

Overview of Protections against IC Counterfeiting and Hardware Trojan Horses

Jean-Luc Danger October 2019

Outline

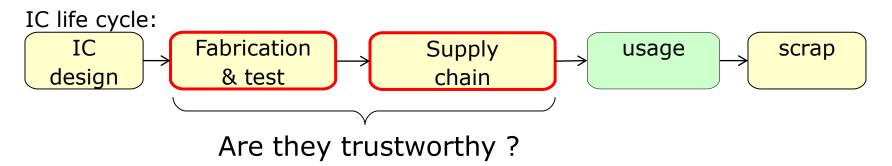
IC Counterfeiting

- Overview of the threat
- Detection methods
- Prevention methods

■ Hardware Trojan Horses

- Types
- Detection methods
- Prevention methods

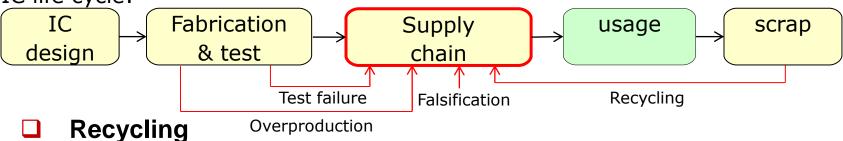
Conclusions


IC Counterfeiting is a reality

- The IC Supply chain (distributors, brokers,...) is an open door to counterfeit components [1] (SIA report)
- All sectors are impacted, including military[2] 5DoD report)
- Economic Harm
 - Reduction of the Original Component Manufacturer (OCM): market share:
 \$169 billion in 2012 [3]
- Damage due to lack of reliability
 - The counterfeit circuit may be defective
 - Negative image of the OCM

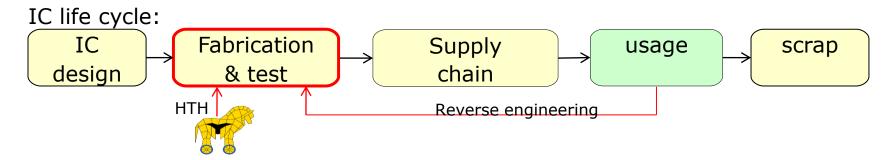
IC counterfeiting

Counterfeiting types [4]


- The circuit is the original one but has been illegally manipulated
- The circuit is fake

Counterfeiting with original circuit

IC life cycle:



- The circuit has been taken from old PCBs and remarked
- Falsification
 - The labeling, specification and certification are forged
- Overproduction
 - There is no legal contract for fabrication
- With defects
 - The component did not pass the tests

Counterfeiting with fake circuit

Cloning

The circuit has been pirated by reverse engineering and redesigned identically

Hardware Trojan Horse (HTH)

The circuit has been tampered at the fab stage and some extra logic called Hardware Trojan Horse has been added to spy or destroy it

How to protect from counterfeiting?

To work with trusted partners

- Design House: to make ICs in trusted fabs
- User: to buy ICs to trusted distributors

■ To use detection techniques

- For existing devices
- For new devices with dedicated hardware

To use prevention techniques

Only for new devices

Detection Methods [4]

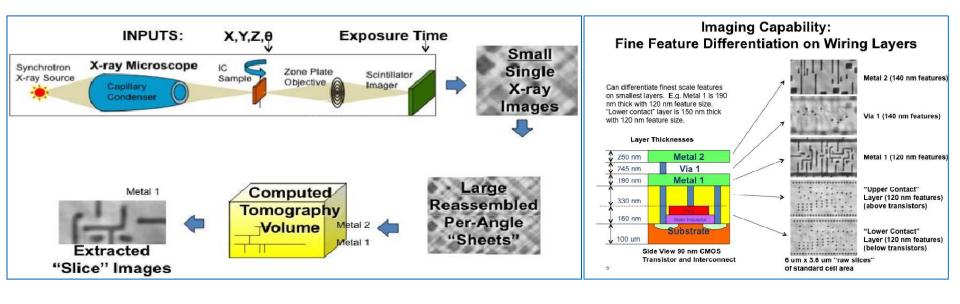
■ 3 main types:

- Physical analysis
 - Can be destructive
 - Only used to detect recycling and forged circuits
- Electrical tests
- Aging tests

Detection: Physical analysis

Imaging

- Visual inspection
- XRAY imaging
- Scanning Acoustic Microscopy (ultrawave)
- Scanning Electron Microscopy


Material Analysis

- XRAY fluorescence spectroscopy
- IR spectroscopy (IR absorption)
- THz spectroscopy (absorption in metal)

Example: X-ray Nanotomography[5]

Detection: Electrical tests

Integrity tests

Scan chain to detect failures

Parametric tests

- DC and AC parameters in
- In various environment
- To detect abnormal offset

Functionnal tests

- To detect out of range ICs
- Burn-in test
 - Accelerate the aging and the failure occurence

Detection: Aging tests

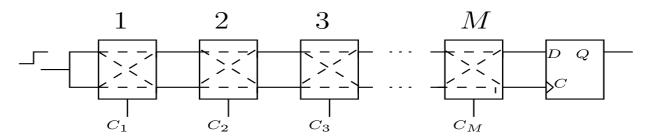
Data analysis

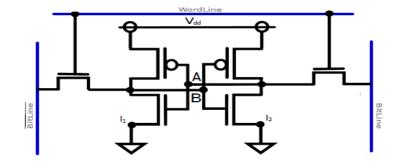
- Delay measurement which is very sensitive to aging
- Machine Learning algorithms used to classify two sets of data:
 - New trusted devices and
 - unknown devices, presumably new
- This method is impacted by process variation

With internal sensors

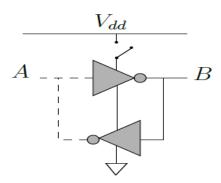
- CDIR (Combating Die and IC recycling)
- Differential structure
 - Ring oscillator reference vs stressed
- Usage time measurement
 - A clock counter is stored in NVM or OTP (antifuse)

Prevention: Hardware metering

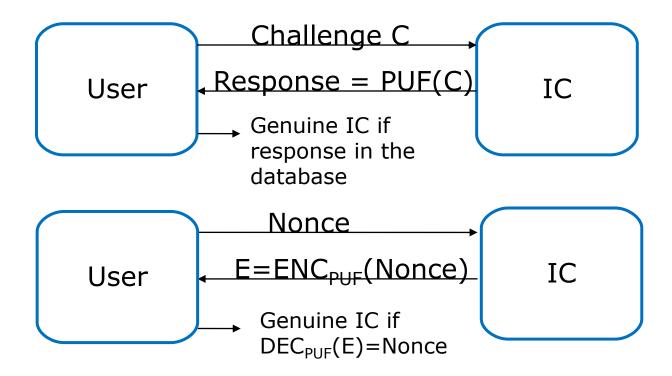

- Passive Hardware metering
 - Every circuit has its own ID, either in
 - Non Volatile memory : can be read or tampered
 - Physically Unclonable Function (PUF), which cannot be reverse engineered
 - An authentication protocol is build with the ID
- Active Hardware metering: Logic Locking
 - The circuit is initially locked. It is unlocked only if the circuit is authenticated.



Prevention: PUF examples

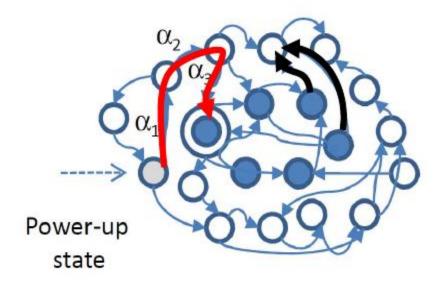

Arbiter PUF

SRAM PUF


(a) SRAM cell CMOS circuit.

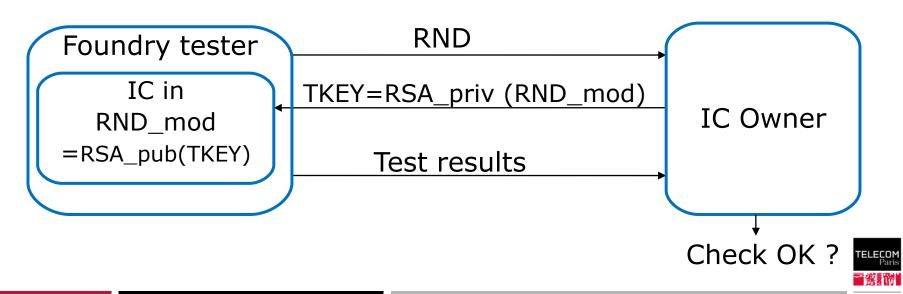
(b) SRAM cell logic circuit.

Prevention: PUF-based authentication



Prevention: locking mechanism [6]

■ The state graph is locked at power-up, and unlocked with the correct sequence



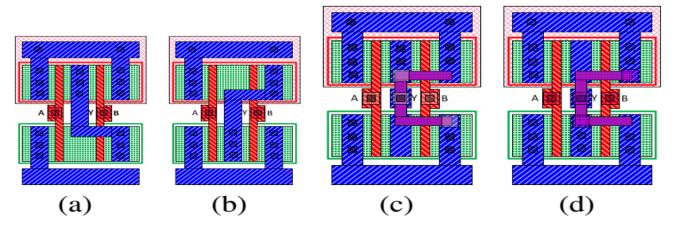
Prevention: Secure Split Test [7]

- To secure the manufacturing test, hence counterfeiting with defects
- The test is done by using asymmetric crypto
- The IC owner unlocked the good IC with a master key

Prevention: Split manufacturing [8]

- The chip manufacturing is split into two steps.
- First step:
 - Done by any foundry, not necessarily trusted
 - In charge of the "front end of line": gates and first metal layers
- Second step:
 - Done by a trusted foundry
 - In charge of finishing the connections "back end of line"
- IARPA established a new program in 2011 based on split manufacturing: "Trusted Integrated Chips" [8]

Prevention: Watermarking [10]


- To secure IP (Intellectual Property) block inside an IC
- Many ways to insert the mark:
 - GDSII
 - Pattern specific to the design
 - FPGA
 - unused LUTs in the bitstream
 - HDL
 - Unused part of memory, or truth table combinations
 - Synthesis

Prevention: Camouflaging[11]

- Hiding of the cell layout to prevent reverse engineering by optical inspection
 - a: NAND, b: NOR
 - c: camouflaged NAND, d: camouflaged NOR

IC Counterfeiting protection efficiency

ion		Recycled	Forged	Over produced	Defective	Cloned	нтн
Detectio	Physical tests	**	**				
	Electrical tests	**	**		*	*	*
	Aging tests	*	*				
evention	HW metering			*		*	
	Secure split test			**	**	*	
	Split manufacturing			*		*	*
	Watermarking					*	
Pre	Camouflaging					*	

Outline

IC Counterfeiting

- Overview of the threat
- Detection methods
- Prevention methods

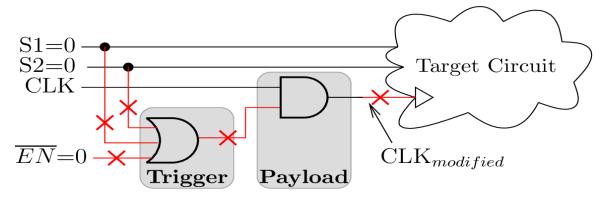
■ Hardware Trojan Horses

- Types
- Detection methods
- Prevention methods

Conclusions

HTH: A powerful and pernicious threat

HTH:


- Insertion in an IC of Hardware unknown to the designer
- Goal: spying, disturbing, destroying
- Can be inserted at all the levels of the IC design chain
- It is not only an economic threat, it is also strategic
 - 2007 DARPA program "Trust in Ics"
 - 2011 IARPA program" Trusted Integrated Chips"[8] exloiting split manufacturing
- But it is also a weapon for the designer:
 - Backdoors

HTH Principle

- **■** Two components:
 - TRIGGER: Reads and decode internal and rare state
 - PAYLOAD: Writes internal data
- HTH acts as a probing station, both passive (trigger) and active (payload), and is stealthy

HTH Payload examples[12]

Kill switch

Simple payload, desastrous effect as Denial of Services

Deteriorate the performances

Accelerate the aging, add extra delays

Create leakages

 Create an access to secret data, either by a functionnal channel or a sidechannel

Assist malwares

 Exploits a hidden function. The HTH is called backdoor if the designer is the creator.

HTH Triggering examples

Combinatorial

- Decoding of rare event from multiple nodes
 - trigger = f(nodes)
- Use significant number of gates

Sequential

- Decoding of a rare event from sequential variables
 - Trigger = f(nodes, time)
 - Less nodes but a few flip-flops

Analog

- Use internal sensors and external parameters
 - Example: Trigger temperature > threshold
- Need few gates

HTH Taxonomy [13]

Insertion stage

Specification, design, fabrication, test, assembly

Abstraction level

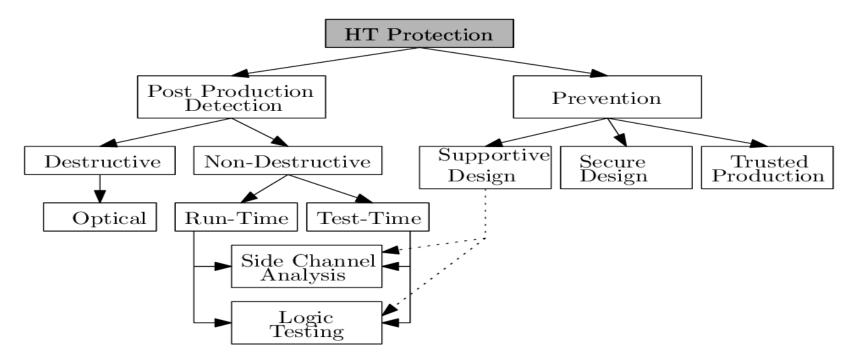
RTL, gate, layout, physical,

Trigger type

Combinatorial, sequential, analog

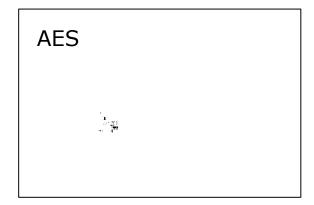
Payload type

New behavior, less performance, leakages, DoS


Physical characteristics

Size, distribution, parametric, functionnal, same layout

HTH protection overview [14]



HTH detection by optical method[15]

Needs a GDSII golden model

 Comparison between an original GDSII and a trojaned IC with a ×150 lens confocal microscope

Trojan size = 1 AND gate

Trojan size = 128 AND gate

HTH detection by optical method

Cross correlation between the original AES layout and an affected AES layout

 Trojan almost impossible to insert without changing the layout, if occupancy rate > 80%

		Hardware Trojan size (Nb of AND gates)							
		1	2	4	8	16	32	64	128
	50%	0.9991	0.9972	0.9981	0.9950	0.9933	0.9918	0.9815	0.9668
	60%	0.9987	0.9968	0.9959	0.9955	0.9944	0.9893	0.9788	0.9670
	70%	0.9989	0.9981	0.9918	0.9941	0.9881	0.9850	0.9594	0.9067
Core utilization rate	80%	0.9999	0.9965	0.9898	0.9957	0.9780	0.9711	0.8970	0.8509
	90%	0.9988	0.9990	0.9983	0.9962	0.9832	0.9572	0.8858	0.4010
	95%	0.9997	0.9984	0.9980	0.9889	0.9589	0.9115	0.8824	0.8202
	99%	0.9917	0.938	0.9714	0.9527	0.3798	NC	NC	NC

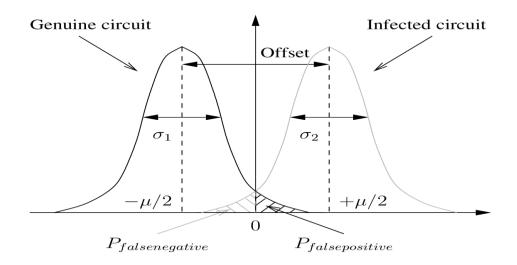
In black: ECO routing

HTH detection at test time

Logic Testing

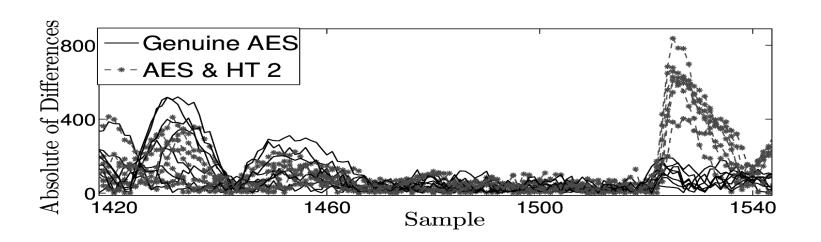
- To search the triggering of the Trojan
- Need exhaustive search of a rare event => impossible
- Rather use statistical approaches as MERO[15]
- Or add HW to avoid rare event

Side Channel


- To detect the resources of the Trojan
- By measuring:
 - the Current (IDDQ, IDDT)
 - the EM field
 - the propagation delays
- Very sensitive to noise and process variance

HTH detection with side-channel[17]

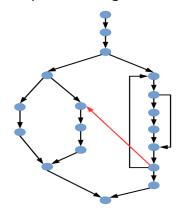
- Needs a golden model of the "activity"
- Measurement of local EM field with RF probes
- Impact of noise => Probability of detection

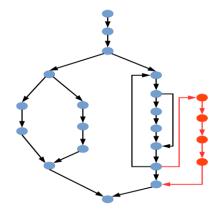


HTH detection with side-channel

- Impact of process variance
- HTH of different sizes: HTH greater than 1% can be
- detected with a false negative rate of 0.017%.

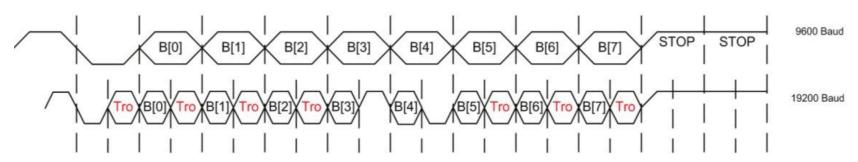
HTH detection at run time


- Techniques to check the integrity in real time
- Can take advantage of SEU and attack detection techniques:
 - Error correction codes
 - Control Flow Integrity (processors)
 - Hardware Assertions checkers
 - Real time security monitor



HTH detection by flow integrity check[18]

- The processor control flow can be tampered by HTH and/or malwares
- Prevention can check the integrity of basic blocks and unexpected jumps
 - Example: Use golden tables of basic blocks CRC and jump tables



HTH detection at run time: assertions[19]

- Example: The HTH outputs a secret key with on the UART channel by doubling the Baudrate
- Property to check by Hardware:
 - The serial bits have to be stable during a fixed period.
 - If the baudrate changes, the assertion fails

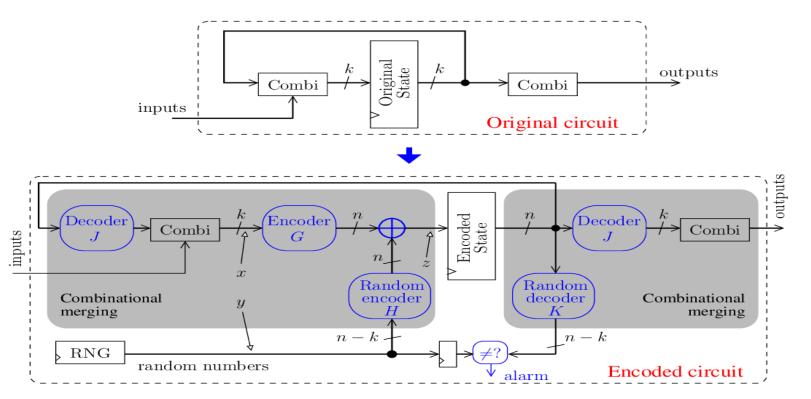
HTH prevention

- Split manufacturing
 - Use a "root of trust" with two steps: Front-end of line, and Back end of line
- To use the layout-filler
 - No more places to insert HTH on GDSII
- To avoid rare events during test time
- Obfuscation
 - To obfuscate the state transitions by keys
 - Active Hardware metering
 - To obfuscate by error correcting codes (ECC)
 - Mask the signals with random variables

Encoding the circuit [20]

Principle:

- The HTH has two parts:
 - probing (trigger) and fault injection (payload)
- The registers are the most easy cells to detect, thus the most easy to probe for Trojan insertion
- The sequential variables in registers are encoded by Linear Complementary Dual Codes (LCD)
- The Dual code allows the designer to use random variables to mask the real computation


Protection also effective against:

- Probing attacks
- Fault attacks
- Side-Channel Attacks

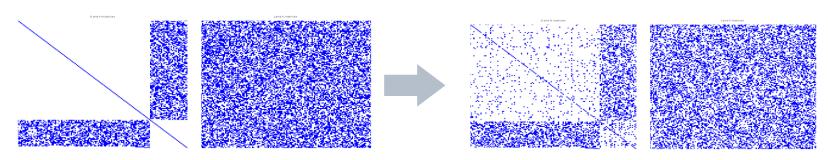
Encoding the circuit: Architecture

Encoding the circuit: Methods

- G encodes k bits
- H is the dual of G
 - (GHT=0)
- **Encoding:**
 - Z=xG xor yH
 - X=information
 - Y=random variable
- Decoding*
 - J=GT(GGT)-1
 - K=HT (HHT)-1

k bits n-k bits useful information: xmask: yGencoded and masked state: $z = xG \oplus yH$ (optional) useful information: xmask: yn bits

^{*} Moore-Penrose pseudo-inverse


Encoding the circuit: Security Proof

■ The code [n,k,d] has a proven security of d:

- The HTH trigger is inefficient with less than d probes
- The HTH payload is inefficient if it modifies less than d nets

Complexity

Choose low density codes to encode and decode

Encoding complexity

Table 8.6 – Synthesis results of encoded circuit method, and security parameters for the SIMON co-processor.

IC (Code)	Gates	Area (μm^2)	n	k	$d_{\mathbf{Trigger}}$	$d_{\mathbf{Payload}}$
Original ([109,109,1])	300	1919	109	109	1	1
Encoded ([110,109,2,1])	560	3567	110	109	2	1
Encoded ([140,109,10,6])	3107	20239	140	109	10	6
Encoded ([123,109,5,3])	2348	15249	123	109	5	3

Conclusions

- Methods for counterfeiting and HTH insertions are sophisticated and increasing.
- Many protections:
 - But need resources:
 - Tools and methods for detection
 - Extra Silicon and methods for prevention
 - Split foundries
 - The optimal solution is still a challenge
 - Combination of techniques
 - With reduced complexity to get higher detection or avoidance rate
 - But very few inputs from the industrials

Key References

- 1. http://www.semiconductors.org/document_library_sia/anti_counterfeiting/sia_whitepaper_winning_the_battle_against_counterfeit_semiconductor_products/
- 2. http://www.armed-services.senate.gov/download/inquiry-into-counterfeit-electronic-parts-in-the-department-of-defense-supply-chain
- 3. http://www.zdnet.com/article/counterfeit-chips-a-169-billion-tech-supply-chain-headache/
- 4. Guin, U., Huang, K., DiMase, D., Carulli, J. M., Tehranipoor, M., & Makris, Y. (2014). Counterfeit integrated circuits: a rising threat in the global semiconductor supply chain. Proceedings of the IEEE, 102(8), 1207-1228.
- 5. Bajura, M., Boverman, G., Tan, J., Wagenbreth, G., Rogers, C. M., Feser, M., ... & Reynolds, P. (2011, March). Imaging Integrated Circuits with X-ray Microscopy. In Proceedings of the 36th GOMACTech Conference.
- 6. Alkabani, Y., & Koushanfar, F. (2007, August). Active Hardware Metering for Intellectual Property Protection and Security. In USENIX Security (pp. 291-306).
- 7. Contreras, G. K., Rahman, M. T., & Tehranipoor, M. (2013, October). Secure split-test for preventing IC piracy by untrusted foundry and assembly. In Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT), 2013 IEEE International Symposium on (pp. 196-203). IEEE.
- 8. Jarvis, R. W., & McIntyre, M. G. (2007). U.S. Patent No. 7,195,931. Washington, DC: U.S. Patent and Trademark Office.
- http://www.iarpa.gov/index.php/research-programs/tic
- 10. Charben, E. (1998, May). Hierarchical watermarking in IC design. In Proceedings of the IEEE Custom Integrated Circuits Conference (pp. 295-298). IEEE.
- 11. Rajendran, J., Sam, M., Sinanoglu, O., & Karri, R. (2013, November). Security analysis of integrated circuit camouflaging. In Proceedings of the 2013 ACM SIGSAC conference on Computer & communications security (pp. 709-720). ACM.
- 12. https://www.trust-hub.org

44

- 13. Rajendran, J., Gavas, E., Jimenez, J., Padman, V., & Karri, R. (2010, May). Towards a comprehensive and systematic classification of hardware trojans. In *Circuits and Systems (ISCAS), Proceedings of 2010 IEEE International Symposium on* (pp. 1871-1874). IEEE.
- 14. Francq, J., & Frick, F. (2015, March). Introduction to hardware trojan detection methods. In *Proceedings of the 2015 Design, Automation & Test in Europe Conference & Exhibition* (pp. 770-775). EDA Consortium.
- 15. Bhasin, S., Danger, J. L., Guilley, S., Ngo, X. T., & Sauvage, L. (2013, August). Hardware trojan horses in cryptographic ip cores. In Fault Diagnosis and Tolerance in Cryptography (FDTC), 2013 Workshop on (pp. 15-29). IEEE.
- 16. Chakraborty, R. S., Wolff, F., Paul, S., Papachristou, C., & Bhunia, S. (2009). MERO: A statistical approach for hardware Trojan detection. In *Cryptographic Hardware and Embedded Systems-CHES 2009* (pp. 396-410). Springer Berlin Heidelberg.
- 17. Ngo, X. T., Najm, Z., Guilley, S., Bhasin, S., & Danger, J. L. (2014). Method Taking into Account Process Dispersion to Detect Hardware Trojan Horse by Side-Channel. *Proc. Security Proofs for Embedded Systems--PROOFS*.
- 18. Danger, J. L., Guilley, S., Porteboeuf, T., Praden, F., & Timbert, M. (2014, December). HCODE: Hardware-Enhanced Real-Time CFI. In *Proceedings of the 4th Program Protection and Reverse Engineering Workshop* (p. 6). ACM.
- 19. Ngo, X. T., Danger, J. L., Guilley, S., Najm, Z., & Emery, O. (2015, August). Hardware property checker for run-time Hardware Trojan detection. In Circuit Theory and Design (ECCTD), 2015 European Conference on (pp. 1-4). IEEE.
- 20. Ngo, X. T., Guilley, S., Bhasin, S., Danger, J. L., & Najm, Z. (2014, October). Encoding the state of integrated circuits: a proactive and reactive protection against hardware Trojans horses. In *Proceedings of the 9th Workshop on Embedded Systems Security* (p. 7). ACM.

