This commit is contained in:
higepi 2022-12-22 19:38:17 +01:00
parent bf1cb09aeb
commit e10c86baac
15 changed files with 237 additions and 26 deletions

3
.gitmodules vendored Normal file
View file

@ -0,0 +1,3 @@
[submodule "Projet_SETI_RISC-V"]
path = Projet_SETI_RISC-V
url = https://gitea.auro.re/higepi/Projet_SETI_RISC-V

View file

@ -0,0 +1,82 @@
# import matplotlib.pyplot as plt
import numpy as np
import scipy.spatial
from skimage import io
import time
def distance(points,Pc):
return scipy.spatial.distance.cdist(points[:,:], Pc[:,:])
def kmeans(points = [0,0], K = 1):
# Initialisation K prototypes
dim = points.shape[1]
N = points.shape[0]
iter = 0
eps = 0.1
Pc_index = []
Pc_save = np.zeros([K,dim])
clusters = []
for i in range(0,K):
Pc_index.append(np.random.randint(0,N))
Pc = points[Pc_index,:]
while (np.mean(distance(Pc,Pc_save)) > eps and iter < 3):
iter += 1
Pc_save = Pc
# print(Pc)
# print(points[:,:Pc.shape[0]])
dist = distance(points=points[:,:Pc.shape[1]],Pc=Pc)
clust = np.argmin(dist, axis=1)
clust = np.expand_dims(clust, axis=0)
points = np.append(points[:,:Pc.shape[1]], clust.T, axis=1)
# print(points)
Pc = np.zeros([K,dim])
index = np.array([])
for n in range(0,N):
for k in range(0,K):
index = np.append(index, (clust==k).sum())
if points[n,-1] == k:
# print(points)
# print(Pc)
Pc[k,:] = np.add(Pc[k,:], points[n,:-1])
for k in range(0,K):
Pc[k,:] = np.divide(Pc[k,:],index[k])
# print(Pc)
indice = points[:,-1]
points = points[:,:-1]
return Pc, indice, points
def mat_2_img(mat,my_img):
img_seg = mat.reshape(my_img.shape[0], my_img.shape[1], my_img.shape[2])
return img_seg
def img_2_mat(my_img):
mat = my_img.reshape(my_img.shape[0]*my_img.shape[1],my_img.shape[2])
return mat
def kmeans_image(path_image, K):
my_img = io.imread(path_image)
# imgplot = plt.imshow(my_img)
Mat = img_2_mat(my_img)
Pc, index, clusters = kmeans(Mat, K)
for k in range(Mat.shape[0]):
Mat[k,:] = np.floor(Pc[index[k],:])
img_seg = mat_2_img(Mat, my_img)
io.imsave(path_image.split('.')[0] + "_%d.jpg" % K, img_seg)
# imgplot = plt.imshow(img_seg)
return Pc, index, img_seg
path_image = "fruits.jpg"
start_time = time.time()
Pc, index, img_seg = kmeans_image(path_image=path_image, K=2)
end_time = time.time()
print(f"It took {end_time-start_time:.2f} seconds to compute")

View file

@ -0,0 +1,82 @@
import numpy as np
import pycuda.autoinit
import pycuda.driver as cuda
from pycuda.compiler import SourceModule
import time
# Load the image and convert it to a NumPy array
from PIL import Image
im = Image.open('fruits.jpg')
im_data = np.array(im)
# Convert the image data to float32 and normalize it
im_data = im_data.astype(np.float32) / 255
# Create a CUDA kernel to perform K-means clustering
kernel = """
__global__ void kmeans(float *data, int *labels, float *centroids, int n, int k, int dim)
{
int tid = blockIdx.x * blockDim.x + threadIdx.x;
if (tid >= n)
return;
float min_dist = 10000;
int min_centroid = -1;
for (int i = 0; i < k; i++)
{
float dist = 0.0;
for (int j = 0; j < dim; j++)
{
float diff = data[tid * dim + j] - centroids[i * dim + j];
dist += diff * diff;
}
if (dist < min_dist)
{
min_dist = dist;
min_centroid = i;
}
}
labels[tid] = min_centroid;
}
"""
mod = SourceModule(kernel)
kmeans = mod.get_function("kmeans")
# Set the number of clusters and the number of iterations
k = 2
n_iter = 5
# Initialize the centroids and labels
centroids = np.random.rand(k, im_data.shape[-1]).astype(np.float32)
labels = np.zeros(im_data.shape[:2], dtype=np.int32)
def replace_with_nearest_centroid(centroids, colors):
# Compute the distance between each color and each centroid
distances = np.sqrt(np.sum((colors[:, :] - centroids) ** 2, axis=2))
# Find the index of the centroid that is nearest to each color
nearest_centroids = np.argmin(distances, axis=1)
# Replace each color with the nearest centroid
colors[:] = centroids[nearest_centroids]
start_time = time.time()
# Run the K-means algorithm
for _ in range(n_iter):
kmeans(cuda.In(im_data), cuda.Out(labels), cuda.In(centroids), np.int32(im_data.shape[0] * im_data.shape[1]), np.int32(k), np.int32(im_data.shape[-1]), block=(1024,1,1), grid=(im_data.shape[0] * im_data.shape[1] // 1024 + 1, 1))
# Update the centroids
for i in range(k):
centroids[i] = np.mean(im_data[labels == i], axis=0)
replace_with_nearest_centroid(centroids=centroids, colors=im_data)
# Convert the labels back to the original image format
labels = labels
end_time = time.time()
print(f"It took {end_time-start_time:.2f} seconds to compute")

View file

@ -0,0 +1,23 @@
import numpy as np
import cv2
import cupy as cp
# Load the image and convert it to a NumPy array
image = cv2.imread("fruits.jpg")
image = image.astype(np.float32)
# Use cupy to transfer the image to the GPU
image_gpu = cp.asarray(image)
# Perform k-means clustering on the GPU
cluster_centers_gpu, labels_gpu, _ = cp.cluster.kmeans(image_gpu.reshape(-1, 3), k=8)
# Transfer the cluster centers and labels back to the CPU
cluster_centers = cp.asnumpy(cluster_centers_gpu)
labels = cp.asnumpy(labels_gpu)
# Convert the image pixels to the closest cluster
clustered_image = cluster_centers[labels].reshape(image.shape)
# Save the clustered image as a PNG file
cv2.imwrite("clustered_image.png", clustered_image)

File diff suppressed because one or more lines are too long

Binary file not shown.

Before

Width:  |  Height:  |  Size: 11 KiB

After

Width:  |  Height:  |  Size: 11 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 16 KiB

After

Width:  |  Height:  |  Size: 16 KiB

Binary file not shown.

BIN
IA/Edt IA-SETI-2022-23.pdf Normal file

Binary file not shown.

Binary file not shown.

BIN
IR/mimetic[8965].pdf Normal file

Binary file not shown.

View file

@ -1,9 +0,0 @@
# Optimisation robot
Trouver meilleurs compromis performance/consommation.
Répartition sur 5/6 groupes.
On peut commencer dès que les groupes sont faits.
## Jetson
Pour optimiser le code, il faut connaître le matériel.
Faire beaucoup de doc et de tests :)

1
Projet_SETI_RISC-V Submodule

@ -0,0 +1 @@
Subproject commit c2541cc3055c9ae0a766d2603419e5d823e7e82e