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1. Foundations evolution in the light of AI

• Critical applications using AI: what, how, example

• The problems they poses for risk assessment and qualification

• New foundations and their challenges

Agenda
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… The future is already (nearly) there

Critical AI systems are everywhere, more and more involved in our daily lives.
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•Autonomous CPS
•Autonomy refers to the degree of freedom asystemhasregardingpotentialactivities.

•Autonomy of decision: degree of freedom allocated to the system when deciding.

•For example, it can be associated with a set of constraints on a search space. The

reduction of this degree by choosing one possibility constitutes the act of decision,

using optimization tools.

•Autonomy of action: concerns the ability to act

•For example on the real world, through actuators or the digital world through the sending of

decisions to apply by others.

… The future is already (nearly) there (cont’d)
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•Intelligent/learning CPS
•Assuming at least a certain level of decisional autonomy opens the

possibility for a CPS to learn and adapt its decision with time and

with its experience and history

• A non learning system will always

generate the same outputs for the

same set of inputs, whatever the

moment

• A learning system is a system that

may generate different but

improved outputs for the same

inputs at differentmoments
Adapted from (Mitchell,1997)

… The future is already (nearly) there (cont’d)
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•Intelligent/learning CPS level of autonomy

… The future is already (nearly) there (cont’d)
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Example #1: the cooperating train (CPS)

damien.trentesaux@uphf.fr

Distributed Intelligence for Transportation Systems Laboratory

An “intelligent” train detects the maintenance operator and warns him, using embedded behavioral models 

of a risk about its health  status. This interaction is done using augmented virtual reality systems (hololens,

tablets) applied here to the opening time cycle of a door.

Concept of « peer topeer » cooperation

mailto:damien.trentesaux@uphf.fr
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Example #2: the autonomous train (CPS)

damien.trentesaux@uphf.fr

(positioning, signals, MAs)

delayed departure, etc.)

comfort, etc.)

elements, obstacles,etc.)

supervised learning)

- Start, maintain constantspeed,  

stop.

-Acceleration and braking modes.  

(precise positioning andspeed)

-Timing-related disturbances  

(diving profile modifications,LTV,

- Itinerary alterations,  

performance optimizations  

(energy consumption, passenger

-Disturbances caused by the  

dynamic environment (movable

-Semi-autonomous operation  

(simulation of unlikelysituations,

-Fully autonomous driverless  

operation
8

mailto:damien.trentesaux@uphf.fr
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But a frigthening future for researchers and  

engineers!

« A French researcher is being sued for murderer: a robot killedan  operatorafter havinglearnt from

hislearningalgorithm! »

The French researcher

AI Systems failure may result in death or serious injury to people, or 

damage to equipment or environmental harm.
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Example : the autonomous car (CPS)

•Researchers and industrialists develop autonomous cars able to be safer than humans

•Google car, BMW, Audi, PSA…

•It isestimated that in the USA94%of the car crashesare due to driver errors (Jenkins,2016)

•Indeed….

https://www.youtube.com/wat

ch?v=LfmAG4dk-rU
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Example : the autonomous car (CPS)

Report on Tesla first accident 

Level 2 of autonomous vehicle:

the "driver is disengaged from physically operating the vehicle by having his or her hands off the steering wheel AND foot 

off pedal at the same time," according to the SAE. The driver must still always be ready to take control of the vehicle, 

however.

Collision Between a Car Operating With Automated Vehicle Control Systems and

a Tractor-Semitrailer Truck Near Williston, Florida May 7, 2016

Accident Report, NTSB/HAR-17/02, PB2017-102600 

Findings

…

3. The Tesla’s automated vehicle control system was not designed to, and did not, identify the truck crossing the car’s path or 

recognize the impending crash…

…

5. If automated vehicle control systems do not automatically restrict their own operation to those conditions for which they 

were designed and are appropriate, the risk of driver misuse remains.

…

Recommendation Incorporate system safeguards that limit the use of automated vehicle control systems to those 

conditions for which they were designed. (H-17-41) 
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Ostrich temptation

• AI would become legal responsible entities
(The provider, developer would not be responsible of the consequences of their

possible failures)

• AI are just assistant, human will « remain » in the loop

• E.g « we target only Level 4 autonomous vehicles »

From Automation to Autonomous Systems: A Legal Phenomenology with Problems of Accountability
Ugo Pagallo

Laws!
« No law, no pb »

Example : the autonomous car (CPS)

For the moment …trusted AI: a set of issues



| 13

... So, should we worry about TRUSTWORTHINESS and 

QUALIFICATION of  AI technologies?

CONFIANCE*: le besoin est là…

https://www.youtube.com/watch?v=OY8A-cCwL18&feature=emb_logo

*Confiance = Thrustworthiness
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Not Afraid! Let’s try one definition!

Concept Dependability Trustworthiness

Goal

1)ability to deliver  service that can  justifiably be trusted

2)ability of a system to  avoid service failures  that are 

unacceptably  frequent or severe

assurance that a  system will perform as  expected

Threats  present

1)development faults  (e.g., software flaws,  hardware errata, 

malicious  logic)

2)physical faults (e.g.,  production defects,  physical

deterioration)

3)interaction faults  (e.g., physical  interference, input  

mistakes, attacks,  including viruses, worms,  intrusions)

1)hostile attacks (from  hackers or insiders)

2)environmental  disruptions (accidental  disruptions, 

either man- made or natural)

3)human and operator  errors (e.g., software  flaws, mistakes 

by human  operators)

Trustworthiness: the ability to behave so that the others trust the  information coming from the CPS and are 

confident about the ability of the CPS to engage actions to reach a clear, readable, public objective

 Similar notion to Dependability

Absence

of catastrophic  

consequences on  

the user(s) and  

the environment

Readiness Continuity

for usage of service
Absence of  

unauthorized  

disclosure of  

information

Absence Ability to  

of improper undergo

system repairs and  

alterations evolutions

Dependability

Availability Reliability Safety Confidentiality Integrity Maintainability



| 15

Not Afraid! Let’s try one definition!

Trustworthy =

+Reliability

+Safety

+Security

+Privacy

+Availability

+Usability

Computing = Hardawre + Software+ people

+ Accuracy: How well does the AI system do on new (unseen) data 

compared to data on which it was trained and tested?

+Robustness: How sensitive is the system’s outcome to a change in 

the input?

+Fairness: Are the system outcomes unbiased?

+Accountability: Who or what is responsible for the system’s 

outcome?

+Transparency: Is it clear to an external observer how the system’s 

outcome was produced?

+Interpretability/Explainability: Can the system’s outcome be 

justified with an explanation that a human can understand and/or 

that is meaningful to the end user?

+Ethical: Was the data collected in an ethical manner? Will the 

system’s outcome be used in an ethical manner?

+… others, yet to be identified

AI=data+ML model+task

From Trustworthy computing  …..                    to Trustworthy AI
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Safety of open and complex systems engineering is a true challenge

1 3

2

 Critical software functions

 Communications in an open world

 Embedded Artificial Intelligence

How to be convinced that none of its behaviors could be dangerous?

e.g. collaborative robots

…The safety challenge

From TRUSTWORTHY SYSTEM ENGINEERING … to TRUSTWORTHY AI ENGINEERING?
• New definition of intrinsic safety (and security) properties

• Integrate new AI design techniques: Explainable AI, Compositional AI, Bayesian/Probabilistic deep

learning…

• Develop analysis for stability and robustness

• Questions on what are the other properties required to be validated?
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…The verification & validation challenges 

Its true for both 

knowledge based AI and 

data based AI
With a very 

pregnant pressure 

on ML based AI

vs
An empirical approachFormal, traced & rational approach

• Informal requirements « by examples »

 trails and errors

Each instruction, each value

is deduced and justified

Poor justification,

explanation of the result

Machine 

learning has 

become 

alchemy

Engineering 

artifacts have 

preceded the 

theoretical 

understanding

Ali Rahimi

(Google)

Yann LeCun

(facebook)

Action

s
Sub-functions

• Requirements

Functions

AI/ML qualification is still an open issue*
Informal requirement with less / no structuration, dynamic evolution of system definition

Formal methods remains applicable but …

Hard-to-scale-up operating conditions, Verification completion criteria: when are we done with testing?

… to a 3rd AI Winter?

Breaks all the conformity assessment principles and processes…?

How to formalize the requirements?

If AI = a single component: OK

Code algorithm is « simple »: OK

Data types are « simple »: OK

Test representativity?

Learning

How to qualify data?
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…The qualification challenges

• The frequency of changes is potentially large.

• AI-based systems are more influenced by obsolescence of data,

sensors, system's operating environment…

…which leads to need of continuous qualification processes.

• The complexity of the validation process

• …the costs of revalidation, even for small changes are very high, e.g. we

could need re-training the system for slightest modification of a function

(E.g. deep learning algorithms containing millions of parameters in close 

interaction)

 Evolutionary qualification needs highly modular AI architectures

• to ensure that modules and their modifications remain independent of the 

qualification of the entire system as much as possible.

• to become affordable in terms of re-qualification costs

Sensors

aging

Calibration 

evolution

Sensors

variety

Re-qualification is easier if the system has been designed with this objective…

But industry poorly equipped to define trusted AI systems

“Current assurance approaches are predicated on the assumption that once the system is deployed, it 

does not learn and evolve.”
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Three core Challenges for qualification of AI-based systems

Unknown/unsafe unknowns
(out-of-distribution scenarios, data noise, ambiguous 

scenarios)

Complex & costly assurance/qualif.
(prescriptive qualification/certification approaches 

becomes inadequate for AI systems, obsolescence)

New risks introduced by AI
(operational environment, algorithms and data uncertainty, 

human errors, autonomy level)

Sensors 

aging/variety
Complex/changing 

operational contexts

DNN calibration 

evolution

How can we manage AI/ML 

and environment 

uncertainty?

How can we assure that 

learning systems are safe and 

correct?

How can we assure that 

learning systems are safe and 

correct?
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Three core Challenges for qualification of AI-based systems

Runtime Risk Assessment and 

Learning

Efficient and Incremental 

Assurance & Qualification

Unknown/unsafe unknowns
(out-of-distribution scenarios, data noise, ambiguous 

scenarios)

Complex & costly assurance/qualif.
(prescriptive qualification/certification approaches 

becomes inadequate for AI systems, obsolescence)

Uncertainty-Aware Risk 

Management

New risks introduced by AI
(operational environment, algorithms and data uncertainty, 

human errors, autonomy level)

Towards an Evolutionary

Qualification Approach for AI-

based Systems

Sensors 

aging/variety
Complex/changing 

operational contexts

DNN calibration 

evolution


