data_array2->leak_power_subbank_open_page*1e3 << endl; cout << " Leakage Power I/O (mW): " << fr->data_array2->leak_power_request_and_reply_networks*1e3 << endl; cout << " Refresh power (mW): " << fr->data_array2->refresh_power*1e3 << endl; } else { if ((g_ip->fully_assoc|| g_ip->pure_cam)) { cout << " Total dynamic associative search energy per access (nJ): " << fr->power.searchOp.dynamic*1e9 << endl; // cout << " Total dynamic read energy per access (nJ): " << // fr->power.readOp.dynamic*1e9 << endl; // cout << " Total dynamic write energy per access (nJ): " << // fr->power.writeOp.dynamic*1e9 << endl; } // else // { cout << " Total dynamic read energy per access (nJ): " << fr->power.readOp.dynamic*1e9 << endl; cout << " Total dynamic write energy per access (nJ): " << fr->power.writeOp.dynamic*1e9 << endl; // } cout << " Total leakage power of a bank" " (mW): " << fr->power.readOp.leakage*1e3 << endl; cout << " Total gate leakage power of a bank" " (mW): " << fr->power.readOp.gate_leakage*1e3 << endl; } if (g_ip->data_arr_ram_cell_tech_type ==3 || g_ip->data_arr_ram_cell_tech_type ==4) { } cout << " Cache height x width (mm): " << fr->cache_ht*1e-3 << " x " << fr->cache_len*1e-3 << endl << endl; cout << " Best Ndwl : " << fr->data_array2->Ndwl << endl; cout << " Best Ndbl : " << fr->data_array2->Ndbl << endl; cout << " Best Nspd : " << fr->data_array2->Nspd << endl; cout << " Best Ndcm : " << fr->data_array2->deg_bl_muxing << endl; cout << " Best Ndsam L1 : " << fr->data_array2->Ndsam_lev_1 << endl; cout << " Best Ndsam L2 : " << fr->data_array2->Ndsam_lev_2 << endl << endl; if ((!(g_ip->pure_ram|| g_ip->pure_cam || g_ip->fully_assoc)) && !g_ip->is_main_mem) { cout << " Best Ntwl : " << fr->tag_array2->Ndwl << endl; cout << " Best Ntbl : " << fr->tag_array2->Ndbl << endl; cout << " Best Ntspd : " << fr->tag_array2->Nspd << endl; cout << " Best Ntcm : " << fr->tag_array2->deg_bl_muxing << endl; cout << " Best Ntsam L1 : " << fr->tag_array2->Ndsam_lev_1 << endl; cout << " Best Ntsam L2 : " << fr->tag_array2->Ndsam_lev_2 << endl; } switch (fr->data_array2->wt) { case (0): cout << " Data array, H-tree wire type: Delay optimized global wires\n"; break; case (1): cout << " Data array, H-tree wire type: Global wires with 5\% delay penalty\n"; break; case (2): cout << " Data array, H-tree wire type: Global wires with 10\% delay penalty\n"; break; case (3): cout << " Data array, H-tree wire type: Global wires with 20\% delay penalty\n"; break; case (4): cout << " Data array, H-tree wire type: Global wires with 30\% delay penalty\n"; break; case (5): cout << " Data array, wire type: Low swing wires\n"; break; default: cout << "ERROR - Unknown wire type " << (int) fr->data_array2->wt <pure_ram|| g_ip->pure_cam || g_ip->fully_assoc)) { switch (fr->tag_array2->wt) { case (0): cout << " Tag array, H-tree wire type: Delay optimized global wires\n"; break; case (1): cout << " Tag array, H-tree wire type: Global wires with 5\% delay penalty\n"; break; case (2): cout << " Tag array, H-tree wire type: Global wires with 10\% delay penalty\n"; break; case (3): cout << " Tag array, H-tree wire type: Global wires with 20\% delay penalty\n"; break; case (4): cout << " Tag array, H-tree wire type: Global wires with 30\% delay penalty\n"; break; case (5): cout << " Tag array, wire type: Low swing wires\n"; break; default: cout << "ERROR - Unknown wire type " << (int) fr->tag_array2->wt <is_3d_mem) if (g_ip->print_detail) { //if(g_ip->fully_assoc) return; if (g_ip->is_3d_mem) { cout << endl << endl << "3D DRAM Detail Components:" << endl << endl; cout << endl << "Time Components:" << endl << endl; cout << "\t row activation bus delay (ns): " << fr->data_array2->delay_row_activate_net*1e9 << endl; cout << "\t row predecoder delay (ns): " << fr->data_array2->delay_row_predecode_driver_and_block*1e9 << endl; cout << "\t row decoder delay (ns): " << fr->data_array2->delay_row_decoder*1e9 << endl; cout << "\t local wordline delay (ns): " << fr->data_array2->delay_local_wordline*1e9 << endl; cout << "\t bitline delay (ns): " << fr->data_array2->delay_bitlines*1e9 << endl; cout << "\t sense amp delay (ns): " << fr->data_array2->delay_sense_amp*1e9 << endl; cout << "\t column access bus delay (ns): " << fr->data_array2->delay_column_access_net*1e9 << endl; cout << "\t column predecoder delay (ns): " << fr->data_array2->delay_column_predecoder*1e9 << endl; cout << "\t column decoder delay (ns): " << fr->data_array2->delay_column_decoder*1e9 << endl; //cout << "\t column selectline delay (ns): " << fr->data_array2->delay_column_selectline*1e9 << endl; cout << "\t datapath bus delay (ns): " << fr->data_array2->delay_datapath_net*1e9 << endl; cout << "\t global dataline delay (ns): " << fr->data_array2->delay_global_data*1e9 << endl; cout << "\t local dataline delay (ns): " << fr->data_array2->delay_local_data_and_drv*1e9 << endl; cout << "\t data buffer delay (ns): " << fr->data_array2->delay_data_buffer*1e9 << endl; cout << "\t subarray output driver delay (ns): " << fr->data_array2->delay_subarray_output_driver*1e9 << endl; cout << endl << "Energy Components:" << endl << endl; cout << "\t row activation bus energy (nJ): " << fr->data_array2->energy_row_activate_net*1e9 << endl; cout << "\t row predecoder energy (nJ): " << fr->data_array2->energy_row_predecode_driver_and_block*1e9 << endl; cout << "\t row decoder energy (nJ): " << fr->data_array2->energy_row_decoder*1e9 << endl; cout << "\t local wordline energy (nJ): " << fr->data_array2->energy_local_wordline*1e9 << endl; cout << "\t bitline energy (nJ): " << fr->data_array2->energy_bitlines*1e9 << endl; cout << "\t sense amp energy (nJ): " << fr->data_array2->energy_sense_amp*1e9 << endl; cout << "\t column access bus energy (nJ): " << fr->data_array2->energy_column_access_net*1e9 << endl; cout << "\t column predecoder energy (nJ): " << fr->data_array2->energy_column_predecoder*1e9 << endl; cout << "\t column decoder energy (nJ): " << fr->data_array2->energy_column_decoder*1e9 << endl; cout << "\t column selectline energy (nJ): " << fr->data_array2->energy_column_selectline*1e9 << endl; cout << "\t datapath bus energy (nJ): " << fr->data_array2->energy_datapath_net*1e9 << endl; cout << "\t global dataline energy (nJ): " << fr->data_array2->energy_global_data*1e9 << endl; cout << "\t local dataline energy (nJ): " << fr->data_array2->energy_local_data_and_drv*1e9 << endl; cout << "\t data buffer energy (nJ): " << fr->data_array2->energy_subarray_output_driver*1e9 << endl; //cout << "\t subarray output driver energy (nJ): " << fr->data_array2->energy_data_buffer*1e9 << endl; cout << endl << "Area Components:" << endl << endl; //cout << "\t subarray area (mm2): " << fr->data_array2->area_subarray/1e6 << endl; cout << "\t DRAM cell area (mm2): " << fr->data_array2->area_ram_cells/1e6 << endl; cout << "\t local WL driver area (mm2): " << fr->data_array2->area_lwl_drv/1e6 << endl; cout << "\t subarray sense amp area (mm2): " << fr->data_array2->area_sense_amp/1e6 << endl; cout << "\t row predecoder/decoder area (mm2): " << fr->data_array2->area_row_predec_dec/1e6 << endl; cout << "\t column predecoder/decoder area (mm2): " << fr->data_array2->area_col_predec_dec/1e6 << endl; cout << "\t center stripe bus area (mm2): " << fr->data_array2->area_bus/1e6 << endl; cout << "\t address bus area (mm2): " << fr->data_array2->area_address_bus/1e6 << endl; cout << "\t data bus area (mm2): " << fr->data_array2->area_data_bus/1e6 << endl; cout << "\t data driver area (mm2): " << fr->data_array2->area_data_drv/1e6 << endl; cout << "\t IO secondary sense amp area (mm2): " << fr->data_array2->area_IOSA/1e6 << endl; cout << "\t TSV area (mm2): "<< fr->data_array2->area_TSV_tot /1e6 << endl; } else //if (!g_ip->is_3d_mem) { if (g_ip->power_gating) { /* Energy/Power stats */ cout << endl << endl << "Power-gating Components:" << endl << endl; /* Data array power-gating stats */ if (!(g_ip->pure_cam || g_ip->fully_assoc)) cout << " Data array: " << endl; else if (g_ip->pure_cam) cout << " CAM array: " << endl; else cout << " Fully associative cache array: " << endl; cout << "\t Sub-array Sleep Tx size (um) - " << fr->data_array2->sram_sleep_tx_width << endl; // cout << "\t Sub-array Sleep Tx total size (um) - " << // fr->data_array2->sram_sleep_tx_width << endl; cout << "\t Sub-array Sleep Tx total area (mm^2) - " << fr->data_array2->sram_sleep_tx_area*1e-6 << endl; cout << "\t Sub-array wakeup time (ns) - " << fr->data_array2->sram_sleep_wakeup_latency*1e9 << endl; cout << "\t Sub-array Tx energy (nJ) - " << fr->data_array2->sram_sleep_wakeup_energy*1e9 << endl; //+++++++++++++++++++++++++++++++++++++++++++++++++++++++++ cout << endl; cout << "\t WL Sleep Tx size (um) - " << fr->data_array2->wl_sleep_tx_width << endl; // cout << "\t WL Sleep total Tx size (um) - " << // fr->data_array2->wl_sleep_tx_width << endl; cout << "\t WL Sleep Tx total area (mm^2) - " << fr->data_array2->wl_sleep_tx_area*1e-6 << endl; cout << "\t WL wakeup time (ns) - " << fr->data_array2->wl_sleep_wakeup_latency*1e9 << endl; cout << "\t WL Tx energy (nJ) - " << fr->data_array2->wl_sleep_wakeup_energy*1e9 << endl; //+++++++++++++++++++++++++++++++++++++++++++++++++++++++++ cout << endl; cout << "\t BL floating wakeup time (ns) - " << fr->data_array2->bl_floating_wakeup_latency*1e9 << endl; cout << "\t BL floating Tx energy (nJ) - " << fr->data_array2->bl_floating_wakeup_energy*1e9 << endl; //+++++++++++++++++++++++++++++++++++++++++++++++++++++++++ cout << endl; cout << "\t Active mats per access - " << fr->data_array2->num_active_mats<data_array2->num_submarray_mats<pure_ram|| g_ip->pure_cam || g_ip->fully_assoc)) && !g_ip->is_main_mem) { cout << " Tag array: " << endl; cout << "\t Sub-array Sleep Tx size (um) - " << fr->tag_array2->sram_sleep_tx_width << endl; // cout << "\t Sub-array Sleep Tx total size (um) - " << // fr->tag_array2->sram_sleep_tx_width << endl; cout << "\t Sub-array Sleep Tx total area (mm^2) - " << fr->tag_array2->sram_sleep_tx_area*1e-6 << endl; cout << "\t Sub-array wakeup time (ns) - " << fr->tag_array2->sram_sleep_wakeup_latency*1e9 << endl; cout << "\t Sub-array Tx energy (nJ) - " << fr->tag_array2->sram_sleep_wakeup_energy*1e9 << endl; //+++++++++++++++++++++++++++++++++++++++++++++++++++++++++ cout << endl; cout << "\t WL Sleep Tx size (um) - " << fr->tag_array2->wl_sleep_tx_width << endl; // cout << "\t WL Sleep total Tx size (um) - " << // fr->tag_array2->wl_sleep_tx_width << endl; cout << "\t WL Sleep Tx total area (mm^2) - " << fr->tag_array2->wl_sleep_tx_area*1e-6 << endl; cout << "\t WL wakeup time (ns) - " << fr->tag_array2->wl_sleep_wakeup_latency*1e9 << endl; cout << "\t WL Tx energy (nJ) - " << fr->tag_array2->wl_sleep_wakeup_energy*1e9 << endl; //+++++++++++++++++++++++++++++++++++++++++++++++++++++++++ cout << endl; cout << "\t BL floating wakeup time (ns) - " << fr->tag_array2->bl_floating_wakeup_latency*1e9 << endl; cout << "\t BL floating Tx energy (nJ) - " << fr->tag_array2->bl_floating_wakeup_energy*1e9 << endl; //+++++++++++++++++++++++++++++++++++++++++++++++++++++++++ cout << endl; cout << "\t Active mats per access - " << fr->tag_array2->num_active_mats<tag_array2->num_submarray_mats<data_array2->access_time/1e-9 << endl; cout << "\tH-tree input delay (ns): " << fr->data_array2->delay_route_to_bank * 1e9 + fr->data_array2->delay_input_htree * 1e9 << endl; if (!(g_ip->pure_cam || g_ip->fully_assoc)) { cout << "\tDecoder + wordline delay (ns): " << fr->data_array2->delay_row_predecode_driver_and_block * 1e9 + fr->data_array2->delay_row_decoder * 1e9 << endl; } else { cout << "\tCAM search delay (ns): " << fr->data_array2->delay_matchlines * 1e9 << endl; } cout << "\tBitline delay (ns): " << fr->data_array2->delay_bitlines/1e-9 << endl; cout << "\tSense Amplifier delay (ns): " << fr->data_array2->delay_sense_amp * 1e9 << endl; cout << "\tH-tree output delay (ns): " << fr->data_array2->delay_subarray_output_driver * 1e9 + fr->data_array2->delay_dout_htree * 1e9 << endl; if ((!(g_ip->pure_ram|| g_ip->pure_cam || g_ip->fully_assoc)) && !g_ip->is_main_mem) { /* tag array stats */ cout << endl << " Tag side (with Output driver) (ns): " << fr->tag_array2->access_time/1e-9 << endl; cout << "\tH-tree input delay (ns): " << fr->tag_array2->delay_route_to_bank * 1e9 + fr->tag_array2->delay_input_htree * 1e9 << endl; cout << "\tDecoder + wordline delay (ns): " << fr->tag_array2->delay_row_predecode_driver_and_block * 1e9 + fr->tag_array2->delay_row_decoder * 1e9 << endl; cout << "\tBitline delay (ns): " << fr->tag_array2->delay_bitlines/1e-9 << endl; cout << "\tSense Amplifier delay (ns): " << fr->tag_array2->delay_sense_amp * 1e9 << endl; cout << "\tComparator delay (ns): " << fr->tag_array2->delay_comparator * 1e9 << endl; cout << "\tH-tree output delay (ns): " << fr->tag_array2->delay_subarray_output_driver * 1e9 + fr->tag_array2->delay_dout_htree * 1e9 << endl; } /* Energy/Power stats */ cout << endl << endl << "Power Components:" << endl << endl; if (!(g_ip->pure_cam || g_ip->fully_assoc)) { cout << " Data array: Total dynamic read energy/access (nJ): " << fr->data_array2->power.readOp.dynamic * 1e9 << endl; cout << "\tTotal energy in H-tree (that includes both " "address and data transfer) (nJ): " << (fr->data_array2->power_addr_input_htree.readOp.dynamic + fr->data_array2->power_data_output_htree.readOp.dynamic + fr->data_array2->power_routing_to_bank.readOp.dynamic) * 1e9 << endl; cout << "\tOutput Htree inside bank Energy (nJ): " << fr->data_array2->power_data_output_htree.readOp.dynamic * 1e9 << endl; cout << "\tDecoder (nJ): " << fr->data_array2->power_row_predecoder_drivers.readOp.dynamic * 1e9 + fr->data_array2->power_row_predecoder_blocks.readOp.dynamic * 1e9 << endl; cout << "\tWordline (nJ): " << fr->data_array2->power_row_decoders.readOp.dynamic * 1e9 << endl; cout << "\tBitline mux & associated drivers (nJ): " << fr->data_array2->power_bit_mux_predecoder_drivers.readOp.dynamic * 1e9 + fr->data_array2->power_bit_mux_predecoder_blocks.readOp.dynamic * 1e9 + fr->data_array2->power_bit_mux_decoders.readOp.dynamic * 1e9 << endl; cout << "\tSense amp mux & associated drivers (nJ): " << fr->data_array2->power_senseamp_mux_lev_1_predecoder_drivers.readOp.dynamic * 1e9 + fr->data_array2->power_senseamp_mux_lev_1_predecoder_blocks.readOp.dynamic * 1e9 + fr->data_array2->power_senseamp_mux_lev_1_decoders.readOp.dynamic * 1e9 + fr->data_array2->power_senseamp_mux_lev_2_predecoder_drivers.readOp.dynamic * 1e9 + fr->data_array2->power_senseamp_mux_lev_2_predecoder_blocks.readOp.dynamic * 1e9 + fr->data_array2->power_senseamp_mux_lev_2_decoders.readOp.dynamic * 1e9 << endl; cout << "\tBitlines precharge and equalization circuit (nJ): " << fr->data_array2->power_prechg_eq_drivers.readOp.dynamic * 1e9 << endl; cout << "\tBitlines (nJ): " << fr->data_array2->power_bitlines.readOp.dynamic * 1e9 << endl; cout << "\tSense amplifier energy (nJ): " << fr->data_array2->power_sense_amps.readOp.dynamic * 1e9 << endl; cout << "\tSub-array output driver (nJ): " << fr->data_array2->power_output_drivers_at_subarray.readOp.dynamic * 1e9 << endl; cout << "\tTotal leakage power of a bank (mW): " << fr->data_array2->power.readOp.leakage * 1e3 << endl; cout << "\tTotal leakage power in H-tree (that includes both " "address and data network) ((mW)): " << (fr->data_array2->power_addr_input_htree.readOp.leakage + fr->data_array2->power_data_output_htree.readOp.leakage + fr->data_array2->power_routing_to_bank.readOp.leakage) * 1e3 << endl; cout << "\tTotal leakage power in cells (mW): " << (fr->data_array2->array_leakage) * 1e3 << endl; cout << "\tTotal leakage power in row logic(mW): " << (fr->data_array2->wl_leakage) * 1e3 << endl; cout << "\tTotal leakage power in column logic(mW): " << (fr->data_array2->cl_leakage) * 1e3 << endl; cout << "\tTotal gate leakage power in H-tree (that includes both " "address and data network) ((mW)): " << (fr->data_array2->power_addr_input_htree.readOp.gate_leakage + fr->data_array2->power_data_output_htree.readOp.gate_leakage + fr->data_array2->power_routing_to_bank.readOp.gate_leakage) * 1e3 << endl; } else if (g_ip->pure_cam) { cout << " CAM array:"<data_array2->power.searchOp.dynamic * 1e9 << endl; cout << "\tTotal energy in H-tree (that includes both " "match key and data transfer) (nJ): " << (fr->data_array2->power_htree_in_search.searchOp.dynamic + fr->data_array2->power_htree_out_search.searchOp.dynamic + fr->data_array2->power_routing_to_bank.searchOp.dynamic) * 1e9 << endl; cout << "\tKeyword input and result output Htrees inside bank Energy (nJ): " << (fr->data_array2->power_htree_in_search.searchOp.dynamic + fr->data_array2->power_htree_out_search.searchOp.dynamic) * 1e9 << endl; cout << "\tSearchlines (nJ): " << fr->data_array2->power_searchline.searchOp.dynamic * 1e9 + fr->data_array2->power_searchline_precharge.searchOp.dynamic * 1e9 << endl; cout << "\tMatchlines (nJ): " << fr->data_array2->power_matchlines.searchOp.dynamic * 1e9 + fr->data_array2->power_matchline_precharge.searchOp.dynamic * 1e9 << endl; cout << "\tSub-array output driver (nJ): " << fr->data_array2->power_output_drivers_at_subarray.searchOp.dynamic * 1e9 << endl; cout <data_array2->power.readOp.dynamic * 1e9 << endl; cout << "\tTotal energy in H-tree (that includes both " "address and data transfer) (nJ): " << (fr->data_array2->power_addr_input_htree.readOp.dynamic + fr->data_array2->power_data_output_htree.readOp.dynamic + fr->data_array2->power_routing_to_bank.readOp.dynamic) * 1e9 << endl; cout << "\tOutput Htree inside bank Energy (nJ): " << fr->data_array2->power_data_output_htree.readOp.dynamic * 1e9 << endl; cout << "\tDecoder (nJ): " << fr->data_array2->power_row_predecoder_drivers.readOp.dynamic * 1e9 + fr->data_array2->power_row_predecoder_blocks.readOp.dynamic * 1e9 << endl; cout << "\tWordline (nJ): " << fr->data_array2->power_row_decoders.readOp.dynamic * 1e9 << endl; cout << "\tBitline mux & associated drivers (nJ): " << fr->data_array2->power_bit_mux_predecoder_drivers.readOp.dynamic * 1e9 + fr->data_array2->power_bit_mux_predecoder_blocks.readOp.dynamic * 1e9 + fr->data_array2->power_bit_mux_decoders.readOp.dynamic * 1e9 << endl; cout << "\tSense amp mux & associated drivers (nJ): " << fr->data_array2->power_senseamp_mux_lev_1_predecoder_drivers.readOp.dynamic * 1e9 + fr->data_array2->power_senseamp_mux_lev_1_predecoder_blocks.readOp.dynamic * 1e9 + fr->data_array2->power_senseamp_mux_lev_1_decoders.readOp.dynamic * 1e9 + fr->data_array2->power_senseamp_mux_lev_2_predecoder_drivers.readOp.dynamic * 1e9 + fr->data_array2->power_senseamp_mux_lev_2_predecoder_blocks.readOp.dynamic * 1e9 + fr->data_array2->power_senseamp_mux_lev_2_decoders.readOp.dynamic * 1e9 << endl; cout << "\tBitlines (nJ): " << fr->data_array2->power_bitlines.readOp.dynamic * 1e9 + fr->data_array2->power_prechg_eq_drivers.readOp.dynamic * 1e9<< endl; cout << "\tSense amplifier energy (nJ): " << fr->data_array2->power_sense_amps.readOp.dynamic * 1e9 << endl; cout << "\tSub-array output driver (nJ): " << fr->data_array2->power_output_drivers_at_subarray.readOp.dynamic * 1e9 << endl; cout << endl <<" Total leakage power of a bank (mW): " << fr->data_array2->power.readOp.leakage * 1e3 << endl; } else { cout << " Fully associative array:"<data_array2->power.searchOp.dynamic * 1e9 << endl; cout << "\tTotal energy in H-tree (that includes both " "match key and data transfer) (nJ): " << (fr->data_array2->power_htree_in_search.searchOp.dynamic + fr->data_array2->power_htree_out_search.searchOp.dynamic + fr->data_array2->power_routing_to_bank.searchOp.dynamic) * 1e9 << endl; cout << "\tKeyword input and result output Htrees inside bank Energy (nJ): " << (fr->data_array2->power_htree_in_search.searchOp.dynamic + fr->data_array2->power_htree_out_search.searchOp.dynamic) * 1e9 << endl; cout << "\tSearchlines (nJ): " << fr->data_array2->power_searchline.searchOp.dynamic * 1e9 + fr->data_array2->power_searchline_precharge.searchOp.dynamic * 1e9 << endl; cout << "\tMatchlines (nJ): " << fr->data_array2->power_matchlines.searchOp.dynamic * 1e9 + fr->data_array2->power_matchline_precharge.searchOp.dynamic * 1e9 << endl; cout << "\tData portion wordline (nJ): " << fr->data_array2->power_matchline_to_wordline_drv.searchOp.dynamic * 1e9 << endl; cout << "\tData Bitlines (nJ): " << fr->data_array2->power_bitlines.searchOp.dynamic * 1e9 + fr->data_array2->power_prechg_eq_drivers.searchOp.dynamic * 1e9 << endl; cout << "\tSense amplifier energy (nJ): " << fr->data_array2->power_sense_amps.searchOp.dynamic * 1e9 << endl; cout << "\tSub-array output driver (nJ): " << fr->data_array2->power_output_drivers_at_subarray.searchOp.dynamic * 1e9 << endl; cout <data_array2->power.readOp.dynamic * 1e9 << endl; cout << "\tTotal energy in H-tree (that includes both " "address and data transfer) (nJ): " << (fr->data_array2->power_addr_input_htree.readOp.dynamic + fr->data_array2->power_data_output_htree.readOp.dynamic + fr->data_array2->power_routing_to_bank.readOp.dynamic) * 1e9 << endl; cout << "\tOutput Htree inside bank Energy (nJ): " << fr->data_array2->power_data_output_htree.readOp.dynamic * 1e9 << endl; cout << "\tDecoder (nJ): " << fr->data_array2->power_row_predecoder_drivers.readOp.dynamic * 1e9 + fr->data_array2->power_row_predecoder_blocks.readOp.dynamic * 1e9 << endl; cout << "\tWordline (nJ): " << fr->data_array2->power_row_decoders.readOp.dynamic * 1e9 << endl; cout << "\tBitline mux & associated drivers (nJ): " << fr->data_array2->power_bit_mux_predecoder_drivers.readOp.dynamic * 1e9 + fr->data_array2->power_bit_mux_predecoder_blocks.readOp.dynamic * 1e9 + fr->data_array2->power_bit_mux_decoders.readOp.dynamic * 1e9 << endl; cout << "\tSense amp mux & associated drivers (nJ): " << fr->data_array2->power_senseamp_mux_lev_1_predecoder_drivers.readOp.dynamic * 1e9 + fr->data_array2->power_senseamp_mux_lev_1_predecoder_blocks.readOp.dynamic * 1e9 + fr->data_array2->power_senseamp_mux_lev_1_decoders.readOp.dynamic * 1e9 + fr->data_array2->power_senseamp_mux_lev_2_predecoder_drivers.readOp.dynamic * 1e9 + fr->data_array2->power_senseamp_mux_lev_2_predecoder_blocks.readOp.dynamic * 1e9 + fr->data_array2->power_senseamp_mux_lev_2_decoders.readOp.dynamic * 1e9 << endl; cout << "\tBitlines (nJ): " << fr->data_array2->power_bitlines.readOp.dynamic * 1e9 + fr->data_array2->power_prechg_eq_drivers.readOp.dynamic * 1e9<< endl; cout << "\tSense amplifier energy (nJ): " << fr->data_array2->power_sense_amps.readOp.dynamic * 1e9 << endl; cout << "\tSub-array output driver (nJ): " << fr->data_array2->power_output_drivers_at_subarray.readOp.dynamic * 1e9 << endl; cout << endl <<" Total leakage power of a bank (mW): " << fr->data_array2->power.readOp.leakage * 1e3 << endl; } if ((!(g_ip->pure_ram|| g_ip->pure_cam || g_ip->fully_assoc)) && !g_ip->is_main_mem) { cout << endl << " Tag array: Total dynamic read energy/access (nJ): " << fr->tag_array2->power.readOp.dynamic * 1e9 << endl; cout << "\tTotal leakage read/write power of a bank (mW): " << fr->tag_array2->power.readOp.leakage * 1e3 << endl; cout << "\tTotal energy in H-tree (that includes both " "address and data transfer) (nJ): " << (fr->tag_array2->power_addr_input_htree.readOp.dynamic + fr->tag_array2->power_data_output_htree.readOp.dynamic + fr->tag_array2->power_routing_to_bank.readOp.dynamic) * 1e9 << endl; cout << "\tOutput Htree inside a bank Energy (nJ): " << fr->tag_array2->power_data_output_htree.readOp.dynamic * 1e9 << endl; cout << "\tDecoder (nJ): " << fr->tag_array2->power_row_predecoder_drivers.readOp.dynamic * 1e9 + fr->tag_array2->power_row_predecoder_blocks.readOp.dynamic * 1e9 << endl; cout << "\tWordline (nJ): " << fr->tag_array2->power_row_decoders.readOp.dynamic * 1e9 << endl; cout << "\tBitline mux & associated drivers (nJ): " << fr->tag_array2->power_bit_mux_predecoder_drivers.readOp.dynamic * 1e9 + fr->tag_array2->power_bit_mux_predecoder_blocks.readOp.dynamic * 1e9 + fr->tag_array2->power_bit_mux_decoders.readOp.dynamic * 1e9 << endl; cout << "\tSense amp mux & associated drivers (nJ): " << fr->tag_array2->power_senseamp_mux_lev_1_predecoder_drivers.readOp.dynamic * 1e9 + fr->tag_array2->power_senseamp_mux_lev_1_predecoder_blocks.readOp.dynamic * 1e9 + fr->tag_array2->power_senseamp_mux_lev_1_decoders.readOp.dynamic * 1e9 + fr->tag_array2->power_senseamp_mux_lev_2_predecoder_drivers.readOp.dynamic * 1e9 + fr->tag_array2->power_senseamp_mux_lev_2_predecoder_blocks.readOp.dynamic * 1e9 + fr->tag_array2->power_senseamp_mux_lev_2_decoders.readOp.dynamic * 1e9 << endl; cout << "\tBitlines precharge and equalization circuit (nJ): " << fr->tag_array2->power_prechg_eq_drivers.readOp.dynamic * 1e9 << endl; cout << "\tBitlines (nJ): " << fr->tag_array2->power_bitlines.readOp.dynamic * 1e9 << endl; cout << "\tSense amplifier energy (nJ): " << fr->tag_array2->power_sense_amps.readOp.dynamic * 1e9 << endl; cout << "\tSub-array output driver (nJ): " << fr->tag_array2->power_output_drivers_at_subarray.readOp.dynamic * 1e9 << endl; cout << "\tTotal leakage power of a bank (mW): " << fr->tag_array2->power.readOp.leakage * 1e3 << endl; cout << "\tTotal leakage power in H-tree (that includes both " "address and data network) ((mW)): " << (fr->tag_array2->power_addr_input_htree.readOp.leakage + fr->tag_array2->power_data_output_htree.readOp.leakage + fr->tag_array2->power_routing_to_bank.readOp.leakage) * 1e3 << endl; cout << "\tTotal leakage power in cells (mW): " << (fr->tag_array2->array_leakage) * 1e3 << endl; cout << "\tTotal leakage power in row logic(mW): " << (fr->tag_array2->wl_leakage) * 1e3 << endl; cout << "\tTotal leakage power in column logic(mW): " << (fr->tag_array2->cl_leakage) * 1e3 << endl; cout << "\tTotal gate leakage power in H-tree (that includes both " "address and data network) ((mW)): " << (fr->tag_array2->power_addr_input_htree.readOp.gate_leakage + fr->tag_array2->power_data_output_htree.readOp.gate_leakage + fr->tag_array2->power_routing_to_bank.readOp.gate_leakage) * 1e3 << endl; } cout << endl << endl << "Area Components:" << endl << endl; /* Data array area stats */ if (!(g_ip->pure_cam || g_ip->fully_assoc)) cout << " Data array: Area (mm2): " << fr->data_array2->area * 1e-6 << endl; else if (g_ip->pure_cam) cout << " CAM array: Area (mm2): " << fr->data_array2->area * 1e-6 << endl; else cout << " Fully associative cache array: Area (mm2): " << fr->data_array2->area * 1e-6 << endl; cout << "\tHeight (mm): " << fr->data_array2->all_banks_height*1e-3 << endl; cout << "\tWidth (mm): " << fr->data_array2->all_banks_width*1e-3 << endl; if (g_ip->print_detail) { cout << "\tArea efficiency (Memory cell area/Total area) - " << fr->data_array2->area_efficiency << " %" << endl; cout << "\t\tMAT Height (mm): " << fr->data_array2->mat_height*1e-3 << endl; cout << "\t\tMAT Length (mm): " << fr->data_array2->mat_length*1e-3 << endl; cout << "\t\tSubarray Height (mm): " << fr->data_array2->subarray_height*1e-3 << endl; cout << "\t\tSubarray Length (mm): " << fr->data_array2->subarray_length*1e-3 << endl; } /* Tag array area stats */ if ((!(g_ip->pure_ram|| g_ip->pure_cam || g_ip->fully_assoc)) && !g_ip->is_main_mem) { cout << endl << " Tag array: Area (mm2): " << fr->tag_array2->area * 1e-6 << endl; cout << "\tHeight (mm): " << fr->tag_array2->all_banks_height*1e-3 << endl; cout << "\tWidth (mm): " << fr->tag_array2->all_banks_width*1e-3 << endl; if (g_ip->print_detail) { cout << "\tArea efficiency (Memory cell area/Total area) - " << fr->tag_array2->area_efficiency << " %" << endl; cout << "\t\tMAT Height (mm): " << fr->tag_array2->mat_height*1e-3 << endl; cout << "\t\tMAT Length (mm): " << fr->tag_array2->mat_length*1e-3 << endl; cout << "\t\tSubarray Height (mm): " << fr->tag_array2->subarray_height*1e-3 << endl; cout << "\t\tSubarray Length (mm): " << fr->tag_array2->subarray_length*1e-3 << endl; } } }//if (!g_ip->is_3d_mem) Wire wpr; wpr.print_wire(); //cout << "FO4 = " << g_tp.FO4 << endl; } } //McPAT's plain interface, please keep !!! uca_org_t cacti_interface(InputParameter * const local_interface) { // g_ip = new InputParameter(); //g_ip->add_ecc_b_ = true; uca_org_t fin_res; fin_res.valid = false; g_ip = local_interface; // g_ip->data_arr_ram_cell_tech_type = data_arr_ram_cell_tech_flavor_in; // g_ip->data_arr_peri_global_tech_type = data_arr_peri_global_tech_flavor_in; // g_ip->tag_arr_ram_cell_tech_type = tag_arr_ram_cell_tech_flavor_in; // g_ip->tag_arr_peri_global_tech_type = tag_arr_peri_global_tech_flavor_in; // // g_ip->ic_proj_type = interconnect_projection_type_in; // g_ip->wire_is_mat_type = wire_inside_mat_type_in; // g_ip->wire_os_mat_type = wire_outside_mat_type_in; // g_ip->burst_len = BURST_LENGTH_in; // g_ip->int_prefetch_w = INTERNAL_PREFETCH_WIDTH_in; // g_ip->page_sz_bits = PAGE_SIZE_BITS_in; // // g_ip->cache_sz = cache_size; // g_ip->line_sz = line_size; // g_ip->assoc = associativity; // g_ip->nbanks = banks; // g_ip->out_w = output_width; // g_ip->specific_tag = specific_tag; // if (tag_width == 0) { // g_ip->tag_w = 42; // } // else { // g_ip->tag_w = tag_width; // } // // g_ip->access_mode = access_mode; // g_ip->delay_wt = obj_func_delay; // g_ip->dynamic_power_wt = obj_func_dynamic_power; // g_ip->leakage_power_wt = obj_func_leakage_power; // g_ip->area_wt = obj_func_area; // g_ip->cycle_time_wt = obj_func_cycle_time; // g_ip->delay_dev = dev_func_delay; // g_ip->dynamic_power_dev = dev_func_dynamic_power; // g_ip->leakage_power_dev = dev_func_leakage_power; // g_ip->area_dev = dev_func_area; // g_ip->cycle_time_dev = dev_func_cycle_time; // g_ip->temp = temp; // // g_ip->F_sz_nm = tech_node; // g_ip->F_sz_um = tech_node / 1000; // g_ip->is_main_mem = (main_mem != 0) ? true : false; // g_ip->is_cache = (cache ==1) ? true : false; // g_ip->pure_ram = (cache ==0) ? true : false; // g_ip->pure_cam = (cache ==2) ? true : false; // g_ip->rpters_in_htree = (REPEATERS_IN_HTREE_SEGMENTS_in != 0) ? true : false; // g_ip->ver_htree_wires_over_array = VERTICAL_HTREE_WIRES_OVER_THE_ARRAY_in; // g_ip->broadcast_addr_din_over_ver_htrees = BROADCAST_ADDR_DATAIN_OVER_VERTICAL_HTREES_in; // // g_ip->num_rw_ports = rw_ports; // g_ip->num_rd_ports = excl_read_ports; // g_ip->num_wr_ports = excl_write_ports; // g_ip->num_se_rd_ports = single_ended_read_ports; // g_ip->num_search_ports = search_ports; // // g_ip->print_detail = 1; // g_ip->nuca = 0; // g_ip->is_cache=true; // // if (force_wiretype == 0) // { // g_ip->wt = Global; // g_ip->force_wiretype = false; // } // else // { g_ip->force_wiretype = true; // if (wiretype==10) { // g_ip->wt = Global_10; // } // if (wiretype==20) { // g_ip->wt = Global_20; // } // if (wiretype==30) { // g_ip->wt = Global_30; // } // if (wiretype==5) { // g_ip->wt = Global_5; // } // if (wiretype==0) { // g_ip->wt = Low_swing; // } // } // //g_ip->wt = Global_5; // if (force_config == 0) // { // g_ip->force_cache_config = false; // } // else // { // g_ip->force_cache_config = true; // g_ip->ndbl=ndbl; // g_ip->ndwl=ndwl; // g_ip->nspd=nspd; // g_ip->ndcm=ndcm; // g_ip->ndsam1=ndsam1; // g_ip->ndsam2=ndsam2; // // // } // // if (ecc==0){ // g_ip->add_ecc_b_=false; // } // else // { // g_ip->add_ecc_b_=true; // } g_ip->error_checking(); init_tech_params(g_ip->F_sz_um, false); Wire winit; // Do not delete this line. It initializes wires. solve(&fin_res); // g_ip->display_ip(); // output_UCA(&fin_res); // output_data_csv(fin_res); // delete (g_ip); return fin_res; } //McPAT's plain interface, please keep !!! uca_org_t init_interface(InputParameter* const local_interface) { // g_ip = new InputParameter(); //g_ip->add_ecc_b_ = true; uca_org_t fin_res; fin_res.valid = false; g_ip = local_interface; // g_ip->data_arr_ram_cell_tech_type = data_arr_ram_cell_tech_flavor_in; // g_ip->data_arr_peri_global_tech_type = data_arr_peri_global_tech_flavor_in; // g_ip->tag_arr_ram_cell_tech_type = tag_arr_ram_cell_tech_flavor_in; // g_ip->tag_arr_peri_global_tech_type = tag_arr_peri_global_tech_flavor_in; // // g_ip->ic_proj_type = interconnect_projection_type_in; // g_ip->wire_is_mat_type = wire_inside_mat_type_in; // g_ip->wire_os_mat_type = wire_outside_mat_type_in; // g_ip->burst_len = BURST_LENGTH_in; // g_ip->int_prefetch_w = INTERNAL_PREFETCH_WIDTH_in; // g_ip->page_sz_bits = PAGE_SIZE_BITS_in; // // g_ip->cache_sz = cache_size; // g_ip->line_sz = line_size; // g_ip->assoc = associativity; // g_ip->nbanks = banks; // g_ip->out_w = output_width; // g_ip->specific_tag = specific_tag; // if (tag_width == 0) { // g_ip->tag_w = 42; // } // else { // g_ip->tag_w = tag_width; // } // // g_ip->access_mode = access_mode; // g_ip->delay_wt = obj_func_delay; // g_ip->dynamic_power_wt = obj_func_dynamic_power; // g_ip->leakage_power_wt = obj_func_leakage_power; // g_ip->area_wt = obj_func_area; // g_ip->cycle_time_wt = obj_func_cycle_time; // g_ip->delay_dev = dev_func_delay; // g_ip->dynamic_power_dev = dev_func_dynamic_power; // g_ip->leakage_power_dev = dev_func_leakage_power; // g_ip->area_dev = dev_func_area; // g_ip->cycle_time_dev = dev_func_cycle_time; // g_ip->temp = temp; // // g_ip->F_sz_nm = tech_node; // g_ip->F_sz_um = tech_node / 1000; // g_ip->is_main_mem = (main_mem != 0) ? true : false; // g_ip->is_cache = (cache ==1) ? true : false; // g_ip->pure_ram = (cache ==0) ? true : false; // g_ip->pure_cam = (cache ==2) ? true : false; // g_ip->rpters_in_htree = (REPEATERS_IN_HTREE_SEGMENTS_in != 0) ? true : false; // g_ip->ver_htree_wires_over_array = VERTICAL_HTREE_WIRES_OVER_THE_ARRAY_in; // g_ip->broadcast_addr_din_over_ver_htrees = BROADCAST_ADDR_DATAIN_OVER_VERTICAL_HTREES_in; // // g_ip->num_rw_ports = rw_ports; // g_ip->num_rd_ports = excl_read_ports; // g_ip->num_wr_ports = excl_write_ports; // g_ip->num_se_rd_ports = single_ended_read_ports; // g_ip->num_search_ports = search_ports; // // g_ip->print_detail = 1; // g_ip->nuca = 0; // // if (force_wiretype == 0) // { // g_ip->wt = Global; // g_ip->force_wiretype = false; // } // else // { g_ip->force_wiretype = true; // if (wiretype==10) { // g_ip->wt = Global_10; // } // if (wiretype==20) { // g_ip->wt = Global_20; // } // if (wiretype==30) { // g_ip->wt = Global_30; // } // if (wiretype==5) { // g_ip->wt = Global_5; // } // if (wiretype==0) { // g_ip->wt = Low_swing; // } // } // //g_ip->wt = Global_5; // if (force_config == 0) // { // g_ip->force_cache_config = false; // } // else // { // g_ip->force_cache_config = true; // g_ip->ndbl=ndbl; // g_ip->ndwl=ndwl; // g_ip->nspd=nspd; // g_ip->ndcm=ndcm; // g_ip->ndsam1=ndsam1; // g_ip->ndsam2=ndsam2; // // // } // // if (ecc==0){ // g_ip->add_ecc_b_=false; // } // else // { // g_ip->add_ecc_b_=true; // } g_ip->error_checking(); init_tech_params(g_ip->F_sz_um, false); Wire winit; // Do not delete this line. It initializes wires. //solve(&fin_res); //g_ip->display_ip(); //solve(&fin_res); //output_UCA(&fin_res); //output_data_csv(fin_res); // delete (g_ip); return fin_res; } void reconfigure(InputParameter *local_interface, uca_org_t *fin_res) { // Copy the InputParameter to global interface (g_ip) and do error checking. g_ip = local_interface; g_ip->error_checking(); // Initialize technology parameters init_tech_params(g_ip->F_sz_um,false); Wire winit; // Do not delete this line. It initializes wires. // This corresponds to solve() in the initialization process. update(fin_res); }