

Physically Unclonable Functions **PUFs** Principle, Advantages, Limitations

Jean-Luc DANGER

December 2019

Outline

- What and Why a PUF ?
- PUF Architectures
- PUF Reliability
- PUF Security
- Conclusions

Physically Unclonable Function: PUF

Function returning the fingerprint of a device

- Physical function,
- which exploits material randomness, during fabrication (mismatch)
- and is unclonable: same structure for each device

PUFs are instanciations of blueprints by a fab plant

TELECOM Paris

Main function: Authentication

Use of Challenge-Response => CRP protocol

The challenge is never sent twice to avoid replay attacks

Main function: Authentication

Use of the ID as a key => cryptographic protocol

The nonce is never sent twice to avoid replay attacks

7

Advantages of PUF vs Non Volatile Memory "NVM"

PUF is self contained

• NVM has to be programmed with an ID, and can be tampered

Not clonable

• PUF has the same structure, NVM can be reverse engineered

PUF

Feasible in standard CMOS process

• NVM requires a specific process

Many advantages compared to an identifier stored in a NVM memory !

Important Properties to meet

Reliability

• The PUF responses are unreliable : 1 to 15% of Bit Error Rate

Randomness

• The PUF responses can be biased: $Pr(1) \neq Pr(0)$

Uniqueness

- Two devices should not have the same ID.
- Security against attacks
 - 2 main types: Modeling and Physical attacks
- Latency
- Complexity

related to entropy

PUF Application examples

IP block protection

• The IP can run only on the authorized device

Secure Boot

The OS is loaded and deciphered only on the authorized device

Safe guard

• The data are ciphered before being stored in an untrusted device

RFID / NFC tag

A product can be authenticated and traced (anti-counterfeiting)

PUF: Two phases of use

1. Enrollment

- To do only once after manufacturing
- To get a "reference PUF" and a "helper data" to get it reliable

2. Usage or Reconstruction

- To obtain the PUF ID
- The "helper data" is used to correct errors

Outline

- What and Why a PUF ?
- PUF Architectures
- PUF Reliability
- PUF Security
- Conclusions

Main Classes of PUF in silicon

Two main types

Delay-PUF

• Exploits the delay difference between 2 identical delay lines.

Memory-PUF

• Exploits the difference between two inverters in an SRAM cell

Many other types in the literature:

- GLITCH PUF
- MECCA PUF
- VIA PUF
- RRAM PUF
- TERO-PUF

— ...

Delay difference between two identical pathes:

- "Strong" PUF: many challenges for CRP protocol
- Sensitive to Mathematical attacks: Modeling Attacks

Frequency difference between two identical Ring Oscillators:

Ring-oscillator PUF (RO-PUF): (*r* rings of *n* inverters)

Rationale:

Challenge selects a pair $i, j, 1 \le i \ne j \le r.$

Response is 1 if RO_i rotates faster than RO_j , and 0 otherwise.

Frequency difference between a controlled Ring Oscillator driven by two complementary challenges

Imbalance between two elements of a latch

Imbalance between two inverters of an SRAM cell

Outline

- What and Why a PUF ?
- PUF Architectures
- PUF Reliability
- PUF Security
- Conclusions

Main Properties to meet

Reliability

- The PUF response is sensitive to:
 - Noise
 - Environmental change T°C, Vdd
 - Aging

Entropy

- Inter device: Uniqueness: Each device must have a unique fingerprint
- Intra device: Randomness: as many bits at 0 and 1

Security

- Robustness against physical attacks: SCA, FIA
- Robustness against modeling attacks

Relatively less problematical

Results from the european "UNIQUE" project

Secure sketch to correct PUF

PUF

Fuzzy extraction for Key generation

Example: PUFKY

Reliability enhancement by filtering

Applies for delay PUF having the precise delay information

Bit **unreliable** ⇔ |delay| < Th Th= Ws

The bits in the unreliable area are **discarded**

The helper data indicates the unreliable bits, but gives **no information** on the bit value

Delay PUF: filtering out unreliable challenges

RO- PUF and Loop-PUF gives the reliability level => Unreliable challenges can be filtered out

E IP PARIS

26

Entropy loss after bit filtering

Need for standard tests and/or stochastic model

Active discussion at ISO sub-committee 27: (ISO 20897)

ISO/IEC JTC 1/SC 27/WG 3 N1233

PUF

REPLACES:

ISO/IEC JTC 1/SC 27/WG 3

Information technology - Security techniques - Security evaluation, testing and specification

Convenorship: AENOR, Spain, Vice-convenorship: JISC, Japan

DOC TYPE: working draft

TITLE: Text for ISO/IEC 1st WD 20897 — Information technology — Security requirements and test methods for physically unclonable functions for generating non-stored security parameters

Outline

- What and Why a PUF ?
- PUF Architectures
- PUF Reliability
- PUF Security
- Conclusions

PUF Attacks

Reverse Engineering Attack

Virtually impossible: same bueprint

Brute force

Virtually impossible to store all challenge/responses (CRP) Main threats

Replay

- Sniffing CRPs and play them back
- Can be countered at protocol level

Mathematical

- Reconstruct the PUF model: Modeling Attack (CRP only)
- Physical attack
 - Side-channel
 - Faults

Modeling Attacks

Based on Machine Learning algorithms

- Take advantage of equations defining the Response from the Challenge
- Very powerful to attack delay-PUFs
- Applies only to CRP protocol
- Countermeasures
 - Combination of delay-PUFs
 - Do not used PUF in CRP protocol but for key generation

Side-Channel Attack

Observation of raw oscillating frequency

- Applies to RO-PUF and Loop PUF
- Countermeasures:
 - RO-PUF: interleave the placement of the RO banks
 - RO and Loop PUF: Use random sequential measurement

Attack on the Fuzzy extractor

- Simple Power Analysis has been carried out on a FE
- Template attacks have been implemented on ECC
- Countermeasures: masking, as cryptographic blocks

Enhanced SCA

Combination with Machine Learning algorithms

- Use of noise distribution of the arbiter PUF
- Use unsupervised ML- techniques²
 - SCA is performed first
 - The ML technique proposes a model for classification (like for instance the "kmeans" algorithm).

Fault Injection Attack

Applies on Delay PUF

- Pulse attack (laser, EMI,...)
 - The PUF output is forced
- Harmonics attack
 - RO PUF: The PUF frequency can be locked on external EM carrier injection

Countermeasures

- Detection
 - Use embedded sensors to detect disturbances
 - Measure online the entropy of the PUF response

PUF invasive attack

Applies on SRAM PUF

- Laser stimulation techniques exploiting the Seebeck effect
 - the off-transistor becomes to conduct under laser shot
 - Provides a current increase
- Attack performed on AVR microcontrollers

SRAM content read out

Outline

- What and Why a PUF ?
- PUF Architectures
- PUF Reliability
- PUF Security
- Conclusions

Conclusions

- A specific fingerprint for each IC
- Used for authentication and key generation
- Use two phases: enrollment (with helper data) + reconstruction

Main advantages

- Self-generated by the device
- No reverse engineering and limited tampering

Main limitations

- Lack of reliability
 - Necessary post-processing
- · Can be attacked physically and mathematically
 - Protections required
- ISO Standard for PUF validation

