diff --git a/A2/Timing.PNG b/A2/Timing.PNG new file mode 100644 index 0000000..bcd611a Binary files /dev/null and b/A2/Timing.PNG differ diff --git a/A4/TP_A4.zip b/A4/TP_A4.zip new file mode 100644 index 0000000..3ff5f22 Binary files /dev/null and b/A4/TP_A4.zip differ diff --git a/A4/TP_A4/Modele_exo4/Makefile b/A4/TP_A4/Modele_exo4/Makefile new file mode 100644 index 0000000..e2473b5 --- /dev/null +++ b/A4/TP_A4/Modele_exo4/Makefile @@ -0,0 +1,29 @@ +CC=gcc +CCFLAGS=-Wall -std=c99 -fopenmp +LDFLAGS=-lm -fopenmp +SOURCES=$(wildcard *.c) +OBJECTS=$(SOURCES:.c=.o) +TARGET=ShiTomasi + +all: debug + +debug: CCFLAGS += -DDEBUG -g +debug: $(TARGET) + +release: CCFLAGS += -O2 +release: $(TARGET) + +benchmode: CCFLAGS += -O2 -DBENCHMARKMODE +benchmode: $(TARGET) + +$(TARGET): $(OBJECTS) $(CXXOBJECTS) + $(CC) -o $@ $^ $(LDFLAGS) + +%.o: %.c %.h + $(CC) $(CCFLAGS) -c $< + +%.o: %.c + $(CC) $(CCFLAGS) -c $< + +clean: + rm -f *.pgm *.o $(TARGET) \ No newline at end of file diff --git a/A4/TP_A4/Modele_exo4/ShiTomasi b/A4/TP_A4/Modele_exo4/ShiTomasi new file mode 100644 index 0000000..69f8dd8 Binary files /dev/null and b/A4/TP_A4/Modele_exo4/ShiTomasi differ diff --git a/A4/TP_A4/Modele_exo4/ShiTomasi.c b/A4/TP_A4/Modele_exo4/ShiTomasi.c new file mode 100644 index 0000000..d7dc41c --- /dev/null +++ b/A4/TP_A4/Modele_exo4/ShiTomasi.c @@ -0,0 +1,362 @@ +#include +#include +#include + +#include +#include +#include +#include "image_io.h" +#include "ShiTomasi.h" +#include +#include + +float timedifference_msec(struct timeval t0, struct timeval t1) +{ + return (t1.tv_sec - t0.tv_sec) * 1000.0f + (t1.tv_usec - t0.tv_usec) / 1000.0f; +} + +int main(int argc, char **argv) +{ + + // path to the image to process + char *filepath = NULL; + + // sigma of the gaussian distribution + float sigma = 1.1; + // size of a pixel 'neighborhood' + int windowsize = 4; + // # of features + int max_features = 1024; + + // argument parsing logic + if (argc == 4) + { + filepath = argv[1]; + windowsize = atof(argv[2]); + max_features = atoi(argv[3]); + } + else + { + help(NULL); + } + + printf("detecting features for %s\n", filepath); + printf("sigma = %0.3f, windowsize = %d, max_features = %d\n", sigma, windowsize, max_features); + + int width; + int height; + int kernel_width; + int a; + + // calculate kernel width based on sigma + a = (int)round(2.5 * sigma - .5); + kernel_width = 2 * a + 1; + + // malloc and read the image to be processed + float *original_image; + + read_imagef(filepath, &original_image, &width, &height); + + printf("image_size: [%d x %d] px\n", width, height); + + // malloc and generate the kernels + float *gkernel = (float *)malloc(sizeof(float) * kernel_width); + float *dkernel = (float *)malloc(sizeof(float) * kernel_width); + gen_kernel(gkernel, dkernel, sigma, a, kernel_width); + + // create hgrad and vgrad and temp + float *hgrad = (float *)malloc(sizeof(float) * width * height); + float *vgrad = (float *)malloc(sizeof(float) * width * height); + float *tmp_image = (float *)malloc(sizeof(float) * width * height); + + double timer_start_conv = omp_get_wtime(); + // convolve to get the vgrad and hgrad + convolve(gkernel, original_image, tmp_image, width, height, kernel_width, 1, a); + convolve(dkernel, tmp_image, vgrad, width, height, 1, kernel_width, a); + convolve(gkernel, original_image, tmp_image, width, height, 1, kernel_width, a); + convolve(dkernel, tmp_image, hgrad, width, height, kernel_width, 1, a); + double timer_elapsed_conv = omp_get_wtime() - timer_start_conv; + + free(tmp_image); + free(gkernel); + free(dkernel); + + // Compute the eigenvalues of each pixel's z matrix. After this we can free the gradients. + data_wrapper_t *eigenvalues = (data_wrapper_t *)malloc(sizeof(data_wrapper_t) * width * height); + + struct timeval current_time, end_time; + double timer_start_eigen = omp_get_wtime(); + gettimeofday(¤t_time, NULL); + compute_eigenvalues(hgrad, vgrad, height, width, windowsize, eigenvalues); + double timer_elapsed_eigen = omp_get_wtime() - timer_start_eigen; + gettimeofday(&end_time, NULL); + // float elapsed = timedifference_msec(current_time, end_time); + float elapsed = (end_time.tv_sec - current_time.tv_sec) * 1000.0f + (end_time.tv_usec - current_time.tv_usec) / 1000.0f; + + // long double elapsed_double = (float)elapsed / (float)1000000; + printf("[gettimeofday] EigenValues Time %f\n", elapsed); + // printf("[gettimeofday] EigenValues Time %ld\n", (long)elapsed_double); + + free(hgrad); + free(vgrad); + + // Find the features based on the eigenvalues. + data_wrapper_t *features; + unsigned int features_count; + + features_count = find_features(eigenvalues, max_features, width, height, &features); + + free(eigenvalues); + + printf("%d features detected\n", features_count); + + printf("Convolution Time %f\n", timer_elapsed_conv); + printf("EigenValues Time %f\n", timer_elapsed_eigen); + + // printf("\t"); + // print_features(features, features_count); + + // Mark the features in the output image. + draw_features(features, features_count, original_image, width, height); + + free(features); + + // Now we write the output. + char corner_image[30]; + sprintf(corner_image, "output_images/corners.pgm"); + + write_imagef(corner_image, original_image, width, height); + + // Free stuff leftover. + free(original_image); + + return 0; +} + +void draw_features(data_wrapper_t *features, unsigned int count, float *image, int image_width, int image_height) +{ + int radius = image_width * 0.0025; + for (int i = 0; i < count; ++i) + { + int x = features[i].x; + int y = features[i].y; + for (int k = -1 * radius; k <= radius; k++) + { + for (int m = -1 * radius; m <= radius; m++) + { + if ((x + k) >= 0 && (x + k) < image_height && (y + m) >= 0 && (y + m) < image_width) + image[(x + k) * image_width + (y + m)] = 0; + } + } + } +} + +unsigned int find_features(data_wrapper_t *eigenvalues, int max_features, int image_width, int image_height, data_wrapper_t **features) +{ + size_t image_size = image_height * image_width; + + // Sort eigenvalues in descending order while keeping their corresponding pixel index in the image. + qsort(eigenvalues, image_height * image_width, sizeof *eigenvalues, sort_data_wrapper_value_desc); + + // Create the features buffer based on the max_features value (acts as a percentage of the image size). + *features = (data_wrapper_t *)malloc(sizeof(data_wrapper_t) * max_features); + + // Fill the features buffer! + unsigned int features_count = 0; + const int ignore_x = 3; // ignore this many pixels rows from top/bottom of image + const int ignore_y = 3; // ignore this many pixels columns from left/right of image + for (int i = 0; i < image_size && features_count < max_features; ++i) + { + // Ignore top left, top right, bottom right, bottom left edges of image. + if (eigenvalues[i].x <= ignore_x || eigenvalues[i].y <= ignore_y || + eigenvalues[i].x >= image_width - 1 - ignore_x || eigenvalues[i].y >= image_height - 1 - ignore_y) + { + continue; + } + + // Have to seed the first feature so we have a place to start. + if (features_count == 0) + { + (*features)[0] = eigenvalues[i]; + features_count++; + } + + // Check if prospective feature is more than 8 manhattan distance away from any existing feature. + int is_good = 1; + for (int j = 0; j < features_count; ++j) + { + int manhattan = abs((*features)[j].x - eigenvalues[i].x) + abs((*features)[j].y - eigenvalues[i].y); + if (manhattan <= 8) + { + is_good = 0; + break; + } + } + + // If the prospective feature was at least 8 manhattan distance from all existing features, then we can add it. + if (is_good) + { + (*features)[features_count] = eigenvalues[i]; + features_count++; + } + } + + return features_count; +} + +int sort_data_wrapper_value_desc(const void *a, const void *b) +{ + const data_wrapper_t *aa = (const data_wrapper_t *)a; + const data_wrapper_t *bb = (const data_wrapper_t *)b; + return (aa->data < bb->data) - (aa->data > bb->data); +} + +int sort_data_wrapper_index_asc(const void *a, const void *b) +{ + const data_wrapper_t *aa = (const data_wrapper_t *)a; + const data_wrapper_t *bb = (const data_wrapper_t *)b; + + if (aa->x == bb->x) + return ((aa->y > bb->y) - (aa->y < bb->y)); + else + return ((aa->x > bb->x) - (aa->x < bb->x)); +} + +void compute_eigenvalues(float *hgrad, float *vgrad, int image_height, int image_width, int windowsize, data_wrapper_t *eigenvalues) +{ + int w = floor(windowsize / 2); + + int i, j, k, m, offseti, offsetj; + float ixx_sum, iyy_sum, ixiy_sum; + + for (i = 0; i < image_height; i++) + { + for (j = 0; j < image_width; j++) + { + ixx_sum = 0; + iyy_sum = 0; + ixiy_sum = 0; + + for (k = 0; k < windowsize; k++) + { + for (m = 0; m < windowsize; m++) + { + offseti = -1 * w + k; + offsetj = -1 * w + m; + if (i + offseti >= 0 && i + offseti < image_height && j + offsetj >= 0 && j + offsetj < image_width) + { + ixx_sum += hgrad[(i + offseti) * image_width + (j + offsetj)] * hgrad[(i + offseti) * image_width + (j + offsetj)]; + iyy_sum += vgrad[(i + offseti) * image_width + (j + offsetj)] * vgrad[(i + offseti) * image_width + (j + offsetj)]; + ixiy_sum += hgrad[(i + offseti) * image_width + (j + offsetj)] * vgrad[(i + offseti) * image_width + (j + offsetj)]; + } + } + } + + eigenvalues[i * image_width + j].x = i; + eigenvalues[i * image_width + j].y = j; + eigenvalues[i * image_width + j].data = min_eigenvalue(ixx_sum, ixiy_sum, ixiy_sum, iyy_sum); + } + } +} + +float min_eigenvalue(float a, float b, float c, float d) +{ + float ev_one = (a + d) / 2 + pow(((a + d) * (a + d)) / 4 - (a * d - b * c), 0.5); + float ev_two = (a + d) / 2 - pow(((a + d) * (a + d)) / 4 - (a * d - b * c), 0.5); + if (ev_one >= ev_two) + { + return ev_two; + } + else + { + return ev_one; + } +} + +void convolve(float *kernel, float *image, float *resultimage, int image_width, int image_height, int kernel_width, int kernel_height, int half) +{ + float sum; + int i, j, k, m, offsetj, offseti; + // assign the kernel to the new array + for (i = 0; i < image_height; i++) + { + for (j = 0; j < image_width; j++) + { + + // reset tracker + sum = 0.0; + // for each item in the kernel + for (k = 0; k < kernel_height; k++) + { + for (m = 0; m < kernel_width; m++) + { + offseti = -1 * (kernel_height / 2) + k; + offsetj = -1 * (kernel_width / 2) + m; + if (i + offseti >= 0 && i + offseti < image_height && j + offsetj >= 0 && j + offsetj < image_width) + { + sum += (float)(image[(i + offseti) * image_width + (j + offsetj)]) * kernel[k * kernel_width + m]; + } + } + } + // copy it back + resultimage[i * image_width + j] = sum; + } + } +} + +void gen_kernel(float *gkernel, float *dkernel, float sigma, int a, int w) +{ + int i; + float sum_gkern; + float sum_dkern; + sum_gkern = 0; + sum_dkern = 0; + for (i = 0; i < w; i++) + { + gkernel[i] = (float)exp((float)(-1.0 * (i - a) * (i - a)) / (2 * sigma * sigma)); + dkernel[i] = (float)(-1 * (i - a)) * (float)exp((float)(-1.0 * (i - a) * (i - a)) / (2 * sigma * sigma)); + sum_gkern = sum_gkern + gkernel[i]; + sum_dkern = sum_dkern - (float)i * dkernel[i]; + } + + // reverse the kernel by creating a new kernel, yes not ideal + float *newkernel = (float *)malloc(sizeof(float) * w); + for (i = 0; i < w; i++) + { + dkernel[i] = dkernel[i] / sum_dkern; + gkernel[i] = gkernel[i] / sum_gkern; + newkernel[w - i] = dkernel[i]; + } + + // copy new kernel back in + for (i = 0; i < w; i++) + { + dkernel[i] = newkernel[i + 1]; + } + free(newkernel); +} + +void help(const char *err) +{ + if (err != NULL) + printf("%s\n", err); + printf("Utilisation: ./ShiTomasi [Taille de la fenêtre] [Nombre de primitives] \n"); + printf("arguments:\n"); + printf("\tTaille de la fenêtre: taille du voisinage d'un pixel dans l'image\n"); + printf("\tNombre de primitives: nombre de primitives à extraire\n"); + exit(0); +} + +void print_features(data_wrapper_t *features, unsigned int count) +{ + // Sort the features by + qsort(features, count, sizeof *features, sort_data_wrapper_index_asc); + for (unsigned int i = 0; i < count; ++i) + { + if (i % 15 != 0 || i == 0) + printf("(%d,%d) ", features[i].x, features[i].y); + else + printf("(%d,%d)\n\t", features[i].x, features[i].y); + } + printf("\n"); +} diff --git a/A4/TP_A4/Modele_exo4/ShiTomasi.h b/A4/TP_A4/Modele_exo4/ShiTomasi.h new file mode 100644 index 0000000..f5f41e5 --- /dev/null +++ b/A4/TP_A4/Modele_exo4/ShiTomasi.h @@ -0,0 +1,41 @@ +#ifndef SHI_TOMASI_H +#define SHI_TOMASI_H + +typedef struct data_wrapper_t +{ + float data; + int x; + int y; +} data_wrapper_t; + +/// Draws a box at specfied location in the image. Used for markgin features. +void draw_features(data_wrapper_t *features, unsigned int count, float *image, int image_width, int image_height); + +/// Find features in an image. +unsigned int find_features(data_wrapper_t *eigenvalues, int max_features, int image_width, int image_height, data_wrapper_t **features); + +/// Defines comparison for data_wrapper_t. When used with qsort, it will result in a descending order array. +int sort_data_wrapper_value_desc(const void *a, const void *b); + +// Sort data_wrapper_t types by their index (x first then y) in ascending order. +int sort_data_wrapper_index_asc(const void *a, const void *b); + +/// Compute the eigenvalues of a pixel's Z matrix. +void compute_eigenvalues(float *hgrad, float *vgrad, int image_height, int image_width, int windowsize, data_wrapper_t *eigenvalues); + +/// Calculate the minimum eigenvalue. +float min_eigenvalue(float a, float b, float c, float d); + +/// Produce the images horizontal and vertical gradients. +void convolve(float *kernel, float *image, float *resultimage, int image_width, int image_height, int kernel_width, int kernel_height, int half); + +/// Creates Gaussian kernel and Gaussian derivative kernel for image gradient/convolution procedure. +void gen_kernel(float *gkernel, float *dkernel, float sigma, int a, int w); + +/// Prints out the program help menu. +void help(const char *err); + +/// Print out all of the detected features. +void print_features(data_wrapper_t *features, unsigned int count); + +#endif \ No newline at end of file diff --git a/A4/TP_A4/Modele_exo4/ShiTomasi.o b/A4/TP_A4/Modele_exo4/ShiTomasi.o new file mode 100644 index 0000000..67ea9c9 Binary files /dev/null and b/A4/TP_A4/Modele_exo4/ShiTomasi.o differ diff --git a/A4/TP_A4/Modele_exo4/image_io.c b/A4/TP_A4/Modele_exo4/image_io.c new file mode 100644 index 0000000..83d2a23 --- /dev/null +++ b/A4/TP_A4/Modele_exo4/image_io.c @@ -0,0 +1,77 @@ + +#include "image_io.h" +#define STB_IMAGE_IMPLEMENTATION +#include "stb_image.h" + +#define BUFFER 512 + +#define READ_IMAGE_TEMPLATE(T) \ + { \ + int im_channels; \ + unsigned char *data = stbi_load(name, im_width, im_height, &im_channels, 1); \ + if (data == NULL) \ + { \ + printf("ERROR: Cannot read %s\n", name); \ + exit(0); \ + } \ + *image = malloc(sizeof(**image) * (*im_width) * (*im_height)); \ + for (int i = 0; i < (*im_width) * (*im_height); ++i) \ + (*image)[i] = (T)data[i]; \ + stbi_image_free(data); \ + } + +#define WRITE_IMAGE_TEMPLATE(T) \ + { \ + unsigned char *temp_img = malloc(sizeof(unsigned char) * im_width * im_height); \ + for (int i = 0; i < (im_width * im_height); i++) \ + temp_img[i] = image[i]; \ + write_imagec(name, temp_img, im_width, im_height); \ + free(temp_img); \ + } + +void read_image(char *name, double **image, int *im_width, int *im_height) +{ + READ_IMAGE_TEMPLATE(double) +} + +void read_imagef(char *name, float **image, int *im_width, int *im_height) +{ + READ_IMAGE_TEMPLATE(float) +} + +void read_imagei(char *name, int **image, int *im_width, int *im_height) +{ + READ_IMAGE_TEMPLATE(int) +} + +void read_imagec(char *name, unsigned char **image, int *im_width, int *im_height) +{ + READ_IMAGE_TEMPLATE(char) +} + +void write_image(char *name, double *image, int im_width, int im_height) +{ + WRITE_IMAGE_TEMPLATE(double) +} + +void write_imagef(char *name, float *image, int im_width, int im_height) +{ + WRITE_IMAGE_TEMPLATE(float) +} + +void write_imagei(char *name, int *image, int im_width, int im_height) +{ + WRITE_IMAGE_TEMPLATE(int) +} + +void write_imagec(char *name, unsigned char *image, int im_width, int im_height) +{ + FILE *fop; + int im_size = im_width * im_height; + + fop = fopen(name, "w+"); + fprintf(fop, "P5\n%d %d\n255\n", im_width, im_height); + fwrite(image, sizeof(unsigned char), im_size, fop); + + fclose(fop); +} diff --git a/A4/TP_A4/Modele_exo4/image_io.h b/A4/TP_A4/Modele_exo4/image_io.h new file mode 100644 index 0000000..ad7fbea --- /dev/null +++ b/A4/TP_A4/Modele_exo4/image_io.h @@ -0,0 +1,11 @@ +#ifndef IMAGE_IO_H +#define IMAGE_IO_H + +void read_image(char *name, double **image, int *im_width, int *im_height); +void read_imagef(char *name, float **image, int *im_width, int *im_height); +void read_imagec(char *name, unsigned char **image, int *im_width, int *im_height); +void write_image(char *name, double *image, int im_width, int im_height); +void write_imagef(char *name, float *image, int im_width, int im_height); +void write_imagec(char *name, unsigned char *image, int im_width, int im_height); + +#endif diff --git a/A4/TP_A4/Modele_exo4/image_io.o b/A4/TP_A4/Modele_exo4/image_io.o new file mode 100644 index 0000000..6272755 Binary files /dev/null and b/A4/TP_A4/Modele_exo4/image_io.o differ diff --git a/A4/TP_A4/Modele_exo4/input_images/000009.png b/A4/TP_A4/Modele_exo4/input_images/000009.png new file mode 100644 index 0000000..cd2eef3 Binary files /dev/null and b/A4/TP_A4/Modele_exo4/input_images/000009.png differ diff --git a/A4/TP_A4/Modele_exo4/input_images/img_1.jpg b/A4/TP_A4/Modele_exo4/input_images/img_1.jpg new file mode 100644 index 0000000..ac5f4ed Binary files /dev/null and b/A4/TP_A4/Modele_exo4/input_images/img_1.jpg differ diff --git a/A4/TP_A4/Modele_exo4/input_images/img_2.jpg b/A4/TP_A4/Modele_exo4/input_images/img_2.jpg new file mode 100644 index 0000000..218a5fe Binary files /dev/null and b/A4/TP_A4/Modele_exo4/input_images/img_2.jpg differ diff --git a/A4/TP_A4/Modele_exo4/input_images/img_3.jpg b/A4/TP_A4/Modele_exo4/input_images/img_3.jpg new file mode 100644 index 0000000..050e4a3 Binary files /dev/null and b/A4/TP_A4/Modele_exo4/input_images/img_3.jpg differ diff --git a/A4/TP_A4/Modele_exo4/input_images/img_4.jpg b/A4/TP_A4/Modele_exo4/input_images/img_4.jpg new file mode 100644 index 0000000..403d682 Binary files /dev/null and b/A4/TP_A4/Modele_exo4/input_images/img_4.jpg differ diff --git a/A4/TP_A4/Modele_exo4/input_images/img_5.jpg b/A4/TP_A4/Modele_exo4/input_images/img_5.jpg new file mode 100644 index 0000000..4a52a1c Binary files /dev/null and b/A4/TP_A4/Modele_exo4/input_images/img_5.jpg differ diff --git a/A4/TP_A4/Modele_exo4/output_images/corners.pgm b/A4/TP_A4/Modele_exo4/output_images/corners.pgm new file mode 100644 index 0000000..b8f9699 Binary files /dev/null and b/A4/TP_A4/Modele_exo4/output_images/corners.pgm differ diff --git a/A4/TP_A4/Modele_exo4/stb_image.h b/A4/TP_A4/Modele_exo4/stb_image.h new file mode 100644 index 0000000..005680d --- /dev/null +++ b/A4/TP_A4/Modele_exo4/stb_image.h @@ -0,0 +1,8224 @@ +#ifndef STBI_INCLUDE_STB_IMAGE_H +#define STBI_INCLUDE_STB_IMAGE_H + +// DOCUMENTATION +// +// Limitations: +// - no 16-bit-per-channel PNG +// - no 12-bit-per-channel JPEG +// - no JPEGs with arithmetic coding +// - no 1-bit BMP +// - GIF always returns *comp=4 +// +// Basic usage (see HDR discussion below for HDR usage): +// int x,y,n; +// unsigned char *data = stbi_load(filename, &x, &y, &n, 0); +// // ... process data if not NULL ... +// // ... x = width, y = height, n = # 8-bit components per pixel ... +// // ... replace '0' with '1'..'4' to force that many components per pixel +// // ... but 'n' will always be the number that it would have been if you said 0 +// stbi_image_free(data) +// +// Standard parameters: +// int *x -- outputs image width in pixels +// int *y -- outputs image height in pixels +// int *channels_in_file -- outputs # of image components in image file +// int desired_channels -- if non-zero, # of image components requested in result +// +// The return value from an image loader is an 'unsigned char *' which points +// to the pixel data, or NULL on an allocation failure or if the image is +// corrupt or invalid. The pixel data consists of *y scanlines of *x pixels, +// with each pixel consisting of N interleaved 8-bit components; the first +// pixel pointed to is top-left-most in the image. There is no padding between +// image scanlines or between pixels, regardless of format. The number of +// components N is 'req_comp' if req_comp is non-zero, or *comp otherwise. +// If req_comp is non-zero, *comp has the number of components that _would_ +// have been output otherwise. E.g. if you set req_comp to 4, you will always +// get RGBA output, but you can check *comp to see if it's trivially opaque +// because e.g. there were only 3 channels in the source image. +// +// An output image with N components has the following components interleaved +// in this order in each pixel: +// +// N=#comp components +// 1 grey +// 2 grey, alpha +// 3 red, green, blue +// 4 red, green, blue, alpha +// +// If image loading fails for any reason, the return value will be NULL, +// and *x, *y, *comp will be unchanged. The function stbi_failure_reason() +// can be queried for an extremely brief, end-user unfriendly explanation +// of why the load failed. Define STBI_NO_FAILURE_STRINGS to avoid +// compiling these strings at all, and STBI_FAILURE_USERMSG to get slightly +// more user-friendly ones. +// +// Paletted PNG, BMP, GIF, and PIC images are automatically depalettized. +// +// =========================================================================== +// +// Philosophy +// +// stb libraries are designed with the following priorities: +// +// 1. easy to use +// 2. easy to maintain +// 3. good performance +// +// Sometimes I let "good performance" creep up in priority over "easy to maintain", +// and for best performance I may provide less-easy-to-use APIs that give higher +// performance, in addition to the easy to use ones. Nevertheless, it's important +// to keep in mind that from the standpoint of you, a client of this library, +// all you care about is #1 and #3, and stb libraries DO NOT emphasize #3 above all. +// +// Some secondary priorities arise directly from the first two, some of which +// make more explicit reasons why performance can't be emphasized. +// +// - Portable ("ease of use") +// - Small source code footprint ("easy to maintain") +// - No dependencies ("ease of use") +// +// =========================================================================== +// +// I/O callbacks +// +// I/O callbacks allow you to read from arbitrary sources, like packaged +// files or some other source. Data read from callbacks are processed +// through a small internal buffer (currently 128 bytes) to try to reduce +// overhead. +// +// The three functions you must define are "read" (reads some bytes of data), +// "skip" (skips some bytes of data), "eof" (reports if the stream is at the end). +// +// =========================================================================== +// +// SIMD support +// +// The JPEG decoder will try to automatically use SIMD kernels on x86 when +// supported by the compiler. For ARM Neon support, you must explicitly +// request it. +// +// (The old do-it-yourself SIMD API is no longer supported in the current +// code.) +// +// On x86, SSE2 will automatically be used when available based on a run-time +// test; if not, the generic C versions are used as a fall-back. On ARM targets, +// the typical path is to have separate builds for NEON and non-NEON devices +// (at least this is true for iOS and Android). Therefore, the NEON support is +// toggled by a build flag: define STBI_NEON to get NEON loops. +// +// If for some reason you do not want to use any of SIMD code, or if +// you have issues compiling it, you can disable it entirely by +// defining STBI_NO_SIMD. +// +// =========================================================================== +// +// HDR image support (disable by defining STBI_NO_HDR) +// +// stb_image now supports loading HDR images in general, and currently +// the Radiance .HDR file format, although the support is provided +// generically. You can still load any file through the existing interface; +// if you attempt to load an HDR file, it will be automatically remapped to +// LDR, assuming gamma 2.2 and an arbitrary scale factor defaulting to 1; +// both of these constants can be reconfigured through this interface: +// +// stbi_hdr_to_ldr_gamma(2.2f); +// stbi_hdr_to_ldr_scale(1.0f); +// +// (note, do not use _inverse_ constants; stbi_image will invert them +// appropriately). +// +// Additionally, there is a new, parallel interface for loading files as +// (linear) floats to preserve the full dynamic range: +// +// float *data = stbi_loadf(filename, &x, &y, &n, 0); +// +// If you load LDR images through this interface, those images will +// be promoted to floating point values, run through the inverse of +// constants corresponding to the above: +// +// stbi_ldr_to_hdr_scale(1.0f); +// stbi_ldr_to_hdr_gamma(2.2f); +// +// Finally, given a filename (or an open file or memory block--see header +// file for details) containing image data, you can query for the "most +// appropriate" interface to use (that is, whether the image is HDR or +// not), using: +// +// stbi_is_hdr(char *filename); +// +// =========================================================================== +// +// iPhone PNG support: +// +// By default we convert iphone-formatted PNGs back to RGB, even though +// they are internally encoded differently. You can disable this conversion +// by by calling stbi_convert_iphone_png_to_rgb(0), in which case +// you will always just get the native iphone "format" through (which +// is BGR stored in RGB). +// +// Call stbi_set_unpremultiply_on_load(1) as well to force a divide per +// pixel to remove any premultiplied alpha *only* if the image file explicitly +// says there's premultiplied data (currently only happens in iPhone images, +// and only if iPhone convert-to-rgb processing is on). +// +// =========================================================================== +// +// ADDITIONAL CONFIGURATION +// +// - You can suppress implementation of any of the decoders to reduce +// your code footprint by #defining one or more of the following +// symbols before creating the implementation. +// +// STBI_NO_JPEG +// STBI_NO_PNG +// STBI_NO_BMP +// STBI_NO_PSD +// STBI_NO_TGA +// STBI_NO_GIF +// STBI_NO_HDR +// STBI_NO_PIC +// STBI_NO_PNM (.ppm and .pgm) +// +// - You can request *only* certain decoders and suppress all other ones +// (this will be more forward-compatible, as addition of new decoders +// doesn't require you to disable them explicitly): +// +// STBI_ONLY_JPEG +// STBI_ONLY_PNG +// STBI_ONLY_BMP +// STBI_ONLY_PSD +// STBI_ONLY_TGA +// STBI_ONLY_GIF +// STBI_ONLY_HDR +// STBI_ONLY_PIC +// STBI_ONLY_PNM (.ppm and .pgm) +// +// - If you use STBI_NO_PNG (or _ONLY_ without PNG), and you still +// want the zlib decoder to be available, #define STBI_SUPPORT_ZLIB +// + +#ifndef STBI_NO_STDIO +#include +#endif // STBI_NO_STDIO + +#define STBI_VERSION 1 + +enum +{ + STBI_default = 0, // only used for req_comp + + STBI_grey = 1, + STBI_grey_alpha = 2, + STBI_rgb = 3, + STBI_rgb_alpha = 4 +}; + +typedef unsigned char stbi_uc; +typedef unsigned short stbi_us; + +#ifdef __cplusplus +extern "C" +{ +#endif + +#ifdef STB_IMAGE_STATIC +#define STBIDEF static +#else +#define STBIDEF extern +#endif + + ////////////////////////////////////////////////////////////////////////////// + // + // PRIMARY API - works on images of any type + // + + // + // load image by filename, open file, or memory buffer + // + + typedef struct + { + int (*read)(void *user, char *data, int size); // fill 'data' with 'size' bytes. return number of bytes actually read + void (*skip)(void *user, int n); // skip the next 'n' bytes, or 'unget' the last -n bytes if negative + int (*eof)(void *user); // returns nonzero if we are at end of file/data + } stbi_io_callbacks; + + //////////////////////////////////// + // + // 8-bits-per-channel interface + // + + STBIDEF stbi_uc *stbi_load(char const *filename, int *x, int *y, int *channels_in_file, int desired_channels); + STBIDEF stbi_uc *stbi_load_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *channels_in_file, int desired_channels); + STBIDEF stbi_uc *stbi_load_from_callbacks(stbi_io_callbacks const *clbk, void *user, int *x, int *y, int *channels_in_file, int desired_channels); + +#ifndef STBI_NO_STDIO + STBIDEF stbi_uc *stbi_load_from_file(FILE *f, int *x, int *y, int *channels_in_file, int desired_channels); +// for stbi_load_from_file, file pointer is left pointing immediately after image +#endif + + //////////////////////////////////// + // + // 16-bits-per-channel interface + // + + STBIDEF stbi_us *stbi_load_16(char const *filename, int *x, int *y, int *channels_in_file, int desired_channels); +#ifndef STBI_NO_STDIO + STBIDEF stbi_us *stbi_load_from_file_16(FILE *f, int *x, int *y, int *channels_in_file, int desired_channels); +#endif +// @TODO the other variants + +//////////////////////////////////// +// +// float-per-channel interface +// +#ifndef STBI_NO_LINEAR + STBIDEF float *stbi_loadf(char const *filename, int *x, int *y, int *channels_in_file, int desired_channels); + STBIDEF float *stbi_loadf_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *channels_in_file, int desired_channels); + STBIDEF float *stbi_loadf_from_callbacks(stbi_io_callbacks const *clbk, void *user, int *x, int *y, int *channels_in_file, int desired_channels); + +#ifndef STBI_NO_STDIO + STBIDEF float *stbi_loadf_from_file(FILE *f, int *x, int *y, int *channels_in_file, int desired_channels); +#endif +#endif + +#ifndef STBI_NO_HDR + STBIDEF void stbi_hdr_to_ldr_gamma(float gamma); + STBIDEF void stbi_hdr_to_ldr_scale(float scale); +#endif // STBI_NO_HDR + +#ifndef STBI_NO_LINEAR + STBIDEF void stbi_ldr_to_hdr_gamma(float gamma); + STBIDEF void stbi_ldr_to_hdr_scale(float scale); +#endif // STBI_NO_LINEAR + + // stbi_is_hdr is always defined, but always returns false if STBI_NO_HDR + STBIDEF int stbi_is_hdr_from_callbacks(stbi_io_callbacks const *clbk, void *user); + STBIDEF int stbi_is_hdr_from_memory(stbi_uc const *buffer, int len); +#ifndef STBI_NO_STDIO + STBIDEF int stbi_is_hdr(char const *filename); + STBIDEF int stbi_is_hdr_from_file(FILE *f); +#endif // STBI_NO_STDIO + + // get a VERY brief reason for failure + // NOT THREADSAFE + STBIDEF const char *stbi_failure_reason(void); + + // free the loaded image -- this is just free() + STBIDEF void stbi_image_free(void *retval_from_stbi_load); + + // get image dimensions & components without fully decoding + STBIDEF int stbi_info_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp); + STBIDEF int stbi_info_from_callbacks(stbi_io_callbacks const *clbk, void *user, int *x, int *y, int *comp); + +#ifndef STBI_NO_STDIO + STBIDEF int stbi_info(char const *filename, int *x, int *y, int *comp); + STBIDEF int stbi_info_from_file(FILE *f, int *x, int *y, int *comp); + +#endif + + // for image formats that explicitly notate that they have premultiplied alpha, + // we just return the colors as stored in the file. set this flag to force + // unpremultiplication. results are undefined if the unpremultiply overflow. + STBIDEF void stbi_set_unpremultiply_on_load(int flag_true_if_should_unpremultiply); + + // indicate whether we should process iphone images back to canonical format, + // or just pass them through "as-is" + STBIDEF void stbi_convert_iphone_png_to_rgb(int flag_true_if_should_convert); + + // flip the image vertically, so the first pixel in the output array is the bottom left + STBIDEF void stbi_set_flip_vertically_on_load(int flag_true_if_should_flip); + + // ZLIB client - used by PNG, available for other purposes + + STBIDEF char *stbi_zlib_decode_malloc_guesssize(const char *buffer, int len, int initial_size, int *outlen); + STBIDEF char *stbi_zlib_decode_malloc_guesssize_headerflag(const char *buffer, int len, int initial_size, int *outlen, int parse_header); + STBIDEF char *stbi_zlib_decode_malloc(const char *buffer, int len, int *outlen); + STBIDEF int stbi_zlib_decode_buffer(char *obuffer, int olen, const char *ibuffer, int ilen); + + STBIDEF char *stbi_zlib_decode_noheader_malloc(const char *buffer, int len, int *outlen); + STBIDEF int stbi_zlib_decode_noheader_buffer(char *obuffer, int olen, const char *ibuffer, int ilen); + +#ifdef __cplusplus +} +#endif + +// +// +//// end header file ///////////////////////////////////////////////////// +#endif // STBI_INCLUDE_STB_IMAGE_H + +#ifdef STB_IMAGE_IMPLEMENTATION + +#if defined(STBI_ONLY_JPEG) || defined(STBI_ONLY_PNG) || defined(STBI_ONLY_BMP) || defined(STBI_ONLY_TGA) || defined(STBI_ONLY_GIF) || defined(STBI_ONLY_PSD) || defined(STBI_ONLY_HDR) || defined(STBI_ONLY_PIC) || defined(STBI_ONLY_PNM) || defined(STBI_ONLY_ZLIB) +#ifndef STBI_ONLY_JPEG +#define STBI_NO_JPEG +#endif +#ifndef STBI_ONLY_PNG +#define STBI_NO_PNG +#endif +#ifndef STBI_ONLY_BMP +#define STBI_NO_BMP +#endif +#ifndef STBI_ONLY_PSD +#define STBI_NO_PSD +#endif +#ifndef STBI_ONLY_TGA +#define STBI_NO_TGA +#endif +#ifndef STBI_ONLY_GIF +#define STBI_NO_GIF +#endif +#ifndef STBI_ONLY_HDR +#define STBI_NO_HDR +#endif +#ifndef STBI_ONLY_PIC +#define STBI_NO_PIC +#endif +#ifndef STBI_ONLY_PNM +#define STBI_NO_PNM +#endif +#endif + +#if defined(STBI_NO_PNG) && !defined(STBI_SUPPORT_ZLIB) && !defined(STBI_NO_ZLIB) +#define STBI_NO_ZLIB +#endif + +#include +#include // ptrdiff_t on osx +#include +#include +#include + +#if !defined(STBI_NO_LINEAR) || !defined(STBI_NO_HDR) +#include // ldexp +#endif + +#ifndef STBI_NO_STDIO +#include +#endif + +#ifndef STBI_ASSERT +#include +#define STBI_ASSERT(x) assert(x) +#endif + +#ifndef _MSC_VER +#ifdef __cplusplus +#define stbi_inline inline +#else +#define stbi_inline +#endif +#else +#define stbi_inline __forceinline +#endif + +#ifdef _MSC_VER +typedef unsigned short stbi__uint16; +typedef signed short stbi__int16; +typedef unsigned int stbi__uint32; +typedef signed int stbi__int32; +#else +#include +typedef uint16_t stbi__uint16; +typedef int16_t stbi__int16; +typedef uint32_t stbi__uint32; +typedef int32_t stbi__int32; +#endif + +// should produce compiler error if size is wrong +typedef unsigned char validate_uint32[sizeof(stbi__uint32) == 4 ? 1 : -1]; + +#ifdef _MSC_VER +#define STBI_NOTUSED(v) (void)(v) +#else +#define STBI_NOTUSED(v) (void)sizeof(v) +#endif + +#ifdef _MSC_VER +#define STBI_HAS_LROTL +#endif + +#ifdef STBI_HAS_LROTL +#define stbi_lrot(x, y) _lrotl(x, y) +#else +#define stbi_lrot(x, y) (((x) << (y)) | ((x) >> (32 - (y)))) +#endif + +#if defined(STBI_MALLOC) && defined(STBI_FREE) && (defined(STBI_REALLOC) || defined(STBI_REALLOC_SIZED)) +// ok +#elif !defined(STBI_MALLOC) && !defined(STBI_FREE) && !defined(STBI_REALLOC) && !defined(STBI_REALLOC_SIZED) +// ok +#else +#error "Must define all or none of STBI_MALLOC, STBI_FREE, and STBI_REALLOC (or STBI_REALLOC_SIZED)." +#endif + +#ifndef STBI_MALLOC +#define STBI_MALLOC(sz) malloc(sz) +#define STBI_REALLOC(p, newsz) realloc(p, newsz) +#define STBI_FREE(p) free(p) +#endif + +#ifndef STBI_REALLOC_SIZED +#define STBI_REALLOC_SIZED(p, oldsz, newsz) STBI_REALLOC(p, newsz) +#endif + +// x86/x64 detection +#if defined(__x86_64__) || defined(_M_X64) +#define STBI__X64_TARGET +#elif defined(__i386) || defined(_M_IX86) +#define STBI__X86_TARGET +#endif + +#if defined(__GNUC__) && defined(STBI__X86_TARGET) && !defined(__SSE2__) && !defined(STBI_NO_SIMD) +// gcc doesn't support sse2 intrinsics unless you compile with -msse2, +// which in turn means it gets to use SSE2 everywhere. This is unfortunate, +// but previous attempts to provide the SSE2 functions with runtime +// detection caused numerous issues. The way architecture extensions are +// exposed in GCC/Clang is, sadly, not really suited for one-file libs. +// New behavior: if compiled with -msse2, we use SSE2 without any +// detection; if not, we don't use it at all. +#define STBI_NO_SIMD +#endif + +#if defined(__MINGW32__) && defined(STBI__X86_TARGET) && !defined(STBI_MINGW_ENABLE_SSE2) && !defined(STBI_NO_SIMD) +// Note that __MINGW32__ doesn't actually mean 32-bit, so we have to avoid STBI__X64_TARGET +// +// 32-bit MinGW wants ESP to be 16-byte aligned, but this is not in the +// Windows ABI and VC++ as well as Windows DLLs don't maintain that invariant. +// As a result, enabling SSE2 on 32-bit MinGW is dangerous when not +// simultaneously enabling "-mstackrealign". +// +// See https://github.com/nothings/stb/issues/81 for more information. +// +// So default to no SSE2 on 32-bit MinGW. If you've read this far and added +// -mstackrealign to your build settings, feel free to #define STBI_MINGW_ENABLE_SSE2. +#define STBI_NO_SIMD +#endif + +#if !defined(STBI_NO_SIMD) && (defined(STBI__X86_TARGET) || defined(STBI__X64_TARGET)) +#define STBI_SSE2 +#include + +#ifdef _MSC_VER + +#if _MSC_VER >= 1400 // not VC6 +#include // __cpuid +static int stbi__cpuid3(void) +{ + int info[4]; + __cpuid(info, 1); + return info[3]; +} +#else +static int stbi__cpuid3(void) +{ + int res; + __asm { + mov eax,1 + cpuid + mov res,edx + } + return res; +} +#endif + +#define STBI_SIMD_ALIGN(type, name) __declspec(align(16)) type name + +static int stbi__sse2_available() +{ + int info3 = stbi__cpuid3(); + return ((info3 >> 26) & 1) != 0; +} +#else // assume GCC-style if not VC++ +#define STBI_SIMD_ALIGN(type, name) type name __attribute__((aligned(16))) + +static int stbi__sse2_available() +{ + // If we're even attempting to compile this on GCC/Clang, that means + // -msse2 is on, which means the compiler is allowed to use SSE2 + // instructions at will, and so are we. + return 1; +} +#endif +#endif + +// ARM NEON +#if defined(STBI_NO_SIMD) && defined(STBI_NEON) +#undef STBI_NEON +#endif + +#ifdef STBI_NEON +#include +// assume GCC or Clang on ARM targets +#define STBI_SIMD_ALIGN(type, name) type name __attribute__((aligned(16))) +#endif + +#ifndef STBI_SIMD_ALIGN +#define STBI_SIMD_ALIGN(type, name) type name +#endif + +/////////////////////////////////////////////// +// +// stbi__context struct and start_xxx functions + +// stbi__context structure is our basic context used by all images, so it +// contains all the IO context, plus some basic image information +typedef struct +{ + stbi__uint32 img_x, img_y; + int img_n, img_out_n; + + stbi_io_callbacks io; + void *io_user_data; + + int read_from_callbacks; + int buflen; + stbi_uc buffer_start[128]; + + stbi_uc *img_buffer, *img_buffer_end; + stbi_uc *img_buffer_original, *img_buffer_original_end; +} stbi__context; + +static void stbi__refill_buffer(stbi__context *s); + +// initialize a memory-decode context +static void stbi__start_mem(stbi__context *s, stbi_uc const *buffer, int len) +{ + s->io.read = NULL; + s->read_from_callbacks = 0; + s->img_buffer = s->img_buffer_original = (stbi_uc *)buffer; + s->img_buffer_end = s->img_buffer_original_end = (stbi_uc *)buffer + len; +} + +// initialize a callback-based context +static void stbi__start_callbacks(stbi__context *s, stbi_io_callbacks *c, void *user) +{ + s->io = *c; + s->io_user_data = user; + s->buflen = sizeof(s->buffer_start); + s->read_from_callbacks = 1; + s->img_buffer_original = s->buffer_start; + stbi__refill_buffer(s); + s->img_buffer_original_end = s->img_buffer_end; +} + +#ifndef STBI_NO_STDIO + +static int stbi__stdio_read(void *user, char *data, int size) +{ + return (int)fread(data, 1, size, (FILE *)user); +} + +static void stbi__stdio_skip(void *user, int n) +{ + fseek((FILE *)user, n, SEEK_CUR); +} + +static int stbi__stdio_eof(void *user) +{ + return feof((FILE *)user); +} + +static stbi_io_callbacks stbi__stdio_callbacks = + { + stbi__stdio_read, + stbi__stdio_skip, + stbi__stdio_eof, +}; + +static void stbi__start_file(stbi__context *s, FILE *f) +{ + stbi__start_callbacks(s, &stbi__stdio_callbacks, (void *)f); +} + +// static void stop_file(stbi__context *s) { } + +#endif // !STBI_NO_STDIO + +static void stbi__rewind(stbi__context *s) +{ + // conceptually rewind SHOULD rewind to the beginning of the stream, + // but we just rewind to the beginning of the initial buffer, because + // we only use it after doing 'test', which only ever looks at at most 92 bytes + s->img_buffer = s->img_buffer_original; + s->img_buffer_end = s->img_buffer_original_end; +} + +enum +{ + STBI_ORDER_RGB, + STBI_ORDER_BGR +}; + +typedef struct +{ + int bits_per_channel; + int num_channels; + int channel_order; +} stbi__result_info; + +#ifndef STBI_NO_JPEG +static int stbi__jpeg_test(stbi__context *s); +static void *stbi__jpeg_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri); +static int stbi__jpeg_info(stbi__context *s, int *x, int *y, int *comp); +#endif + +#ifndef STBI_NO_PNG +static int stbi__png_test(stbi__context *s); +static void *stbi__png_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri); +static int stbi__png_info(stbi__context *s, int *x, int *y, int *comp); +#endif + +#ifndef STBI_NO_BMP +static int stbi__bmp_test(stbi__context *s); +static void *stbi__bmp_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri); +static int stbi__bmp_info(stbi__context *s, int *x, int *y, int *comp); +#endif + +#ifndef STBI_NO_TGA +static int stbi__tga_test(stbi__context *s); +static void *stbi__tga_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri); +static int stbi__tga_info(stbi__context *s, int *x, int *y, int *comp); +#endif + +#ifndef STBI_NO_PSD +static int stbi__psd_test(stbi__context *s); +static void *stbi__psd_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri, int bpc); +static int stbi__psd_info(stbi__context *s, int *x, int *y, int *comp); +#endif + +#ifndef STBI_NO_HDR +static int stbi__hdr_test(stbi__context *s); +static float *stbi__hdr_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri); +static int stbi__hdr_info(stbi__context *s, int *x, int *y, int *comp); +#endif + +#ifndef STBI_NO_PIC +static int stbi__pic_test(stbi__context *s); +static void *stbi__pic_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri); +static int stbi__pic_info(stbi__context *s, int *x, int *y, int *comp); +#endif + +#ifndef STBI_NO_GIF +static int stbi__gif_test(stbi__context *s); +static void *stbi__gif_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri); +static int stbi__gif_info(stbi__context *s, int *x, int *y, int *comp); +#endif + +#ifndef STBI_NO_PNM +static int stbi__pnm_test(stbi__context *s); +static void *stbi__pnm_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri); +static int stbi__pnm_info(stbi__context *s, int *x, int *y, int *comp); +#endif + +// this is not threadsafe +static const char *stbi__g_failure_reason; + +STBIDEF const char *stbi_failure_reason(void) +{ + return stbi__g_failure_reason; +} + +static int stbi__err(const char *str) +{ + stbi__g_failure_reason = str; + return 0; +} + +static void *stbi__malloc(size_t size) +{ + return STBI_MALLOC(size); +} + +// stb_image uses ints pervasively, including for offset calculations. +// therefore the largest decoded image size we can support with the +// current code, even on 64-bit targets, is INT_MAX. this is not a +// significant limitation for the intended use case. +// +// we do, however, need to make sure our size calculations don't +// overflow. hence a few helper functions for size calculations that +// multiply integers together, making sure that they're non-negative +// and no overflow occurs. + +// return 1 if the sum is valid, 0 on overflow. +// negative terms are considered invalid. +static int stbi__addsizes_valid(int a, int b) +{ + if (b < 0) + return 0; + // now 0 <= b <= INT_MAX, hence also + // 0 <= INT_MAX - b <= INTMAX. + // And "a + b <= INT_MAX" (which might overflow) is the + // same as a <= INT_MAX - b (no overflow) + return a <= INT_MAX - b; +} + +// returns 1 if the product is valid, 0 on overflow. +// negative factors are considered invalid. +static int stbi__mul2sizes_valid(int a, int b) +{ + if (a < 0 || b < 0) + return 0; + if (b == 0) + return 1; // mul-by-0 is always safe + // portable way to check for no overflows in a*b + return a <= INT_MAX / b; +} + +// returns 1 if "a*b + add" has no negative terms/factors and doesn't overflow +static int stbi__mad2sizes_valid(int a, int b, int add) +{ + return stbi__mul2sizes_valid(a, b) && stbi__addsizes_valid(a * b, add); +} + +// returns 1 if "a*b*c + add" has no negative terms/factors and doesn't overflow +static int stbi__mad3sizes_valid(int a, int b, int c, int add) +{ + return stbi__mul2sizes_valid(a, b) && stbi__mul2sizes_valid(a * b, c) && + stbi__addsizes_valid(a * b * c, add); +} + +// returns 1 if "a*b*c*d + add" has no negative terms/factors and doesn't overflow +static int stbi__mad4sizes_valid(int a, int b, int c, int d, int add) +{ + return stbi__mul2sizes_valid(a, b) && stbi__mul2sizes_valid(a * b, c) && + stbi__mul2sizes_valid(a * b * c, d) && stbi__addsizes_valid(a * b * c * d, add); +} + +// mallocs with size overflow checking +static void *stbi__malloc_mad2(int a, int b, int add) +{ + if (!stbi__mad2sizes_valid(a, b, add)) + return NULL; + return stbi__malloc(a * b + add); +} + +static void *stbi__malloc_mad3(int a, int b, int c, int add) +{ + if (!stbi__mad3sizes_valid(a, b, c, add)) + return NULL; + return stbi__malloc(a * b * c + add); +} + +static void *stbi__malloc_mad4(int a, int b, int c, int d, int add) +{ + if (!stbi__mad4sizes_valid(a, b, c, d, add)) + return NULL; + return stbi__malloc(a * b * c * d + add); +} + +// stbi__err - error +// stbi__errpf - error returning pointer to float +// stbi__errpuc - error returning pointer to unsigned char + +#ifdef STBI_NO_FAILURE_STRINGS +#define stbi__err(x, y) 0 +#elif defined(STBI_FAILURE_USERMSG) +#define stbi__err(x, y) stbi__err(y) +#else +#define stbi__err(x, y) stbi__err(x) +#endif + +#define stbi__errpf(x, y) ((float *)(size_t)(stbi__err(x, y) ? NULL : NULL)) +#define stbi__errpuc(x, y) ((unsigned char *)(size_t)(stbi__err(x, y) ? NULL : NULL)) + +STBIDEF void stbi_image_free(void *retval_from_stbi_load) +{ + STBI_FREE(retval_from_stbi_load); +} + +#ifndef STBI_NO_LINEAR +static float *stbi__ldr_to_hdr(stbi_uc *data, int x, int y, int comp); +#endif + +#ifndef STBI_NO_HDR +static stbi_uc *stbi__hdr_to_ldr(float *data, int x, int y, int comp); +#endif + +static int stbi__vertically_flip_on_load = 0; + +STBIDEF void stbi_set_flip_vertically_on_load(int flag_true_if_should_flip) +{ + stbi__vertically_flip_on_load = flag_true_if_should_flip; +} + +static void *stbi__load_main(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri, int bpc) +{ + memset(ri, 0, sizeof(*ri)); // make sure it's initialized if we add new fields + ri->bits_per_channel = 8; // default is 8 so most paths don't have to be changed + ri->channel_order = STBI_ORDER_RGB; // all current input & output are this, but this is here so we can add BGR order + ri->num_channels = 0; + +#ifndef STBI_NO_JPEG + if (stbi__jpeg_test(s)) + return stbi__jpeg_load(s, x, y, comp, req_comp, ri); +#endif +#ifndef STBI_NO_PNG + if (stbi__png_test(s)) + return stbi__png_load(s, x, y, comp, req_comp, ri); +#endif +#ifndef STBI_NO_BMP + if (stbi__bmp_test(s)) + return stbi__bmp_load(s, x, y, comp, req_comp, ri); +#endif +#ifndef STBI_NO_GIF + if (stbi__gif_test(s)) + return stbi__gif_load(s, x, y, comp, req_comp, ri); +#endif +#ifndef STBI_NO_PSD + if (stbi__psd_test(s)) + return stbi__psd_load(s, x, y, comp, req_comp, ri, bpc); +#endif +#ifndef STBI_NO_PIC + if (stbi__pic_test(s)) + return stbi__pic_load(s, x, y, comp, req_comp, ri); +#endif +#ifndef STBI_NO_PNM + if (stbi__pnm_test(s)) + return stbi__pnm_load(s, x, y, comp, req_comp, ri); +#endif + +#ifndef STBI_NO_HDR + if (stbi__hdr_test(s)) + { + float *hdr = stbi__hdr_load(s, x, y, comp, req_comp, ri); + return stbi__hdr_to_ldr(hdr, *x, *y, req_comp ? req_comp : *comp); + } +#endif + +#ifndef STBI_NO_TGA + // test tga last because it's a crappy test! + if (stbi__tga_test(s)) + return stbi__tga_load(s, x, y, comp, req_comp, ri); +#endif + + return stbi__errpuc("unknown image type", "Image not of any known type, or corrupt"); +} + +static stbi_uc *stbi__convert_16_to_8(stbi__uint16 *orig, int w, int h, int channels) +{ + int i; + int img_len = w * h * channels; + stbi_uc *reduced; + + reduced = (stbi_uc *)stbi__malloc(img_len); + if (reduced == NULL) + return stbi__errpuc("outofmem", "Out of memory"); + + for (i = 0; i < img_len; ++i) + reduced[i] = (stbi_uc)((orig[i] >> 8) & 0xFF); // top half of each byte is sufficient approx of 16->8 bit scaling + + STBI_FREE(orig); + return reduced; +} + +static stbi__uint16 *stbi__convert_8_to_16(stbi_uc *orig, int w, int h, int channels) +{ + int i; + int img_len = w * h * channels; + stbi__uint16 *enlarged; + + enlarged = (stbi__uint16 *)stbi__malloc(img_len * 2); + if (enlarged == NULL) + return (stbi__uint16 *)stbi__errpuc("outofmem", "Out of memory"); + + for (i = 0; i < img_len; ++i) + enlarged[i] = (stbi__uint16)((orig[i] << 8) + orig[i]); // replicate to high and low byte, maps 0->0, 255->0xffff + + STBI_FREE(orig); + return enlarged; +} + +static unsigned char *stbi__load_and_postprocess_8bit(stbi__context *s, int *x, int *y, int *comp, int req_comp) +{ + stbi__result_info ri; + void *result = stbi__load_main(s, x, y, comp, req_comp, &ri, 8); + + if (result == NULL) + return NULL; + + if (ri.bits_per_channel != 8) + { + STBI_ASSERT(ri.bits_per_channel == 16); + result = stbi__convert_16_to_8((stbi__uint16 *)result, *x, *y, req_comp == 0 ? *comp : req_comp); + ri.bits_per_channel = 8; + } + + // @TODO: move stbi__convert_format to here + + if (stbi__vertically_flip_on_load) + { + int w = *x, h = *y; + int channels = req_comp ? req_comp : *comp; + int row, col, z; + stbi_uc *image = (stbi_uc *)result; + + // @OPTIMIZE: use a bigger temp buffer and memcpy multiple pixels at once + for (row = 0; row < (h >> 1); row++) + { + for (col = 0; col < w; col++) + { + for (z = 0; z < channels; z++) + { + stbi_uc temp = image[(row * w + col) * channels + z]; + image[(row * w + col) * channels + z] = image[((h - row - 1) * w + col) * channels + z]; + image[((h - row - 1) * w + col) * channels + z] = temp; + } + } + } + } + + return (unsigned char *)result; +} + +static stbi__uint16 *stbi__load_and_postprocess_16bit(stbi__context *s, int *x, int *y, int *comp, int req_comp) +{ + stbi__result_info ri; + void *result = stbi__load_main(s, x, y, comp, req_comp, &ri, 16); + + if (result == NULL) + return NULL; + + if (ri.bits_per_channel != 16) + { + STBI_ASSERT(ri.bits_per_channel == 8); + result = stbi__convert_8_to_16((stbi_uc *)result, *x, *y, req_comp == 0 ? *comp : req_comp); + ri.bits_per_channel = 16; + } + + // @TODO: move stbi__convert_format16 to here + // @TODO: special case RGB-to-Y (and RGBA-to-YA) for 8-bit-to-16-bit case to keep more precision + + if (stbi__vertically_flip_on_load) + { + int w = *x, h = *y; + int channels = req_comp ? req_comp : *comp; + int row, col, z; + stbi__uint16 *image = (stbi__uint16 *)result; + + // @OPTIMIZE: use a bigger temp buffer and memcpy multiple pixels at once + for (row = 0; row < (h >> 1); row++) + { + for (col = 0; col < w; col++) + { + for (z = 0; z < channels; z++) + { + stbi__uint16 temp = image[(row * w + col) * channels + z]; + image[(row * w + col) * channels + z] = image[((h - row - 1) * w + col) * channels + z]; + image[((h - row - 1) * w + col) * channels + z] = temp; + } + } + } + } + + return (stbi__uint16 *)result; +} + +#ifndef STBI_NO_HDR +static void stbi__float_postprocess(float *result, int *x, int *y, int *comp, int req_comp) +{ + if (stbi__vertically_flip_on_load && result != NULL) + { + int w = *x, h = *y; + int depth = req_comp ? req_comp : *comp; + int row, col, z; + float temp; + + // @OPTIMIZE: use a bigger temp buffer and memcpy multiple pixels at once + for (row = 0; row < (h >> 1); row++) + { + for (col = 0; col < w; col++) + { + for (z = 0; z < depth; z++) + { + temp = result[(row * w + col) * depth + z]; + result[(row * w + col) * depth + z] = result[((h - row - 1) * w + col) * depth + z]; + result[((h - row - 1) * w + col) * depth + z] = temp; + } + } + } + } +} +#endif + +#ifndef STBI_NO_STDIO + +static FILE *stbi__fopen(char const *filename, char const *mode) +{ + FILE *f; +#if defined(_MSC_VER) && _MSC_VER >= 1400 + if (0 != fopen_s(&f, filename, mode)) + f = 0; +#else + f = fopen(filename, mode); +#endif + return f; +} + +STBIDEF stbi_uc *stbi_load(char const *filename, int *x, int *y, int *comp, int req_comp) +{ + FILE *f = stbi__fopen(filename, "rb"); + unsigned char *result; + if (!f) + return stbi__errpuc("can't fopen", "Unable to open file"); + result = stbi_load_from_file(f, x, y, comp, req_comp); + fclose(f); + return result; +} + +STBIDEF stbi_uc *stbi_load_from_file(FILE *f, int *x, int *y, int *comp, int req_comp) +{ + unsigned char *result; + stbi__context s; + stbi__start_file(&s, f); + result = stbi__load_and_postprocess_8bit(&s, x, y, comp, req_comp); + if (result) + { + // need to 'unget' all the characters in the IO buffer + fseek(f, -(int)(s.img_buffer_end - s.img_buffer), SEEK_CUR); + } + return result; +} + +STBIDEF stbi__uint16 *stbi_load_from_file_16(FILE *f, int *x, int *y, int *comp, int req_comp) +{ + stbi__uint16 *result; + stbi__context s; + stbi__start_file(&s, f); + result = stbi__load_and_postprocess_16bit(&s, x, y, comp, req_comp); + if (result) + { + // need to 'unget' all the characters in the IO buffer + fseek(f, -(int)(s.img_buffer_end - s.img_buffer), SEEK_CUR); + } + return result; +} + +STBIDEF stbi_us *stbi_load_16(char const *filename, int *x, int *y, int *comp, int req_comp) +{ + FILE *f = stbi__fopen(filename, "rb"); + stbi__uint16 *result; + if (!f) + return (stbi_us *)stbi__errpuc("can't fopen", "Unable to open file"); + result = stbi_load_from_file_16(f, x, y, comp, req_comp); + fclose(f); + return result; +} + +#endif //! STBI_NO_STDIO + +STBIDEF stbi_uc *stbi_load_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp) +{ + stbi__context s; + stbi__start_mem(&s, buffer, len); + return stbi__load_and_postprocess_8bit(&s, x, y, comp, req_comp); +} + +STBIDEF stbi_uc *stbi_load_from_callbacks(stbi_io_callbacks const *clbk, void *user, int *x, int *y, int *comp, int req_comp) +{ + stbi__context s; + stbi__start_callbacks(&s, (stbi_io_callbacks *)clbk, user); + return stbi__load_and_postprocess_8bit(&s, x, y, comp, req_comp); +} + +#ifndef STBI_NO_LINEAR +static float *stbi__loadf_main(stbi__context *s, int *x, int *y, int *comp, int req_comp) +{ + unsigned char *data; +#ifndef STBI_NO_HDR + if (stbi__hdr_test(s)) + { + stbi__result_info ri; + float *hdr_data = stbi__hdr_load(s, x, y, comp, req_comp, &ri); + if (hdr_data) + stbi__float_postprocess(hdr_data, x, y, comp, req_comp); + return hdr_data; + } +#endif + data = stbi__load_and_postprocess_8bit(s, x, y, comp, req_comp); + if (data) + return stbi__ldr_to_hdr(data, *x, *y, req_comp ? req_comp : *comp); + return stbi__errpf("unknown image type", "Image not of any known type, or corrupt"); +} + +STBIDEF float *stbi_loadf_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp) +{ + stbi__context s; + stbi__start_mem(&s, buffer, len); + return stbi__loadf_main(&s, x, y, comp, req_comp); +} + +STBIDEF float *stbi_loadf_from_callbacks(stbi_io_callbacks const *clbk, void *user, int *x, int *y, int *comp, int req_comp) +{ + stbi__context s; + stbi__start_callbacks(&s, (stbi_io_callbacks *)clbk, user); + return stbi__loadf_main(&s, x, y, comp, req_comp); +} + +#ifndef STBI_NO_STDIO +STBIDEF float *stbi_loadf(char const *filename, int *x, int *y, int *comp, int req_comp) +{ + float *result; + FILE *f = stbi__fopen(filename, "rb"); + if (!f) + return stbi__errpf("can't fopen", "Unable to open file"); + result = stbi_loadf_from_file(f, x, y, comp, req_comp); + fclose(f); + return result; +} + +STBIDEF float *stbi_loadf_from_file(FILE *f, int *x, int *y, int *comp, int req_comp) +{ + stbi__context s; + stbi__start_file(&s, f); + return stbi__loadf_main(&s, x, y, comp, req_comp); +} +#endif // !STBI_NO_STDIO + +#endif // !STBI_NO_LINEAR + +// these is-hdr-or-not is defined independent of whether STBI_NO_LINEAR is +// defined, for API simplicity; if STBI_NO_LINEAR is defined, it always +// reports false! + +STBIDEF int stbi_is_hdr_from_memory(stbi_uc const *buffer, int len) +{ +#ifndef STBI_NO_HDR + stbi__context s; + stbi__start_mem(&s, buffer, len); + return stbi__hdr_test(&s); +#else + STBI_NOTUSED(buffer); + STBI_NOTUSED(len); + return 0; +#endif +} + +#ifndef STBI_NO_STDIO +STBIDEF int stbi_is_hdr(char const *filename) +{ + FILE *f = stbi__fopen(filename, "rb"); + int result = 0; + if (f) + { + result = stbi_is_hdr_from_file(f); + fclose(f); + } + return result; +} + +STBIDEF int stbi_is_hdr_from_file(FILE *f) +{ +#ifndef STBI_NO_HDR + stbi__context s; + stbi__start_file(&s, f); + return stbi__hdr_test(&s); +#else + STBI_NOTUSED(f); + return 0; +#endif +} +#endif // !STBI_NO_STDIO + +STBIDEF int stbi_is_hdr_from_callbacks(stbi_io_callbacks const *clbk, void *user) +{ +#ifndef STBI_NO_HDR + stbi__context s; + stbi__start_callbacks(&s, (stbi_io_callbacks *)clbk, user); + return stbi__hdr_test(&s); +#else + STBI_NOTUSED(clbk); + STBI_NOTUSED(user); + return 0; +#endif +} + +#ifndef STBI_NO_LINEAR +static float stbi__l2h_gamma = 2.2f, stbi__l2h_scale = 1.0f; + +STBIDEF void stbi_ldr_to_hdr_gamma(float gamma) { stbi__l2h_gamma = gamma; } +STBIDEF void stbi_ldr_to_hdr_scale(float scale) { stbi__l2h_scale = scale; } +#endif + +static float stbi__h2l_gamma_i = 1.0f / 2.2f, stbi__h2l_scale_i = 1.0f; + +STBIDEF void stbi_hdr_to_ldr_gamma(float gamma) { stbi__h2l_gamma_i = 1 / gamma; } +STBIDEF void stbi_hdr_to_ldr_scale(float scale) { stbi__h2l_scale_i = 1 / scale; } + +////////////////////////////////////////////////////////////////////////////// +// +// Common code used by all image loaders +// + +enum +{ + STBI__SCAN_load = 0, + STBI__SCAN_type, + STBI__SCAN_header +}; + +static void stbi__refill_buffer(stbi__context *s) +{ + int n = (s->io.read)(s->io_user_data, (char *)s->buffer_start, s->buflen); + if (n == 0) + { + // at end of file, treat same as if from memory, but need to handle case + // where s->img_buffer isn't pointing to safe memory, e.g. 0-byte file + s->read_from_callbacks = 0; + s->img_buffer = s->buffer_start; + s->img_buffer_end = s->buffer_start + 1; + *s->img_buffer = 0; + } + else + { + s->img_buffer = s->buffer_start; + s->img_buffer_end = s->buffer_start + n; + } +} + +stbi_inline static stbi_uc stbi__get8(stbi__context *s) +{ + if (s->img_buffer < s->img_buffer_end) + return *s->img_buffer++; + if (s->read_from_callbacks) + { + stbi__refill_buffer(s); + return *s->img_buffer++; + } + return 0; +} + +stbi_inline static int stbi__at_eof(stbi__context *s) +{ + if (s->io.read) + { + if (!(s->io.eof)(s->io_user_data)) + return 0; + // if feof() is true, check if buffer = end + // special case: we've only got the special 0 character at the end + if (s->read_from_callbacks == 0) + return 1; + } + + return s->img_buffer >= s->img_buffer_end; +} + +static void stbi__skip(stbi__context *s, int n) +{ + if (n < 0) + { + s->img_buffer = s->img_buffer_end; + return; + } + if (s->io.read) + { + int blen = (int)(s->img_buffer_end - s->img_buffer); + if (blen < n) + { + s->img_buffer = s->img_buffer_end; + (s->io.skip)(s->io_user_data, n - blen); + return; + } + } + s->img_buffer += n; +} + +static int stbi__getn(stbi__context *s, stbi_uc *buffer, int n) +{ + if (s->io.read) + { + int blen = (int)(s->img_buffer_end - s->img_buffer); + if (blen < n) + { + int res, count; + + memcpy(buffer, s->img_buffer, blen); + + count = (s->io.read)(s->io_user_data, (char *)buffer + blen, n - blen); + res = (count == (n - blen)); + s->img_buffer = s->img_buffer_end; + return res; + } + } + + if (s->img_buffer + n <= s->img_buffer_end) + { + memcpy(buffer, s->img_buffer, n); + s->img_buffer += n; + return 1; + } + else + return 0; +} + +static int stbi__get16be(stbi__context *s) +{ + int z = stbi__get8(s); + return (z << 8) + stbi__get8(s); +} + +static stbi__uint32 stbi__get32be(stbi__context *s) +{ + stbi__uint32 z = stbi__get16be(s); + return (z << 16) + stbi__get16be(s); +} + +#if defined(STBI_NO_BMP) && defined(STBI_NO_TGA) && defined(STBI_NO_GIF) +// nothing +#else +static int stbi__get16le(stbi__context *s) +{ + int z = stbi__get8(s); + return z + (stbi__get8(s) << 8); +} +#endif + +#ifndef STBI_NO_BMP +static stbi__uint32 stbi__get32le(stbi__context *s) +{ + stbi__uint32 z = stbi__get16le(s); + return z + (stbi__get16le(s) << 16); +} +#endif + +#define STBI__BYTECAST(x) ((stbi_uc)((x)&255)) // truncate int to byte without warnings + +////////////////////////////////////////////////////////////////////////////// +// +// generic converter from built-in img_n to req_comp +// individual types do this automatically as much as possible (e.g. jpeg +// does all cases internally since it needs to colorspace convert anyway, +// and it never has alpha, so very few cases ). png can automatically +// interleave an alpha=255 channel, but falls back to this for other cases +// +// assume data buffer is malloced, so malloc a new one and free that one +// only failure mode is malloc failing + +static stbi_uc stbi__compute_y(int r, int g, int b) +{ + return (stbi_uc)(((r * 77) + (g * 150) + (29 * b)) >> 8); +} + +static unsigned char *stbi__convert_format(unsigned char *data, int img_n, int req_comp, unsigned int x, unsigned int y) +{ + int i, j; + unsigned char *good; + + if (req_comp == img_n) + return data; + STBI_ASSERT(req_comp >= 1 && req_comp <= 4); + + good = (unsigned char *)stbi__malloc_mad3(req_comp, x, y, 0); + if (good == NULL) + { + STBI_FREE(data); + return stbi__errpuc("outofmem", "Out of memory"); + } + + for (j = 0; j < (int)y; ++j) + { + unsigned char *src = data + j * x * img_n; + unsigned char *dest = good + j * x * req_comp; + +#define STBI__COMBO(a, b) ((a)*8 + (b)) +#define STBI__CASE(a, b) \ + case STBI__COMBO(a, b): \ + for (i = x - 1; i >= 0; --i, src += a, dest += b) + // convert source image with img_n components to one with req_comp components; + // avoid switch per pixel, so use switch per scanline and massive macros + switch (STBI__COMBO(img_n, req_comp)) + { + STBI__CASE(1, 2) { dest[0] = src[0], dest[1] = 255; } + break; + STBI__CASE(1, 3) { dest[0] = dest[1] = dest[2] = src[0]; } + break; + STBI__CASE(1, 4) { dest[0] = dest[1] = dest[2] = src[0], dest[3] = 255; } + break; + STBI__CASE(2, 1) { dest[0] = src[0]; } + break; + STBI__CASE(2, 3) { dest[0] = dest[1] = dest[2] = src[0]; } + break; + STBI__CASE(2, 4) { dest[0] = dest[1] = dest[2] = src[0], dest[3] = src[1]; } + break; + STBI__CASE(3, 4) { dest[0] = src[0], dest[1] = src[1], dest[2] = src[2], dest[3] = 255; } + break; + STBI__CASE(3, 1) { dest[0] = stbi__compute_y(src[0], src[1], src[2]); } + break; + STBI__CASE(3, 2) { dest[0] = stbi__compute_y(src[0], src[1], src[2]), dest[1] = 255; } + break; + STBI__CASE(4, 1) { dest[0] = stbi__compute_y(src[0], src[1], src[2]); } + break; + STBI__CASE(4, 2) { dest[0] = stbi__compute_y(src[0], src[1], src[2]), dest[1] = src[3]; } + break; + STBI__CASE(4, 3) { dest[0] = src[0], dest[1] = src[1], dest[2] = src[2]; } + break; + default: + STBI_ASSERT(0); + } +#undef STBI__CASE + } + + STBI_FREE(data); + return good; +} + +static stbi__uint16 stbi__compute_y_16(int r, int g, int b) +{ + return (stbi__uint16)(((r * 77) + (g * 150) + (29 * b)) >> 8); +} + +static stbi__uint16 *stbi__convert_format16(stbi__uint16 *data, int img_n, int req_comp, unsigned int x, unsigned int y) +{ + int i, j; + stbi__uint16 *good; + + if (req_comp == img_n) + return data; + STBI_ASSERT(req_comp >= 1 && req_comp <= 4); + + good = (stbi__uint16 *)stbi__malloc(req_comp * x * y * 2); + if (good == NULL) + { + STBI_FREE(data); + return (stbi__uint16 *)stbi__errpuc("outofmem", "Out of memory"); + } + + for (j = 0; j < (int)y; ++j) + { + stbi__uint16 *src = data + j * x * img_n; + stbi__uint16 *dest = good + j * x * req_comp; + +#define STBI__COMBO(a, b) ((a)*8 + (b)) +#define STBI__CASE(a, b) \ + case STBI__COMBO(a, b): \ + for (i = x - 1; i >= 0; --i, src += a, dest += b) + // convert source image with img_n components to one with req_comp components; + // avoid switch per pixel, so use switch per scanline and massive macros + switch (STBI__COMBO(img_n, req_comp)) + { + STBI__CASE(1, 2) { dest[0] = src[0], dest[1] = 0xffff; } + break; + STBI__CASE(1, 3) { dest[0] = dest[1] = dest[2] = src[0]; } + break; + STBI__CASE(1, 4) { dest[0] = dest[1] = dest[2] = src[0], dest[3] = 0xffff; } + break; + STBI__CASE(2, 1) { dest[0] = src[0]; } + break; + STBI__CASE(2, 3) { dest[0] = dest[1] = dest[2] = src[0]; } + break; + STBI__CASE(2, 4) { dest[0] = dest[1] = dest[2] = src[0], dest[3] = src[1]; } + break; + STBI__CASE(3, 4) { dest[0] = src[0], dest[1] = src[1], dest[2] = src[2], dest[3] = 0xffff; } + break; + STBI__CASE(3, 1) { dest[0] = stbi__compute_y_16(src[0], src[1], src[2]); } + break; + STBI__CASE(3, 2) { dest[0] = stbi__compute_y_16(src[0], src[1], src[2]), dest[1] = 0xffff; } + break; + STBI__CASE(4, 1) { dest[0] = stbi__compute_y_16(src[0], src[1], src[2]); } + break; + STBI__CASE(4, 2) { dest[0] = stbi__compute_y_16(src[0], src[1], src[2]), dest[1] = src[3]; } + break; + STBI__CASE(4, 3) { dest[0] = src[0], dest[1] = src[1], dest[2] = src[2]; } + break; + default: + STBI_ASSERT(0); + } +#undef STBI__CASE + } + + STBI_FREE(data); + return good; +} + +#ifndef STBI_NO_LINEAR +static float *stbi__ldr_to_hdr(stbi_uc *data, int x, int y, int comp) +{ + int i, k, n; + float *output; + if (!data) + return NULL; + output = (float *)stbi__malloc_mad4(x, y, comp, sizeof(float), 0); + if (output == NULL) + { + STBI_FREE(data); + return stbi__errpf("outofmem", "Out of memory"); + } + // compute number of non-alpha components + if (comp & 1) + n = comp; + else + n = comp - 1; + for (i = 0; i < x * y; ++i) + { + for (k = 0; k < n; ++k) + { + output[i * comp + k] = (float)(pow(data[i * comp + k] / 255.0f, stbi__l2h_gamma) * stbi__l2h_scale); + } + if (k < comp) + output[i * comp + k] = data[i * comp + k] / 255.0f; + } + STBI_FREE(data); + return output; +} +#endif + +#ifndef STBI_NO_HDR +#define stbi__float2int(x) ((int)(x)) +static stbi_uc *stbi__hdr_to_ldr(float *data, int x, int y, int comp) +{ + int i, k, n; + stbi_uc *output; + if (!data) + return NULL; + output = (stbi_uc *)stbi__malloc_mad3(x, y, comp, 0); + if (output == NULL) + { + STBI_FREE(data); + return stbi__errpuc("outofmem", "Out of memory"); + } + // compute number of non-alpha components + if (comp & 1) + n = comp; + else + n = comp - 1; + for (i = 0; i < x * y; ++i) + { + for (k = 0; k < n; ++k) + { + float z = (float)pow(data[i * comp + k] * stbi__h2l_scale_i, stbi__h2l_gamma_i) * 255 + 0.5f; + if (z < 0) + z = 0; + if (z > 255) + z = 255; + output[i * comp + k] = (stbi_uc)stbi__float2int(z); + } + if (k < comp) + { + float z = data[i * comp + k] * 255 + 0.5f; + if (z < 0) + z = 0; + if (z > 255) + z = 255; + output[i * comp + k] = (stbi_uc)stbi__float2int(z); + } + } + STBI_FREE(data); + return output; +} +#endif + +////////////////////////////////////////////////////////////////////////////// +// +// "baseline" JPEG/JFIF decoder +// +// simple implementation +// - doesn't support delayed output of y-dimension +// - simple interface (only one output format: 8-bit interleaved RGB) +// - doesn't try to recover corrupt jpegs +// - doesn't allow partial loading, loading multiple at once +// - still fast on x86 (copying globals into locals doesn't help x86) +// - allocates lots of intermediate memory (full size of all components) +// - non-interleaved case requires this anyway +// - allows good upsampling (see next) +// high-quality +// - upsampled channels are bilinearly interpolated, even across blocks +// - quality integer IDCT derived from IJG's 'slow' +// performance +// - fast huffman; reasonable integer IDCT +// - some SIMD kernels for common paths on targets with SSE2/NEON +// - uses a lot of intermediate memory, could cache poorly + +#ifndef STBI_NO_JPEG + +// huffman decoding acceleration +#define FAST_BITS 9 // larger handles more cases; smaller stomps less cache + +typedef struct +{ + stbi_uc fast[1 << FAST_BITS]; + // weirdly, repacking this into AoS is a 10% speed loss, instead of a win + stbi__uint16 code[256]; + stbi_uc values[256]; + stbi_uc size[257]; + unsigned int maxcode[18]; + int delta[17]; // old 'firstsymbol' - old 'firstcode' +} stbi__huffman; + +typedef struct +{ + stbi__context *s; + stbi__huffman huff_dc[4]; + stbi__huffman huff_ac[4]; + stbi__uint16 dequant[4][64]; + stbi__int16 fast_ac[4][1 << FAST_BITS]; + + // sizes for components, interleaved MCUs + int img_h_max, img_v_max; + int img_mcu_x, img_mcu_y; + int img_mcu_w, img_mcu_h; + + // definition of jpeg image component + struct + { + int id; + int h, v; + int tq; + int hd, ha; + int dc_pred; + + int x, y, w2, h2; + stbi_uc *data; + void *raw_data, *raw_coeff; + stbi_uc *linebuf; + short *coeff; // progressive only + int coeff_w, coeff_h; // number of 8x8 coefficient blocks + } img_comp[4]; + + stbi__uint32 code_buffer; // jpeg entropy-coded buffer + int code_bits; // number of valid bits + unsigned char marker; // marker seen while filling entropy buffer + int nomore; // flag if we saw a marker so must stop + + int progressive; + int spec_start; + int spec_end; + int succ_high; + int succ_low; + int eob_run; + int jfif; + int app14_color_transform; // Adobe APP14 tag + int rgb; + + int scan_n, order[4]; + int restart_interval, todo; + + // kernels + void (*idct_block_kernel)(stbi_uc *out, int out_stride, short data[64]); + void (*YCbCr_to_RGB_kernel)(stbi_uc *out, const stbi_uc *y, const stbi_uc *pcb, const stbi_uc *pcr, int count, int step); + stbi_uc *(*resample_row_hv_2_kernel)(stbi_uc *out, stbi_uc *in_near, stbi_uc *in_far, int w, int hs); +} stbi__jpeg; + +static int stbi__build_huffman(stbi__huffman *h, int *count) +{ + int i, j, k = 0, code; + // build size list for each symbol (from JPEG spec) + for (i = 0; i < 16; ++i) + for (j = 0; j < count[i]; ++j) + h->size[k++] = (stbi_uc)(i + 1); + h->size[k] = 0; + + // compute actual symbols (from jpeg spec) + code = 0; + k = 0; + for (j = 1; j <= 16; ++j) + { + // compute delta to add to code to compute symbol id + h->delta[j] = k - code; + if (h->size[k] == j) + { + while (h->size[k] == j) + h->code[k++] = (stbi__uint16)(code++); + if (code - 1 >= (1 << j)) + return stbi__err("bad code lengths", "Corrupt JPEG"); + } + // compute largest code + 1 for this size, preshifted as needed later + h->maxcode[j] = code << (16 - j); + code <<= 1; + } + h->maxcode[j] = 0xffffffff; + + // build non-spec acceleration table; 255 is flag for not-accelerated + memset(h->fast, 255, 1 << FAST_BITS); + for (i = 0; i < k; ++i) + { + int s = h->size[i]; + if (s <= FAST_BITS) + { + int c = h->code[i] << (FAST_BITS - s); + int m = 1 << (FAST_BITS - s); + for (j = 0; j < m; ++j) + { + h->fast[c + j] = (stbi_uc)i; + } + } + } + return 1; +} + +// build a table that decodes both magnitude and value of small ACs in +// one go. +static void stbi__build_fast_ac(stbi__int16 *fast_ac, stbi__huffman *h) +{ + int i; + for (i = 0; i < (1 << FAST_BITS); ++i) + { + stbi_uc fast = h->fast[i]; + fast_ac[i] = 0; + if (fast < 255) + { + int rs = h->values[fast]; + int run = (rs >> 4) & 15; + int magbits = rs & 15; + int len = h->size[fast]; + + if (magbits && len + magbits <= FAST_BITS) + { + // magnitude code followed by receive_extend code + int k = ((i << len) & ((1 << FAST_BITS) - 1)) >> (FAST_BITS - magbits); + int m = 1 << (magbits - 1); + if (k < m) + k += (~0U << magbits) + 1; + // if the result is small enough, we can fit it in fast_ac table + if (k >= -128 && k <= 127) + fast_ac[i] = (stbi__int16)((k << 8) + (run << 4) + (len + magbits)); + } + } + } +} + +static void stbi__grow_buffer_unsafe(stbi__jpeg *j) +{ + do + { + int b = j->nomore ? 0 : stbi__get8(j->s); + if (b == 0xff) + { + int c = stbi__get8(j->s); + while (c == 0xff) + c = stbi__get8(j->s); // consume fill bytes + if (c != 0) + { + j->marker = (unsigned char)c; + j->nomore = 1; + return; + } + } + j->code_buffer |= b << (24 - j->code_bits); + j->code_bits += 8; + } while (j->code_bits <= 24); +} + +// (1 << n) - 1 +static stbi__uint32 stbi__bmask[17] = {0, 1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, 2047, 4095, 8191, 16383, 32767, 65535}; + +// decode a jpeg huffman value from the bitstream +stbi_inline static int stbi__jpeg_huff_decode(stbi__jpeg *j, stbi__huffman *h) +{ + unsigned int temp; + int c, k; + + if (j->code_bits < 16) + stbi__grow_buffer_unsafe(j); + + // look at the top FAST_BITS and determine what symbol ID it is, + // if the code is <= FAST_BITS + c = (j->code_buffer >> (32 - FAST_BITS)) & ((1 << FAST_BITS) - 1); + k = h->fast[c]; + if (k < 255) + { + int s = h->size[k]; + if (s > j->code_bits) + return -1; + j->code_buffer <<= s; + j->code_bits -= s; + return h->values[k]; + } + + // naive test is to shift the code_buffer down so k bits are + // valid, then test against maxcode. To speed this up, we've + // preshifted maxcode left so that it has (16-k) 0s at the + // end; in other words, regardless of the number of bits, it + // wants to be compared against something shifted to have 16; + // that way we don't need to shift inside the loop. + temp = j->code_buffer >> 16; + for (k = FAST_BITS + 1;; ++k) + if (temp < h->maxcode[k]) + break; + if (k == 17) + { + // error! code not found + j->code_bits -= 16; + return -1; + } + + if (k > j->code_bits) + return -1; + + // convert the huffman code to the symbol id + c = ((j->code_buffer >> (32 - k)) & stbi__bmask[k]) + h->delta[k]; + STBI_ASSERT((((j->code_buffer) >> (32 - h->size[c])) & stbi__bmask[h->size[c]]) == h->code[c]); + + // convert the id to a symbol + j->code_bits -= k; + j->code_buffer <<= k; + return h->values[c]; +} + +// bias[n] = (-1<code_bits < n) + stbi__grow_buffer_unsafe(j); + + sgn = (stbi__int32)j->code_buffer >> 31; // sign bit is always in MSB + k = stbi_lrot(j->code_buffer, n); + STBI_ASSERT(n >= 0 && n < (int)(sizeof(stbi__bmask) / sizeof(*stbi__bmask))); + j->code_buffer = k & ~stbi__bmask[n]; + k &= stbi__bmask[n]; + j->code_bits -= n; + return k + (stbi__jbias[n] & ~sgn); +} + +// get some unsigned bits +stbi_inline static int stbi__jpeg_get_bits(stbi__jpeg *j, int n) +{ + unsigned int k; + if (j->code_bits < n) + stbi__grow_buffer_unsafe(j); + k = stbi_lrot(j->code_buffer, n); + j->code_buffer = k & ~stbi__bmask[n]; + k &= stbi__bmask[n]; + j->code_bits -= n; + return k; +} + +stbi_inline static int stbi__jpeg_get_bit(stbi__jpeg *j) +{ + unsigned int k; + if (j->code_bits < 1) + stbi__grow_buffer_unsafe(j); + k = j->code_buffer; + j->code_buffer <<= 1; + --j->code_bits; + return k & 0x80000000; +} + +// given a value that's at position X in the zigzag stream, +// where does it appear in the 8x8 matrix coded as row-major? +static stbi_uc stbi__jpeg_dezigzag[64 + 15] = + { + 0, 1, 8, 16, 9, 2, 3, 10, + 17, 24, 32, 25, 18, 11, 4, 5, + 12, 19, 26, 33, 40, 48, 41, 34, + 27, 20, 13, 6, 7, 14, 21, 28, + 35, 42, 49, 56, 57, 50, 43, 36, + 29, 22, 15, 23, 30, 37, 44, 51, + 58, 59, 52, 45, 38, 31, 39, 46, + 53, 60, 61, 54, 47, 55, 62, 63, + // let corrupt input sample past end + 63, 63, 63, 63, 63, 63, 63, 63, + 63, 63, 63, 63, 63, 63, 63}; + +// decode one 64-entry block-- +static int stbi__jpeg_decode_block(stbi__jpeg *j, short data[64], stbi__huffman *hdc, stbi__huffman *hac, stbi__int16 *fac, int b, stbi__uint16 *dequant) +{ + int diff, dc, k; + int t; + + if (j->code_bits < 16) + stbi__grow_buffer_unsafe(j); + t = stbi__jpeg_huff_decode(j, hdc); + if (t < 0) + return stbi__err("bad huffman code", "Corrupt JPEG"); + + // 0 all the ac values now so we can do it 32-bits at a time + memset(data, 0, 64 * sizeof(data[0])); + + diff = t ? stbi__extend_receive(j, t) : 0; + dc = j->img_comp[b].dc_pred + diff; + j->img_comp[b].dc_pred = dc; + data[0] = (short)(dc * dequant[0]); + + // decode AC components, see JPEG spec + k = 1; + do + { + unsigned int zig; + int c, r, s; + if (j->code_bits < 16) + stbi__grow_buffer_unsafe(j); + c = (j->code_buffer >> (32 - FAST_BITS)) & ((1 << FAST_BITS) - 1); + r = fac[c]; + if (r) + { // fast-AC path + k += (r >> 4) & 15; // run + s = r & 15; // combined length + j->code_buffer <<= s; + j->code_bits -= s; + // decode into unzigzag'd location + zig = stbi__jpeg_dezigzag[k++]; + data[zig] = (short)((r >> 8) * dequant[zig]); + } + else + { + int rs = stbi__jpeg_huff_decode(j, hac); + if (rs < 0) + return stbi__err("bad huffman code", "Corrupt JPEG"); + s = rs & 15; + r = rs >> 4; + if (s == 0) + { + if (rs != 0xf0) + break; // end block + k += 16; + } + else + { + k += r; + // decode into unzigzag'd location + zig = stbi__jpeg_dezigzag[k++]; + data[zig] = (short)(stbi__extend_receive(j, s) * dequant[zig]); + } + } + } while (k < 64); + return 1; +} + +static int stbi__jpeg_decode_block_prog_dc(stbi__jpeg *j, short data[64], stbi__huffman *hdc, int b) +{ + int diff, dc; + int t; + if (j->spec_end != 0) + return stbi__err("can't merge dc and ac", "Corrupt JPEG"); + + if (j->code_bits < 16) + stbi__grow_buffer_unsafe(j); + + if (j->succ_high == 0) + { + // first scan for DC coefficient, must be first + memset(data, 0, 64 * sizeof(data[0])); // 0 all the ac values now + t = stbi__jpeg_huff_decode(j, hdc); + diff = t ? stbi__extend_receive(j, t) : 0; + + dc = j->img_comp[b].dc_pred + diff; + j->img_comp[b].dc_pred = dc; + data[0] = (short)(dc << j->succ_low); + } + else + { + // refinement scan for DC coefficient + if (stbi__jpeg_get_bit(j)) + data[0] += (short)(1 << j->succ_low); + } + return 1; +} + +// @OPTIMIZE: store non-zigzagged during the decode passes, +// and only de-zigzag when dequantizing +static int stbi__jpeg_decode_block_prog_ac(stbi__jpeg *j, short data[64], stbi__huffman *hac, stbi__int16 *fac) +{ + int k; + if (j->spec_start == 0) + return stbi__err("can't merge dc and ac", "Corrupt JPEG"); + + if (j->succ_high == 0) + { + int shift = j->succ_low; + + if (j->eob_run) + { + --j->eob_run; + return 1; + } + + k = j->spec_start; + do + { + unsigned int zig; + int c, r, s; + if (j->code_bits < 16) + stbi__grow_buffer_unsafe(j); + c = (j->code_buffer >> (32 - FAST_BITS)) & ((1 << FAST_BITS) - 1); + r = fac[c]; + if (r) + { // fast-AC path + k += (r >> 4) & 15; // run + s = r & 15; // combined length + j->code_buffer <<= s; + j->code_bits -= s; + zig = stbi__jpeg_dezigzag[k++]; + data[zig] = (short)((r >> 8) << shift); + } + else + { + int rs = stbi__jpeg_huff_decode(j, hac); + if (rs < 0) + return stbi__err("bad huffman code", "Corrupt JPEG"); + s = rs & 15; + r = rs >> 4; + if (s == 0) + { + if (r < 15) + { + j->eob_run = (1 << r); + if (r) + j->eob_run += stbi__jpeg_get_bits(j, r); + --j->eob_run; + break; + } + k += 16; + } + else + { + k += r; + zig = stbi__jpeg_dezigzag[k++]; + data[zig] = (short)(stbi__extend_receive(j, s) << shift); + } + } + } while (k <= j->spec_end); + } + else + { + // refinement scan for these AC coefficients + + short bit = (short)(1 << j->succ_low); + + if (j->eob_run) + { + --j->eob_run; + for (k = j->spec_start; k <= j->spec_end; ++k) + { + short *p = &data[stbi__jpeg_dezigzag[k]]; + if (*p != 0) + if (stbi__jpeg_get_bit(j)) + if ((*p & bit) == 0) + { + if (*p > 0) + *p += bit; + else + *p -= bit; + } + } + } + else + { + k = j->spec_start; + do + { + int r, s; + int rs = stbi__jpeg_huff_decode(j, hac); // @OPTIMIZE see if we can use the fast path here, advance-by-r is so slow, eh + if (rs < 0) + return stbi__err("bad huffman code", "Corrupt JPEG"); + s = rs & 15; + r = rs >> 4; + if (s == 0) + { + if (r < 15) + { + j->eob_run = (1 << r) - 1; + if (r) + j->eob_run += stbi__jpeg_get_bits(j, r); + r = 64; // force end of block + } + else + { + // r=15 s=0 should write 16 0s, so we just do + // a run of 15 0s and then write s (which is 0), + // so we don't have to do anything special here + } + } + else + { + if (s != 1) + return stbi__err("bad huffman code", "Corrupt JPEG"); + // sign bit + if (stbi__jpeg_get_bit(j)) + s = bit; + else + s = -bit; + } + + // advance by r + while (k <= j->spec_end) + { + short *p = &data[stbi__jpeg_dezigzag[k++]]; + if (*p != 0) + { + if (stbi__jpeg_get_bit(j)) + if ((*p & bit) == 0) + { + if (*p > 0) + *p += bit; + else + *p -= bit; + } + } + else + { + if (r == 0) + { + *p = (short)s; + break; + } + --r; + } + } + } while (k <= j->spec_end); + } + } + return 1; +} + +// take a -128..127 value and stbi__clamp it and convert to 0..255 +stbi_inline static stbi_uc stbi__clamp(int x) +{ + // trick to use a single test to catch both cases + if ((unsigned int)x > 255) + { + if (x < 0) + return 0; + if (x > 255) + return 255; + } + return (stbi_uc)x; +} + +#define stbi__f2f(x) ((int)(((x)*4096 + 0.5))) +#define stbi__fsh(x) ((x) << 12) + +// derived from jidctint -- DCT_ISLOW +#define STBI__IDCT_1D(s0, s1, s2, s3, s4, s5, s6, s7) \ + int t0, t1, t2, t3, p1, p2, p3, p4, p5, x0, x1, x2, x3; \ + p2 = s2; \ + p3 = s6; \ + p1 = (p2 + p3) * stbi__f2f(0.5411961f); \ + t2 = p1 + p3 * stbi__f2f(-1.847759065f); \ + t3 = p1 + p2 * stbi__f2f(0.765366865f); \ + p2 = s0; \ + p3 = s4; \ + t0 = stbi__fsh(p2 + p3); \ + t1 = stbi__fsh(p2 - p3); \ + x0 = t0 + t3; \ + x3 = t0 - t3; \ + x1 = t1 + t2; \ + x2 = t1 - t2; \ + t0 = s7; \ + t1 = s5; \ + t2 = s3; \ + t3 = s1; \ + p3 = t0 + t2; \ + p4 = t1 + t3; \ + p1 = t0 + t3; \ + p2 = t1 + t2; \ + p5 = (p3 + p4) * stbi__f2f(1.175875602f); \ + t0 = t0 * stbi__f2f(0.298631336f); \ + t1 = t1 * stbi__f2f(2.053119869f); \ + t2 = t2 * stbi__f2f(3.072711026f); \ + t3 = t3 * stbi__f2f(1.501321110f); \ + p1 = p5 + p1 * stbi__f2f(-0.899976223f); \ + p2 = p5 + p2 * stbi__f2f(-2.562915447f); \ + p3 = p3 * stbi__f2f(-1.961570560f); \ + p4 = p4 * stbi__f2f(-0.390180644f); \ + t3 += p1 + p4; \ + t2 += p2 + p3; \ + t1 += p2 + p4; \ + t0 += p1 + p3; + +static void stbi__idct_block(stbi_uc *out, int out_stride, short data[64]) +{ + int i, val[64], *v = val; + stbi_uc *o; + short *d = data; + + // columns + for (i = 0; i < 8; ++i, ++d, ++v) + { + // if all zeroes, shortcut -- this avoids dequantizing 0s and IDCTing + if (d[8] == 0 && d[16] == 0 && d[24] == 0 && d[32] == 0 && d[40] == 0 && d[48] == 0 && d[56] == 0) + { + // no shortcut 0 seconds + // (1|2|3|4|5|6|7)==0 0 seconds + // all separate -0.047 seconds + // 1 && 2|3 && 4|5 && 6|7: -0.047 seconds + int dcterm = d[0] << 2; + v[0] = v[8] = v[16] = v[24] = v[32] = v[40] = v[48] = v[56] = dcterm; + } + else + { + STBI__IDCT_1D(d[0], d[8], d[16], d[24], d[32], d[40], d[48], d[56]) + // constants scaled things up by 1<<12; let's bring them back + // down, but keep 2 extra bits of precision + x0 += 512; + x1 += 512; + x2 += 512; + x3 += 512; + v[0] = (x0 + t3) >> 10; + v[56] = (x0 - t3) >> 10; + v[8] = (x1 + t2) >> 10; + v[48] = (x1 - t2) >> 10; + v[16] = (x2 + t1) >> 10; + v[40] = (x2 - t1) >> 10; + v[24] = (x3 + t0) >> 10; + v[32] = (x3 - t0) >> 10; + } + } + + for (i = 0, v = val, o = out; i < 8; ++i, v += 8, o += out_stride) + { + // no fast case since the first 1D IDCT spread components out + STBI__IDCT_1D(v[0], v[1], v[2], v[3], v[4], v[5], v[6], v[7]) + // constants scaled things up by 1<<12, plus we had 1<<2 from first + // loop, plus horizontal and vertical each scale by sqrt(8) so together + // we've got an extra 1<<3, so 1<<17 total we need to remove. + // so we want to round that, which means adding 0.5 * 1<<17, + // aka 65536. Also, we'll end up with -128 to 127 that we want + // to encode as 0..255 by adding 128, so we'll add that before the shift + x0 += 65536 + (128 << 17); + x1 += 65536 + (128 << 17); + x2 += 65536 + (128 << 17); + x3 += 65536 + (128 << 17); + // tried computing the shifts into temps, or'ing the temps to see + // if any were out of range, but that was slower + o[0] = stbi__clamp((x0 + t3) >> 17); + o[7] = stbi__clamp((x0 - t3) >> 17); + o[1] = stbi__clamp((x1 + t2) >> 17); + o[6] = stbi__clamp((x1 - t2) >> 17); + o[2] = stbi__clamp((x2 + t1) >> 17); + o[5] = stbi__clamp((x2 - t1) >> 17); + o[3] = stbi__clamp((x3 + t0) >> 17); + o[4] = stbi__clamp((x3 - t0) >> 17); + } +} + +#ifdef STBI_SSE2 +// sse2 integer IDCT. not the fastest possible implementation but it +// produces bit-identical results to the generic C version so it's +// fully "transparent". +static void stbi__idct_simd(stbi_uc *out, int out_stride, short data[64]) +{ + // This is constructed to match our regular (generic) integer IDCT exactly. + __m128i row0, row1, row2, row3, row4, row5, row6, row7; + __m128i tmp; + +// dot product constant: even elems=x, odd elems=y +#define dct_const(x, y) _mm_setr_epi16((x), (y), (x), (y), (x), (y), (x), (y)) + +// out(0) = c0[even]*x + c0[odd]*y (c0, x, y 16-bit, out 32-bit) +// out(1) = c1[even]*x + c1[odd]*y +#define dct_rot(out0, out1, x, y, c0, c1) \ + __m128i c0##lo = _mm_unpacklo_epi16((x), (y)); \ + __m128i c0##hi = _mm_unpackhi_epi16((x), (y)); \ + __m128i out0##_l = _mm_madd_epi16(c0##lo, c0); \ + __m128i out0##_h = _mm_madd_epi16(c0##hi, c0); \ + __m128i out1##_l = _mm_madd_epi16(c0##lo, c1); \ + __m128i out1##_h = _mm_madd_epi16(c0##hi, c1) + +// out = in << 12 (in 16-bit, out 32-bit) +#define dct_widen(out, in) \ + __m128i out##_l = _mm_srai_epi32(_mm_unpacklo_epi16(_mm_setzero_si128(), (in)), 4); \ + __m128i out##_h = _mm_srai_epi32(_mm_unpackhi_epi16(_mm_setzero_si128(), (in)), 4) + +// wide add +#define dct_wadd(out, a, b) \ + __m128i out##_l = _mm_add_epi32(a##_l, b##_l); \ + __m128i out##_h = _mm_add_epi32(a##_h, b##_h) + +// wide sub +#define dct_wsub(out, a, b) \ + __m128i out##_l = _mm_sub_epi32(a##_l, b##_l); \ + __m128i out##_h = _mm_sub_epi32(a##_h, b##_h) + +// butterfly a/b, add bias, then shift by "s" and pack +#define dct_bfly32o(out0, out1, a, b, bias, s) \ + { \ + __m128i abiased_l = _mm_add_epi32(a##_l, bias); \ + __m128i abiased_h = _mm_add_epi32(a##_h, bias); \ + dct_wadd(sum, abiased, b); \ + dct_wsub(dif, abiased, b); \ + out0 = _mm_packs_epi32(_mm_srai_epi32(sum_l, s), _mm_srai_epi32(sum_h, s)); \ + out1 = _mm_packs_epi32(_mm_srai_epi32(dif_l, s), _mm_srai_epi32(dif_h, s)); \ + } + +// 8-bit interleave step (for transposes) +#define dct_interleave8(a, b) \ + tmp = a; \ + a = _mm_unpacklo_epi8(a, b); \ + b = _mm_unpackhi_epi8(tmp, b) + +// 16-bit interleave step (for transposes) +#define dct_interleave16(a, b) \ + tmp = a; \ + a = _mm_unpacklo_epi16(a, b); \ + b = _mm_unpackhi_epi16(tmp, b) + +#define dct_pass(bias, shift) \ + { \ + /* even part */ \ + dct_rot(t2e, t3e, row2, row6, rot0_0, rot0_1); \ + __m128i sum04 = _mm_add_epi16(row0, row4); \ + __m128i dif04 = _mm_sub_epi16(row0, row4); \ + dct_widen(t0e, sum04); \ + dct_widen(t1e, dif04); \ + dct_wadd(x0, t0e, t3e); \ + dct_wsub(x3, t0e, t3e); \ + dct_wadd(x1, t1e, t2e); \ + dct_wsub(x2, t1e, t2e); \ + /* odd part */ \ + dct_rot(y0o, y2o, row7, row3, rot2_0, rot2_1); \ + dct_rot(y1o, y3o, row5, row1, rot3_0, rot3_1); \ + __m128i sum17 = _mm_add_epi16(row1, row7); \ + __m128i sum35 = _mm_add_epi16(row3, row5); \ + dct_rot(y4o, y5o, sum17, sum35, rot1_0, rot1_1); \ + dct_wadd(x4, y0o, y4o); \ + dct_wadd(x5, y1o, y5o); \ + dct_wadd(x6, y2o, y5o); \ + dct_wadd(x7, y3o, y4o); \ + dct_bfly32o(row0, row7, x0, x7, bias, shift); \ + dct_bfly32o(row1, row6, x1, x6, bias, shift); \ + dct_bfly32o(row2, row5, x2, x5, bias, shift); \ + dct_bfly32o(row3, row4, x3, x4, bias, shift); \ + } + + __m128i rot0_0 = dct_const(stbi__f2f(0.5411961f), stbi__f2f(0.5411961f) + stbi__f2f(-1.847759065f)); + __m128i rot0_1 = dct_const(stbi__f2f(0.5411961f) + stbi__f2f(0.765366865f), stbi__f2f(0.5411961f)); + __m128i rot1_0 = dct_const(stbi__f2f(1.175875602f) + stbi__f2f(-0.899976223f), stbi__f2f(1.175875602f)); + __m128i rot1_1 = dct_const(stbi__f2f(1.175875602f), stbi__f2f(1.175875602f) + stbi__f2f(-2.562915447f)); + __m128i rot2_0 = dct_const(stbi__f2f(-1.961570560f) + stbi__f2f(0.298631336f), stbi__f2f(-1.961570560f)); + __m128i rot2_1 = dct_const(stbi__f2f(-1.961570560f), stbi__f2f(-1.961570560f) + stbi__f2f(3.072711026f)); + __m128i rot3_0 = dct_const(stbi__f2f(-0.390180644f) + stbi__f2f(2.053119869f), stbi__f2f(-0.390180644f)); + __m128i rot3_1 = dct_const(stbi__f2f(-0.390180644f), stbi__f2f(-0.390180644f) + stbi__f2f(1.501321110f)); + + // rounding biases in column/row passes, see stbi__idct_block for explanation. + __m128i bias_0 = _mm_set1_epi32(512); + __m128i bias_1 = _mm_set1_epi32(65536 + (128 << 17)); + + // load + row0 = _mm_load_si128((const __m128i *)(data + 0 * 8)); + row1 = _mm_load_si128((const __m128i *)(data + 1 * 8)); + row2 = _mm_load_si128((const __m128i *)(data + 2 * 8)); + row3 = _mm_load_si128((const __m128i *)(data + 3 * 8)); + row4 = _mm_load_si128((const __m128i *)(data + 4 * 8)); + row5 = _mm_load_si128((const __m128i *)(data + 5 * 8)); + row6 = _mm_load_si128((const __m128i *)(data + 6 * 8)); + row7 = _mm_load_si128((const __m128i *)(data + 7 * 8)); + + // column pass + dct_pass(bias_0, 10); + + { + // 16bit 8x8 transpose pass 1 + dct_interleave16(row0, row4); + dct_interleave16(row1, row5); + dct_interleave16(row2, row6); + dct_interleave16(row3, row7); + + // transpose pass 2 + dct_interleave16(row0, row2); + dct_interleave16(row1, row3); + dct_interleave16(row4, row6); + dct_interleave16(row5, row7); + + // transpose pass 3 + dct_interleave16(row0, row1); + dct_interleave16(row2, row3); + dct_interleave16(row4, row5); + dct_interleave16(row6, row7); + } + + // row pass + dct_pass(bias_1, 17); + + { + // pack + __m128i p0 = _mm_packus_epi16(row0, row1); // a0a1a2a3...a7b0b1b2b3...b7 + __m128i p1 = _mm_packus_epi16(row2, row3); + __m128i p2 = _mm_packus_epi16(row4, row5); + __m128i p3 = _mm_packus_epi16(row6, row7); + + // 8bit 8x8 transpose pass 1 + dct_interleave8(p0, p2); // a0e0a1e1... + dct_interleave8(p1, p3); // c0g0c1g1... + + // transpose pass 2 + dct_interleave8(p0, p1); // a0c0e0g0... + dct_interleave8(p2, p3); // b0d0f0h0... + + // transpose pass 3 + dct_interleave8(p0, p2); // a0b0c0d0... + dct_interleave8(p1, p3); // a4b4c4d4... + + // store + _mm_storel_epi64((__m128i *)out, p0); + out += out_stride; + _mm_storel_epi64((__m128i *)out, _mm_shuffle_epi32(p0, 0x4e)); + out += out_stride; + _mm_storel_epi64((__m128i *)out, p2); + out += out_stride; + _mm_storel_epi64((__m128i *)out, _mm_shuffle_epi32(p2, 0x4e)); + out += out_stride; + _mm_storel_epi64((__m128i *)out, p1); + out += out_stride; + _mm_storel_epi64((__m128i *)out, _mm_shuffle_epi32(p1, 0x4e)); + out += out_stride; + _mm_storel_epi64((__m128i *)out, p3); + out += out_stride; + _mm_storel_epi64((__m128i *)out, _mm_shuffle_epi32(p3, 0x4e)); + } + +#undef dct_const +#undef dct_rot +#undef dct_widen +#undef dct_wadd +#undef dct_wsub +#undef dct_bfly32o +#undef dct_interleave8 +#undef dct_interleave16 +#undef dct_pass +} + +#endif // STBI_SSE2 + +#ifdef STBI_NEON + +// NEON integer IDCT. should produce bit-identical +// results to the generic C version. +static void stbi__idct_simd(stbi_uc *out, int out_stride, short data[64]) +{ + int16x8_t row0, row1, row2, row3, row4, row5, row6, row7; + + int16x4_t rot0_0 = vdup_n_s16(stbi__f2f(0.5411961f)); + int16x4_t rot0_1 = vdup_n_s16(stbi__f2f(-1.847759065f)); + int16x4_t rot0_2 = vdup_n_s16(stbi__f2f(0.765366865f)); + int16x4_t rot1_0 = vdup_n_s16(stbi__f2f(1.175875602f)); + int16x4_t rot1_1 = vdup_n_s16(stbi__f2f(-0.899976223f)); + int16x4_t rot1_2 = vdup_n_s16(stbi__f2f(-2.562915447f)); + int16x4_t rot2_0 = vdup_n_s16(stbi__f2f(-1.961570560f)); + int16x4_t rot2_1 = vdup_n_s16(stbi__f2f(-0.390180644f)); + int16x4_t rot3_0 = vdup_n_s16(stbi__f2f(0.298631336f)); + int16x4_t rot3_1 = vdup_n_s16(stbi__f2f(2.053119869f)); + int16x4_t rot3_2 = vdup_n_s16(stbi__f2f(3.072711026f)); + int16x4_t rot3_3 = vdup_n_s16(stbi__f2f(1.501321110f)); + +#define dct_long_mul(out, inq, coeff) \ + int32x4_t out##_l = vmull_s16(vget_low_s16(inq), coeff); \ + int32x4_t out##_h = vmull_s16(vget_high_s16(inq), coeff) + +#define dct_long_mac(out, acc, inq, coeff) \ + int32x4_t out##_l = vmlal_s16(acc##_l, vget_low_s16(inq), coeff); \ + int32x4_t out##_h = vmlal_s16(acc##_h, vget_high_s16(inq), coeff) + +#define dct_widen(out, inq) \ + int32x4_t out##_l = vshll_n_s16(vget_low_s16(inq), 12); \ + int32x4_t out##_h = vshll_n_s16(vget_high_s16(inq), 12) + +// wide add +#define dct_wadd(out, a, b) \ + int32x4_t out##_l = vaddq_s32(a##_l, b##_l); \ + int32x4_t out##_h = vaddq_s32(a##_h, b##_h) + +// wide sub +#define dct_wsub(out, a, b) \ + int32x4_t out##_l = vsubq_s32(a##_l, b##_l); \ + int32x4_t out##_h = vsubq_s32(a##_h, b##_h) + +// butterfly a/b, then shift using "shiftop" by "s" and pack +#define dct_bfly32o(out0, out1, a, b, shiftop, s) \ + { \ + dct_wadd(sum, a, b); \ + dct_wsub(dif, a, b); \ + out0 = vcombine_s16(shiftop(sum_l, s), shiftop(sum_h, s)); \ + out1 = vcombine_s16(shiftop(dif_l, s), shiftop(dif_h, s)); \ + } + +#define dct_pass(shiftop, shift) \ + { \ + /* even part */ \ + int16x8_t sum26 = vaddq_s16(row2, row6); \ + dct_long_mul(p1e, sum26, rot0_0); \ + dct_long_mac(t2e, p1e, row6, rot0_1); \ + dct_long_mac(t3e, p1e, row2, rot0_2); \ + int16x8_t sum04 = vaddq_s16(row0, row4); \ + int16x8_t dif04 = vsubq_s16(row0, row4); \ + dct_widen(t0e, sum04); \ + dct_widen(t1e, dif04); \ + dct_wadd(x0, t0e, t3e); \ + dct_wsub(x3, t0e, t3e); \ + dct_wadd(x1, t1e, t2e); \ + dct_wsub(x2, t1e, t2e); \ + /* odd part */ \ + int16x8_t sum15 = vaddq_s16(row1, row5); \ + int16x8_t sum17 = vaddq_s16(row1, row7); \ + int16x8_t sum35 = vaddq_s16(row3, row5); \ + int16x8_t sum37 = vaddq_s16(row3, row7); \ + int16x8_t sumodd = vaddq_s16(sum17, sum35); \ + dct_long_mul(p5o, sumodd, rot1_0); \ + dct_long_mac(p1o, p5o, sum17, rot1_1); \ + dct_long_mac(p2o, p5o, sum35, rot1_2); \ + dct_long_mul(p3o, sum37, rot2_0); \ + dct_long_mul(p4o, sum15, rot2_1); \ + dct_wadd(sump13o, p1o, p3o); \ + dct_wadd(sump24o, p2o, p4o); \ + dct_wadd(sump23o, p2o, p3o); \ + dct_wadd(sump14o, p1o, p4o); \ + dct_long_mac(x4, sump13o, row7, rot3_0); \ + dct_long_mac(x5, sump24o, row5, rot3_1); \ + dct_long_mac(x6, sump23o, row3, rot3_2); \ + dct_long_mac(x7, sump14o, row1, rot3_3); \ + dct_bfly32o(row0, row7, x0, x7, shiftop, shift); \ + dct_bfly32o(row1, row6, x1, x6, shiftop, shift); \ + dct_bfly32o(row2, row5, x2, x5, shiftop, shift); \ + dct_bfly32o(row3, row4, x3, x4, shiftop, shift); \ + } + + // load + row0 = vld1q_s16(data + 0 * 8); + row1 = vld1q_s16(data + 1 * 8); + row2 = vld1q_s16(data + 2 * 8); + row3 = vld1q_s16(data + 3 * 8); + row4 = vld1q_s16(data + 4 * 8); + row5 = vld1q_s16(data + 5 * 8); + row6 = vld1q_s16(data + 6 * 8); + row7 = vld1q_s16(data + 7 * 8); + + // add DC bias + row0 = vaddq_s16(row0, vsetq_lane_s16(1024, vdupq_n_s16(0), 0)); + + // column pass + dct_pass(vrshrn_n_s32, 10); + + // 16bit 8x8 transpose + { +// these three map to a single VTRN.16, VTRN.32, and VSWP, respectively. +// whether compilers actually get this is another story, sadly. +#define dct_trn16(x, y) \ + { \ + int16x8x2_t t = vtrnq_s16(x, y); \ + x = t.val[0]; \ + y = t.val[1]; \ + } +#define dct_trn32(x, y) \ + { \ + int32x4x2_t t = vtrnq_s32(vreinterpretq_s32_s16(x), vreinterpretq_s32_s16(y)); \ + x = vreinterpretq_s16_s32(t.val[0]); \ + y = vreinterpretq_s16_s32(t.val[1]); \ + } +#define dct_trn64(x, y) \ + { \ + int16x8_t x0 = x; \ + int16x8_t y0 = y; \ + x = vcombine_s16(vget_low_s16(x0), vget_low_s16(y0)); \ + y = vcombine_s16(vget_high_s16(x0), vget_high_s16(y0)); \ + } + + // pass 1 + dct_trn16(row0, row1); // a0b0a2b2a4b4a6b6 + dct_trn16(row2, row3); + dct_trn16(row4, row5); + dct_trn16(row6, row7); + + // pass 2 + dct_trn32(row0, row2); // a0b0c0d0a4b4c4d4 + dct_trn32(row1, row3); + dct_trn32(row4, row6); + dct_trn32(row5, row7); + + // pass 3 + dct_trn64(row0, row4); // a0b0c0d0e0f0g0h0 + dct_trn64(row1, row5); + dct_trn64(row2, row6); + dct_trn64(row3, row7); + +#undef dct_trn16 +#undef dct_trn32 +#undef dct_trn64 + } + + // row pass + // vrshrn_n_s32 only supports shifts up to 16, we need + // 17. so do a non-rounding shift of 16 first then follow + // up with a rounding shift by 1. + dct_pass(vshrn_n_s32, 16); + + { + // pack and round + uint8x8_t p0 = vqrshrun_n_s16(row0, 1); + uint8x8_t p1 = vqrshrun_n_s16(row1, 1); + uint8x8_t p2 = vqrshrun_n_s16(row2, 1); + uint8x8_t p3 = vqrshrun_n_s16(row3, 1); + uint8x8_t p4 = vqrshrun_n_s16(row4, 1); + uint8x8_t p5 = vqrshrun_n_s16(row5, 1); + uint8x8_t p6 = vqrshrun_n_s16(row6, 1); + uint8x8_t p7 = vqrshrun_n_s16(row7, 1); + + // again, these can translate into one instruction, but often don't. +#define dct_trn8_8(x, y) \ + { \ + uint8x8x2_t t = vtrn_u8(x, y); \ + x = t.val[0]; \ + y = t.val[1]; \ + } +#define dct_trn8_16(x, y) \ + { \ + uint16x4x2_t t = vtrn_u16(vreinterpret_u16_u8(x), vreinterpret_u16_u8(y)); \ + x = vreinterpret_u8_u16(t.val[0]); \ + y = vreinterpret_u8_u16(t.val[1]); \ + } +#define dct_trn8_32(x, y) \ + { \ + uint32x2x2_t t = vtrn_u32(vreinterpret_u32_u8(x), vreinterpret_u32_u8(y)); \ + x = vreinterpret_u8_u32(t.val[0]); \ + y = vreinterpret_u8_u32(t.val[1]); \ + } + + // sadly can't use interleaved stores here since we only write + // 8 bytes to each scan line! + + // 8x8 8-bit transpose pass 1 + dct_trn8_8(p0, p1); + dct_trn8_8(p2, p3); + dct_trn8_8(p4, p5); + dct_trn8_8(p6, p7); + + // pass 2 + dct_trn8_16(p0, p2); + dct_trn8_16(p1, p3); + dct_trn8_16(p4, p6); + dct_trn8_16(p5, p7); + + // pass 3 + dct_trn8_32(p0, p4); + dct_trn8_32(p1, p5); + dct_trn8_32(p2, p6); + dct_trn8_32(p3, p7); + + // store + vst1_u8(out, p0); + out += out_stride; + vst1_u8(out, p1); + out += out_stride; + vst1_u8(out, p2); + out += out_stride; + vst1_u8(out, p3); + out += out_stride; + vst1_u8(out, p4); + out += out_stride; + vst1_u8(out, p5); + out += out_stride; + vst1_u8(out, p6); + out += out_stride; + vst1_u8(out, p7); + +#undef dct_trn8_8 +#undef dct_trn8_16 +#undef dct_trn8_32 + } + +#undef dct_long_mul +#undef dct_long_mac +#undef dct_widen +#undef dct_wadd +#undef dct_wsub +#undef dct_bfly32o +#undef dct_pass +} + +#endif // STBI_NEON + +#define STBI__MARKER_none 0xff +// if there's a pending marker from the entropy stream, return that +// otherwise, fetch from the stream and get a marker. if there's no +// marker, return 0xff, which is never a valid marker value +static stbi_uc stbi__get_marker(stbi__jpeg *j) +{ + stbi_uc x; + if (j->marker != STBI__MARKER_none) + { + x = j->marker; + j->marker = STBI__MARKER_none; + return x; + } + x = stbi__get8(j->s); + if (x != 0xff) + return STBI__MARKER_none; + while (x == 0xff) + x = stbi__get8(j->s); // consume repeated 0xff fill bytes + return x; +} + +// in each scan, we'll have scan_n components, and the order +// of the components is specified by order[] +#define STBI__RESTART(x) ((x) >= 0xd0 && (x) <= 0xd7) + +// after a restart interval, stbi__jpeg_reset the entropy decoder and +// the dc prediction +static void stbi__jpeg_reset(stbi__jpeg *j) +{ + j->code_bits = 0; + j->code_buffer = 0; + j->nomore = 0; + j->img_comp[0].dc_pred = j->img_comp[1].dc_pred = j->img_comp[2].dc_pred = j->img_comp[3].dc_pred = 0; + j->marker = STBI__MARKER_none; + j->todo = j->restart_interval ? j->restart_interval : 0x7fffffff; + j->eob_run = 0; + // no more than 1<<31 MCUs if no restart_interal? that's plenty safe, + // since we don't even allow 1<<30 pixels +} + +static int stbi__parse_entropy_coded_data(stbi__jpeg *z) +{ + stbi__jpeg_reset(z); + if (!z->progressive) + { + if (z->scan_n == 1) + { + int i, j; + STBI_SIMD_ALIGN(short, data[64]); + int n = z->order[0]; + // non-interleaved data, we just need to process one block at a time, + // in trivial scanline order + // number of blocks to do just depends on how many actual "pixels" this + // component has, independent of interleaved MCU blocking and such + int w = (z->img_comp[n].x + 7) >> 3; + int h = (z->img_comp[n].y + 7) >> 3; + for (j = 0; j < h; ++j) + { + for (i = 0; i < w; ++i) + { + int ha = z->img_comp[n].ha; + if (!stbi__jpeg_decode_block(z, data, z->huff_dc + z->img_comp[n].hd, z->huff_ac + ha, z->fast_ac[ha], n, z->dequant[z->img_comp[n].tq])) + return 0; + z->idct_block_kernel(z->img_comp[n].data + z->img_comp[n].w2 * j * 8 + i * 8, z->img_comp[n].w2, data); + // every data block is an MCU, so countdown the restart interval + if (--z->todo <= 0) + { + if (z->code_bits < 24) + stbi__grow_buffer_unsafe(z); + // if it's NOT a restart, then just bail, so we get corrupt data + // rather than no data + if (!STBI__RESTART(z->marker)) + return 1; + stbi__jpeg_reset(z); + } + } + } + return 1; + } + else + { // interleaved + int i, j, k, x, y; + STBI_SIMD_ALIGN(short, data[64]); + for (j = 0; j < z->img_mcu_y; ++j) + { + for (i = 0; i < z->img_mcu_x; ++i) + { + // scan an interleaved mcu... process scan_n components in order + for (k = 0; k < z->scan_n; ++k) + { + int n = z->order[k]; + // scan out an mcu's worth of this component; that's just determined + // by the basic H and V specified for the component + for (y = 0; y < z->img_comp[n].v; ++y) + { + for (x = 0; x < z->img_comp[n].h; ++x) + { + int x2 = (i * z->img_comp[n].h + x) * 8; + int y2 = (j * z->img_comp[n].v + y) * 8; + int ha = z->img_comp[n].ha; + if (!stbi__jpeg_decode_block(z, data, z->huff_dc + z->img_comp[n].hd, z->huff_ac + ha, z->fast_ac[ha], n, z->dequant[z->img_comp[n].tq])) + return 0; + z->idct_block_kernel(z->img_comp[n].data + z->img_comp[n].w2 * y2 + x2, z->img_comp[n].w2, data); + } + } + } + // after all interleaved components, that's an interleaved MCU, + // so now count down the restart interval + if (--z->todo <= 0) + { + if (z->code_bits < 24) + stbi__grow_buffer_unsafe(z); + if (!STBI__RESTART(z->marker)) + return 1; + stbi__jpeg_reset(z); + } + } + } + return 1; + } + } + else + { + if (z->scan_n == 1) + { + int i, j; + int n = z->order[0]; + // non-interleaved data, we just need to process one block at a time, + // in trivial scanline order + // number of blocks to do just depends on how many actual "pixels" this + // component has, independent of interleaved MCU blocking and such + int w = (z->img_comp[n].x + 7) >> 3; + int h = (z->img_comp[n].y + 7) >> 3; + for (j = 0; j < h; ++j) + { + for (i = 0; i < w; ++i) + { + short *data = z->img_comp[n].coeff + 64 * (i + j * z->img_comp[n].coeff_w); + if (z->spec_start == 0) + { + if (!stbi__jpeg_decode_block_prog_dc(z, data, &z->huff_dc[z->img_comp[n].hd], n)) + return 0; + } + else + { + int ha = z->img_comp[n].ha; + if (!stbi__jpeg_decode_block_prog_ac(z, data, &z->huff_ac[ha], z->fast_ac[ha])) + return 0; + } + // every data block is an MCU, so countdown the restart interval + if (--z->todo <= 0) + { + if (z->code_bits < 24) + stbi__grow_buffer_unsafe(z); + if (!STBI__RESTART(z->marker)) + return 1; + stbi__jpeg_reset(z); + } + } + } + return 1; + } + else + { // interleaved + int i, j, k, x, y; + for (j = 0; j < z->img_mcu_y; ++j) + { + for (i = 0; i < z->img_mcu_x; ++i) + { + // scan an interleaved mcu... process scan_n components in order + for (k = 0; k < z->scan_n; ++k) + { + int n = z->order[k]; + // scan out an mcu's worth of this component; that's just determined + // by the basic H and V specified for the component + for (y = 0; y < z->img_comp[n].v; ++y) + { + for (x = 0; x < z->img_comp[n].h; ++x) + { + int x2 = (i * z->img_comp[n].h + x); + int y2 = (j * z->img_comp[n].v + y); + short *data = z->img_comp[n].coeff + 64 * (x2 + y2 * z->img_comp[n].coeff_w); + if (!stbi__jpeg_decode_block_prog_dc(z, data, &z->huff_dc[z->img_comp[n].hd], n)) + return 0; + } + } + } + // after all interleaved components, that's an interleaved MCU, + // so now count down the restart interval + if (--z->todo <= 0) + { + if (z->code_bits < 24) + stbi__grow_buffer_unsafe(z); + if (!STBI__RESTART(z->marker)) + return 1; + stbi__jpeg_reset(z); + } + } + } + return 1; + } + } +} + +static void stbi__jpeg_dequantize(short *data, stbi__uint16 *dequant) +{ + int i; + for (i = 0; i < 64; ++i) + data[i] *= dequant[i]; +} + +static void stbi__jpeg_finish(stbi__jpeg *z) +{ + if (z->progressive) + { + // dequantize and idct the data + int i, j, n; + for (n = 0; n < z->s->img_n; ++n) + { + int w = (z->img_comp[n].x + 7) >> 3; + int h = (z->img_comp[n].y + 7) >> 3; + for (j = 0; j < h; ++j) + { + for (i = 0; i < w; ++i) + { + short *data = z->img_comp[n].coeff + 64 * (i + j * z->img_comp[n].coeff_w); + stbi__jpeg_dequantize(data, z->dequant[z->img_comp[n].tq]); + z->idct_block_kernel(z->img_comp[n].data + z->img_comp[n].w2 * j * 8 + i * 8, z->img_comp[n].w2, data); + } + } + } + } +} + +static int stbi__process_marker(stbi__jpeg *z, int m) +{ + int L; + switch (m) + { + case STBI__MARKER_none: // no marker found + return stbi__err("expected marker", "Corrupt JPEG"); + + case 0xDD: // DRI - specify restart interval + if (stbi__get16be(z->s) != 4) + return stbi__err("bad DRI len", "Corrupt JPEG"); + z->restart_interval = stbi__get16be(z->s); + return 1; + + case 0xDB: // DQT - define quantization table + L = stbi__get16be(z->s) - 2; + while (L > 0) + { + int q = stbi__get8(z->s); + int p = q >> 4, sixteen = (p != 0); + int t = q & 15, i; + if (p != 0 && p != 1) + return stbi__err("bad DQT type", "Corrupt JPEG"); + if (t > 3) + return stbi__err("bad DQT table", "Corrupt JPEG"); + + for (i = 0; i < 64; ++i) + z->dequant[t][stbi__jpeg_dezigzag[i]] = sixteen ? stbi__get16be(z->s) : stbi__get8(z->s); + L -= (sixteen ? 129 : 65); + } + return L == 0; + + case 0xC4: // DHT - define huffman table + L = stbi__get16be(z->s) - 2; + while (L > 0) + { + stbi_uc *v; + int sizes[16], i, n = 0; + int q = stbi__get8(z->s); + int tc = q >> 4; + int th = q & 15; + if (tc > 1 || th > 3) + return stbi__err("bad DHT header", "Corrupt JPEG"); + for (i = 0; i < 16; ++i) + { + sizes[i] = stbi__get8(z->s); + n += sizes[i]; + } + L -= 17; + if (tc == 0) + { + if (!stbi__build_huffman(z->huff_dc + th, sizes)) + return 0; + v = z->huff_dc[th].values; + } + else + { + if (!stbi__build_huffman(z->huff_ac + th, sizes)) + return 0; + v = z->huff_ac[th].values; + } + for (i = 0; i < n; ++i) + v[i] = stbi__get8(z->s); + if (tc != 0) + stbi__build_fast_ac(z->fast_ac[th], z->huff_ac + th); + L -= n; + } + return L == 0; + } + + // check for comment block or APP blocks + if ((m >= 0xE0 && m <= 0xEF) || m == 0xFE) + { + L = stbi__get16be(z->s); + if (L < 2) + { + if (m == 0xFE) + return stbi__err("bad COM len", "Corrupt JPEG"); + else + return stbi__err("bad APP len", "Corrupt JPEG"); + } + L -= 2; + + if (m == 0xE0 && L >= 5) + { // JFIF APP0 segment + static const unsigned char tag[5] = {'J', 'F', 'I', 'F', '\0'}; + int ok = 1; + int i; + for (i = 0; i < 5; ++i) + if (stbi__get8(z->s) != tag[i]) + ok = 0; + L -= 5; + if (ok) + z->jfif = 1; + } + else if (m == 0xEE && L >= 12) + { // Adobe APP14 segment + static const unsigned char tag[6] = {'A', 'd', 'o', 'b', 'e', '\0'}; + int ok = 1; + int i; + for (i = 0; i < 6; ++i) + if (stbi__get8(z->s) != tag[i]) + ok = 0; + L -= 6; + if (ok) + { + stbi__get8(z->s); // version + stbi__get16be(z->s); // flags0 + stbi__get16be(z->s); // flags1 + z->app14_color_transform = stbi__get8(z->s); // color transform + L -= 6; + } + } + + stbi__skip(z->s, L); + return 1; + } + + return stbi__err("unknown marker", "Corrupt JPEG"); +} + +// after we see SOS +static int stbi__process_scan_header(stbi__jpeg *z) +{ + int i; + int Ls = stbi__get16be(z->s); + z->scan_n = stbi__get8(z->s); + if (z->scan_n < 1 || z->scan_n > 4 || z->scan_n > (int)z->s->img_n) + return stbi__err("bad SOS component count", "Corrupt JPEG"); + if (Ls != 6 + 2 * z->scan_n) + return stbi__err("bad SOS len", "Corrupt JPEG"); + for (i = 0; i < z->scan_n; ++i) + { + int id = stbi__get8(z->s), which; + int q = stbi__get8(z->s); + for (which = 0; which < z->s->img_n; ++which) + if (z->img_comp[which].id == id) + break; + if (which == z->s->img_n) + return 0; // no match + z->img_comp[which].hd = q >> 4; + if (z->img_comp[which].hd > 3) + return stbi__err("bad DC huff", "Corrupt JPEG"); + z->img_comp[which].ha = q & 15; + if (z->img_comp[which].ha > 3) + return stbi__err("bad AC huff", "Corrupt JPEG"); + z->order[i] = which; + } + + { + int aa; + z->spec_start = stbi__get8(z->s); + z->spec_end = stbi__get8(z->s); // should be 63, but might be 0 + aa = stbi__get8(z->s); + z->succ_high = (aa >> 4); + z->succ_low = (aa & 15); + if (z->progressive) + { + if (z->spec_start > 63 || z->spec_end > 63 || z->spec_start > z->spec_end || z->succ_high > 13 || z->succ_low > 13) + return stbi__err("bad SOS", "Corrupt JPEG"); + } + else + { + if (z->spec_start != 0) + return stbi__err("bad SOS", "Corrupt JPEG"); + if (z->succ_high != 0 || z->succ_low != 0) + return stbi__err("bad SOS", "Corrupt JPEG"); + z->spec_end = 63; + } + } + + return 1; +} + +static int stbi__free_jpeg_components(stbi__jpeg *z, int ncomp, int why) +{ + int i; + for (i = 0; i < ncomp; ++i) + { + if (z->img_comp[i].raw_data) + { + STBI_FREE(z->img_comp[i].raw_data); + z->img_comp[i].raw_data = NULL; + z->img_comp[i].data = NULL; + } + if (z->img_comp[i].raw_coeff) + { + STBI_FREE(z->img_comp[i].raw_coeff); + z->img_comp[i].raw_coeff = 0; + z->img_comp[i].coeff = 0; + } + if (z->img_comp[i].linebuf) + { + STBI_FREE(z->img_comp[i].linebuf); + z->img_comp[i].linebuf = NULL; + } + } + return why; +} + +static int stbi__process_frame_header(stbi__jpeg *z, int scan) +{ + stbi__context *s = z->s; + int Lf, p, i, q, h_max = 1, v_max = 1, c; + Lf = stbi__get16be(s); + if (Lf < 11) + return stbi__err("bad SOF len", "Corrupt JPEG"); // JPEG + p = stbi__get8(s); + if (p != 8) + return stbi__err("only 8-bit", "JPEG format not supported: 8-bit only"); // JPEG baseline + s->img_y = stbi__get16be(s); + if (s->img_y == 0) + return stbi__err("no header height", "JPEG format not supported: delayed height"); // Legal, but we don't handle it--but neither does IJG + s->img_x = stbi__get16be(s); + if (s->img_x == 0) + return stbi__err("0 width", "Corrupt JPEG"); // JPEG requires + c = stbi__get8(s); + if (c != 3 && c != 1 && c != 4) + return stbi__err("bad component count", "Corrupt JPEG"); + s->img_n = c; + for (i = 0; i < c; ++i) + { + z->img_comp[i].data = NULL; + z->img_comp[i].linebuf = NULL; + } + + if (Lf != 8 + 3 * s->img_n) + return stbi__err("bad SOF len", "Corrupt JPEG"); + + z->rgb = 0; + for (i = 0; i < s->img_n; ++i) + { + static unsigned char rgb[3] = {'R', 'G', 'B'}; + z->img_comp[i].id = stbi__get8(s); + if (s->img_n == 3 && z->img_comp[i].id == rgb[i]) + ++z->rgb; + q = stbi__get8(s); + z->img_comp[i].h = (q >> 4); + if (!z->img_comp[i].h || z->img_comp[i].h > 4) + return stbi__err("bad H", "Corrupt JPEG"); + z->img_comp[i].v = q & 15; + if (!z->img_comp[i].v || z->img_comp[i].v > 4) + return stbi__err("bad V", "Corrupt JPEG"); + z->img_comp[i].tq = stbi__get8(s); + if (z->img_comp[i].tq > 3) + return stbi__err("bad TQ", "Corrupt JPEG"); + } + + if (scan != STBI__SCAN_load) + return 1; + + if (!stbi__mad3sizes_valid(s->img_x, s->img_y, s->img_n, 0)) + return stbi__err("too large", "Image too large to decode"); + + for (i = 0; i < s->img_n; ++i) + { + if (z->img_comp[i].h > h_max) + h_max = z->img_comp[i].h; + if (z->img_comp[i].v > v_max) + v_max = z->img_comp[i].v; + } + + // compute interleaved mcu info + z->img_h_max = h_max; + z->img_v_max = v_max; + z->img_mcu_w = h_max * 8; + z->img_mcu_h = v_max * 8; + // these sizes can't be more than 17 bits + z->img_mcu_x = (s->img_x + z->img_mcu_w - 1) / z->img_mcu_w; + z->img_mcu_y = (s->img_y + z->img_mcu_h - 1) / z->img_mcu_h; + + for (i = 0; i < s->img_n; ++i) + { + // number of effective pixels (e.g. for non-interleaved MCU) + z->img_comp[i].x = (s->img_x * z->img_comp[i].h + h_max - 1) / h_max; + z->img_comp[i].y = (s->img_y * z->img_comp[i].v + v_max - 1) / v_max; + // to simplify generation, we'll allocate enough memory to decode + // the bogus oversized data from using interleaved MCUs and their + // big blocks (e.g. a 16x16 iMCU on an image of width 33); we won't + // discard the extra data until colorspace conversion + // + // img_mcu_x, img_mcu_y: <=17 bits; comp[i].h and .v are <=4 (checked earlier) + // so these muls can't overflow with 32-bit ints (which we require) + z->img_comp[i].w2 = z->img_mcu_x * z->img_comp[i].h * 8; + z->img_comp[i].h2 = z->img_mcu_y * z->img_comp[i].v * 8; + z->img_comp[i].coeff = 0; + z->img_comp[i].raw_coeff = 0; + z->img_comp[i].linebuf = NULL; + z->img_comp[i].raw_data = stbi__malloc_mad2(z->img_comp[i].w2, z->img_comp[i].h2, 15); + if (z->img_comp[i].raw_data == NULL) + return stbi__free_jpeg_components(z, i + 1, stbi__err("outofmem", "Out of memory")); + // align blocks for idct using mmx/sse + z->img_comp[i].data = (stbi_uc *)(((size_t)z->img_comp[i].raw_data + 15) & ~15); + if (z->progressive) + { + // w2, h2 are multiples of 8 (see above) + z->img_comp[i].coeff_w = z->img_comp[i].w2 / 8; + z->img_comp[i].coeff_h = z->img_comp[i].h2 / 8; + z->img_comp[i].raw_coeff = stbi__malloc_mad3(z->img_comp[i].w2, z->img_comp[i].h2, sizeof(short), 15); + if (z->img_comp[i].raw_coeff == NULL) + return stbi__free_jpeg_components(z, i + 1, stbi__err("outofmem", "Out of memory")); + z->img_comp[i].coeff = (short *)(((size_t)z->img_comp[i].raw_coeff + 15) & ~15); + } + } + + return 1; +} + +// use comparisons since in some cases we handle more than one case (e.g. SOF) +#define stbi__DNL(x) ((x) == 0xdc) +#define stbi__SOI(x) ((x) == 0xd8) +#define stbi__EOI(x) ((x) == 0xd9) +#define stbi__SOF(x) ((x) == 0xc0 || (x) == 0xc1 || (x) == 0xc2) +#define stbi__SOS(x) ((x) == 0xda) + +#define stbi__SOF_progressive(x) ((x) == 0xc2) + +static int stbi__decode_jpeg_header(stbi__jpeg *z, int scan) +{ + int m; + z->jfif = 0; + z->app14_color_transform = -1; // valid values are 0,1,2 + z->marker = STBI__MARKER_none; // initialize cached marker to empty + m = stbi__get_marker(z); + if (!stbi__SOI(m)) + return stbi__err("no SOI", "Corrupt JPEG"); + if (scan == STBI__SCAN_type) + return 1; + m = stbi__get_marker(z); + while (!stbi__SOF(m)) + { + if (!stbi__process_marker(z, m)) + return 0; + m = stbi__get_marker(z); + while (m == STBI__MARKER_none) + { + // some files have extra padding after their blocks, so ok, we'll scan + if (stbi__at_eof(z->s)) + return stbi__err("no SOF", "Corrupt JPEG"); + m = stbi__get_marker(z); + } + } + z->progressive = stbi__SOF_progressive(m); + if (!stbi__process_frame_header(z, scan)) + return 0; + return 1; +} + +// decode image to YCbCr format +static int stbi__decode_jpeg_image(stbi__jpeg *j) +{ + int m; + for (m = 0; m < 4; m++) + { + j->img_comp[m].raw_data = NULL; + j->img_comp[m].raw_coeff = NULL; + } + j->restart_interval = 0; + if (!stbi__decode_jpeg_header(j, STBI__SCAN_load)) + return 0; + m = stbi__get_marker(j); + while (!stbi__EOI(m)) + { + if (stbi__SOS(m)) + { + if (!stbi__process_scan_header(j)) + return 0; + if (!stbi__parse_entropy_coded_data(j)) + return 0; + if (j->marker == STBI__MARKER_none) + { + // handle 0s at the end of image data from IP Kamera 9060 + while (!stbi__at_eof(j->s)) + { + int x = stbi__get8(j->s); + if (x == 255) + { + j->marker = stbi__get8(j->s); + break; + } + } + // if we reach eof without hitting a marker, stbi__get_marker() below will fail and we'll eventually return 0 + } + } + else if (stbi__DNL(m)) + { + int Ld = stbi__get16be(j->s); + stbi__uint32 NL = stbi__get16be(j->s); + if (Ld != 4) + stbi__err("bad DNL len", "Corrupt JPEG"); + if (NL != j->s->img_y) + stbi__err("bad DNL height", "Corrupt JPEG"); + } + else + { + if (!stbi__process_marker(j, m)) + return 0; + } + m = stbi__get_marker(j); + } + if (j->progressive) + stbi__jpeg_finish(j); + return 1; +} + +// static jfif-centered resampling (across block boundaries) + +typedef stbi_uc *(*resample_row_func)(stbi_uc *out, stbi_uc *in0, stbi_uc *in1, + int w, int hs); + +#define stbi__div4(x) ((stbi_uc)((x) >> 2)) + +static stbi_uc *resample_row_1(stbi_uc *out, stbi_uc *in_near, stbi_uc *in_far, int w, int hs) +{ + STBI_NOTUSED(out); + STBI_NOTUSED(in_far); + STBI_NOTUSED(w); + STBI_NOTUSED(hs); + return in_near; +} + +static stbi_uc *stbi__resample_row_v_2(stbi_uc *out, stbi_uc *in_near, stbi_uc *in_far, int w, int hs) +{ + // need to generate two samples vertically for every one in input + int i; + STBI_NOTUSED(hs); + for (i = 0; i < w; ++i) + out[i] = stbi__div4(3 * in_near[i] + in_far[i] + 2); + return out; +} + +static stbi_uc *stbi__resample_row_h_2(stbi_uc *out, stbi_uc *in_near, stbi_uc *in_far, int w, int hs) +{ + // need to generate two samples horizontally for every one in input + int i; + stbi_uc *input = in_near; + + if (w == 1) + { + // if only one sample, can't do any interpolation + out[0] = out[1] = input[0]; + return out; + } + + out[0] = input[0]; + out[1] = stbi__div4(input[0] * 3 + input[1] + 2); + for (i = 1; i < w - 1; ++i) + { + int n = 3 * input[i] + 2; + out[i * 2 + 0] = stbi__div4(n + input[i - 1]); + out[i * 2 + 1] = stbi__div4(n + input[i + 1]); + } + out[i * 2 + 0] = stbi__div4(input[w - 2] * 3 + input[w - 1] + 2); + out[i * 2 + 1] = input[w - 1]; + + STBI_NOTUSED(in_far); + STBI_NOTUSED(hs); + + return out; +} + +#define stbi__div16(x) ((stbi_uc)((x) >> 4)) + +static stbi_uc *stbi__resample_row_hv_2(stbi_uc *out, stbi_uc *in_near, stbi_uc *in_far, int w, int hs) +{ + // need to generate 2x2 samples for every one in input + int i, t0, t1; + if (w == 1) + { + out[0] = out[1] = stbi__div4(3 * in_near[0] + in_far[0] + 2); + return out; + } + + t1 = 3 * in_near[0] + in_far[0]; + out[0] = stbi__div4(t1 + 2); + for (i = 1; i < w; ++i) + { + t0 = t1; + t1 = 3 * in_near[i] + in_far[i]; + out[i * 2 - 1] = stbi__div16(3 * t0 + t1 + 8); + out[i * 2] = stbi__div16(3 * t1 + t0 + 8); + } + out[w * 2 - 1] = stbi__div4(t1 + 2); + + STBI_NOTUSED(hs); + + return out; +} + +#if defined(STBI_SSE2) || defined(STBI_NEON) +static stbi_uc *stbi__resample_row_hv_2_simd(stbi_uc *out, stbi_uc *in_near, stbi_uc *in_far, int w, int hs) +{ + // need to generate 2x2 samples for every one in input + int i = 0, t0, t1; + + if (w == 1) + { + out[0] = out[1] = stbi__div4(3 * in_near[0] + in_far[0] + 2); + return out; + } + + t1 = 3 * in_near[0] + in_far[0]; + // process groups of 8 pixels for as long as we can. + // note we can't handle the last pixel in a row in this loop + // because we need to handle the filter boundary conditions. + for (; i < ((w - 1) & ~7); i += 8) + { +#if defined(STBI_SSE2) + // load and perform the vertical filtering pass + // this uses 3*x + y = 4*x + (y - x) + __m128i zero = _mm_setzero_si128(); + __m128i farb = _mm_loadl_epi64((__m128i *)(in_far + i)); + __m128i nearb = _mm_loadl_epi64((__m128i *)(in_near + i)); + __m128i farw = _mm_unpacklo_epi8(farb, zero); + __m128i nearw = _mm_unpacklo_epi8(nearb, zero); + __m128i diff = _mm_sub_epi16(farw, nearw); + __m128i nears = _mm_slli_epi16(nearw, 2); + __m128i curr = _mm_add_epi16(nears, diff); // current row + + // horizontal filter works the same based on shifted vers of current + // row. "prev" is current row shifted right by 1 pixel; we need to + // insert the previous pixel value (from t1). + // "next" is current row shifted left by 1 pixel, with first pixel + // of next block of 8 pixels added in. + __m128i prv0 = _mm_slli_si128(curr, 2); + __m128i nxt0 = _mm_srli_si128(curr, 2); + __m128i prev = _mm_insert_epi16(prv0, t1, 0); + __m128i next = _mm_insert_epi16(nxt0, 3 * in_near[i + 8] + in_far[i + 8], 7); + + // horizontal filter, polyphase implementation since it's convenient: + // even pixels = 3*cur + prev = cur*4 + (prev - cur) + // odd pixels = 3*cur + next = cur*4 + (next - cur) + // note the shared term. + __m128i bias = _mm_set1_epi16(8); + __m128i curs = _mm_slli_epi16(curr, 2); + __m128i prvd = _mm_sub_epi16(prev, curr); + __m128i nxtd = _mm_sub_epi16(next, curr); + __m128i curb = _mm_add_epi16(curs, bias); + __m128i even = _mm_add_epi16(prvd, curb); + __m128i odd = _mm_add_epi16(nxtd, curb); + + // interleave even and odd pixels, then undo scaling. + __m128i int0 = _mm_unpacklo_epi16(even, odd); + __m128i int1 = _mm_unpackhi_epi16(even, odd); + __m128i de0 = _mm_srli_epi16(int0, 4); + __m128i de1 = _mm_srli_epi16(int1, 4); + + // pack and write output + __m128i outv = _mm_packus_epi16(de0, de1); + _mm_storeu_si128((__m128i *)(out + i * 2), outv); +#elif defined(STBI_NEON) + // load and perform the vertical filtering pass + // this uses 3*x + y = 4*x + (y - x) + uint8x8_t farb = vld1_u8(in_far + i); + uint8x8_t nearb = vld1_u8(in_near + i); + int16x8_t diff = vreinterpretq_s16_u16(vsubl_u8(farb, nearb)); + int16x8_t nears = vreinterpretq_s16_u16(vshll_n_u8(nearb, 2)); + int16x8_t curr = vaddq_s16(nears, diff); // current row + + // horizontal filter works the same based on shifted vers of current + // row. "prev" is current row shifted right by 1 pixel; we need to + // insert the previous pixel value (from t1). + // "next" is current row shifted left by 1 pixel, with first pixel + // of next block of 8 pixels added in. + int16x8_t prv0 = vextq_s16(curr, curr, 7); + int16x8_t nxt0 = vextq_s16(curr, curr, 1); + int16x8_t prev = vsetq_lane_s16(t1, prv0, 0); + int16x8_t next = vsetq_lane_s16(3 * in_near[i + 8] + in_far[i + 8], nxt0, 7); + + // horizontal filter, polyphase implementation since it's convenient: + // even pixels = 3*cur + prev = cur*4 + (prev - cur) + // odd pixels = 3*cur + next = cur*4 + (next - cur) + // note the shared term. + int16x8_t curs = vshlq_n_s16(curr, 2); + int16x8_t prvd = vsubq_s16(prev, curr); + int16x8_t nxtd = vsubq_s16(next, curr); + int16x8_t even = vaddq_s16(curs, prvd); + int16x8_t odd = vaddq_s16(curs, nxtd); + + // undo scaling and round, then store with even/odd phases interleaved + uint8x8x2_t o; + o.val[0] = vqrshrun_n_s16(even, 4); + o.val[1] = vqrshrun_n_s16(odd, 4); + vst2_u8(out + i * 2, o); +#endif + + // "previous" value for next iter + t1 = 3 * in_near[i + 7] + in_far[i + 7]; + } + + t0 = t1; + t1 = 3 * in_near[i] + in_far[i]; + out[i * 2] = stbi__div16(3 * t1 + t0 + 8); + + for (++i; i < w; ++i) + { + t0 = t1; + t1 = 3 * in_near[i] + in_far[i]; + out[i * 2 - 1] = stbi__div16(3 * t0 + t1 + 8); + out[i * 2] = stbi__div16(3 * t1 + t0 + 8); + } + out[w * 2 - 1] = stbi__div4(t1 + 2); + + STBI_NOTUSED(hs); + + return out; +} +#endif + +static stbi_uc *stbi__resample_row_generic(stbi_uc *out, stbi_uc *in_near, stbi_uc *in_far, int w, int hs) +{ + // resample with nearest-neighbor + int i, j; + STBI_NOTUSED(in_far); + for (i = 0; i < w; ++i) + for (j = 0; j < hs; ++j) + out[i * hs + j] = in_near[i]; + return out; +} + +// this is a reduced-precision calculation of YCbCr-to-RGB introduced +// to make sure the code produces the same results in both SIMD and scalar +#define stbi__float2fixed(x) (((int)((x)*4096.0f + 0.5f)) << 8) +static void stbi__YCbCr_to_RGB_row(stbi_uc *out, const stbi_uc *y, const stbi_uc *pcb, const stbi_uc *pcr, int count, int step) +{ + int i; + for (i = 0; i < count; ++i) + { + int y_fixed = (y[i] << 20) + (1 << 19); // rounding + int r, g, b; + int cr = pcr[i] - 128; + int cb = pcb[i] - 128; + r = y_fixed + cr * stbi__float2fixed(1.40200f); + g = y_fixed + (cr * -stbi__float2fixed(0.71414f)) + ((cb * -stbi__float2fixed(0.34414f)) & 0xffff0000); + b = y_fixed + cb * stbi__float2fixed(1.77200f); + r >>= 20; + g >>= 20; + b >>= 20; + if ((unsigned)r > 255) + { + if (r < 0) + r = 0; + else + r = 255; + } + if ((unsigned)g > 255) + { + if (g < 0) + g = 0; + else + g = 255; + } + if ((unsigned)b > 255) + { + if (b < 0) + b = 0; + else + b = 255; + } + out[0] = (stbi_uc)r; + out[1] = (stbi_uc)g; + out[2] = (stbi_uc)b; + out[3] = 255; + out += step; + } +} + +#if defined(STBI_SSE2) || defined(STBI_NEON) +static void stbi__YCbCr_to_RGB_simd(stbi_uc *out, stbi_uc const *y, stbi_uc const *pcb, stbi_uc const *pcr, int count, int step) +{ + int i = 0; + +#ifdef STBI_SSE2 + // step == 3 is pretty ugly on the final interleave, and i'm not convinced + // it's useful in practice (you wouldn't use it for textures, for example). + // so just accelerate step == 4 case. + if (step == 4) + { + // this is a fairly straightforward implementation and not super-optimized. + __m128i signflip = _mm_set1_epi8(-0x80); + __m128i cr_const0 = _mm_set1_epi16((short)(1.40200f * 4096.0f + 0.5f)); + __m128i cr_const1 = _mm_set1_epi16(-(short)(0.71414f * 4096.0f + 0.5f)); + __m128i cb_const0 = _mm_set1_epi16(-(short)(0.34414f * 4096.0f + 0.5f)); + __m128i cb_const1 = _mm_set1_epi16((short)(1.77200f * 4096.0f + 0.5f)); + __m128i y_bias = _mm_set1_epi8((char)(unsigned char)128); + __m128i xw = _mm_set1_epi16(255); // alpha channel + + for (; i + 7 < count; i += 8) + { + // load + __m128i y_bytes = _mm_loadl_epi64((__m128i *)(y + i)); + __m128i cr_bytes = _mm_loadl_epi64((__m128i *)(pcr + i)); + __m128i cb_bytes = _mm_loadl_epi64((__m128i *)(pcb + i)); + __m128i cr_biased = _mm_xor_si128(cr_bytes, signflip); // -128 + __m128i cb_biased = _mm_xor_si128(cb_bytes, signflip); // -128 + + // unpack to short (and left-shift cr, cb by 8) + __m128i yw = _mm_unpacklo_epi8(y_bias, y_bytes); + __m128i crw = _mm_unpacklo_epi8(_mm_setzero_si128(), cr_biased); + __m128i cbw = _mm_unpacklo_epi8(_mm_setzero_si128(), cb_biased); + + // color transform + __m128i yws = _mm_srli_epi16(yw, 4); + __m128i cr0 = _mm_mulhi_epi16(cr_const0, crw); + __m128i cb0 = _mm_mulhi_epi16(cb_const0, cbw); + __m128i cb1 = _mm_mulhi_epi16(cbw, cb_const1); + __m128i cr1 = _mm_mulhi_epi16(crw, cr_const1); + __m128i rws = _mm_add_epi16(cr0, yws); + __m128i gwt = _mm_add_epi16(cb0, yws); + __m128i bws = _mm_add_epi16(yws, cb1); + __m128i gws = _mm_add_epi16(gwt, cr1); + + // descale + __m128i rw = _mm_srai_epi16(rws, 4); + __m128i bw = _mm_srai_epi16(bws, 4); + __m128i gw = _mm_srai_epi16(gws, 4); + + // back to byte, set up for transpose + __m128i brb = _mm_packus_epi16(rw, bw); + __m128i gxb = _mm_packus_epi16(gw, xw); + + // transpose to interleave channels + __m128i t0 = _mm_unpacklo_epi8(brb, gxb); + __m128i t1 = _mm_unpackhi_epi8(brb, gxb); + __m128i o0 = _mm_unpacklo_epi16(t0, t1); + __m128i o1 = _mm_unpackhi_epi16(t0, t1); + + // store + _mm_storeu_si128((__m128i *)(out + 0), o0); + _mm_storeu_si128((__m128i *)(out + 16), o1); + out += 32; + } + } +#endif + +#ifdef STBI_NEON + // in this version, step=3 support would be easy to add. but is there demand? + if (step == 4) + { + // this is a fairly straightforward implementation and not super-optimized. + uint8x8_t signflip = vdup_n_u8(0x80); + int16x8_t cr_const0 = vdupq_n_s16((short)(1.40200f * 4096.0f + 0.5f)); + int16x8_t cr_const1 = vdupq_n_s16(-(short)(0.71414f * 4096.0f + 0.5f)); + int16x8_t cb_const0 = vdupq_n_s16(-(short)(0.34414f * 4096.0f + 0.5f)); + int16x8_t cb_const1 = vdupq_n_s16((short)(1.77200f * 4096.0f + 0.5f)); + + for (; i + 7 < count; i += 8) + { + // load + uint8x8_t y_bytes = vld1_u8(y + i); + uint8x8_t cr_bytes = vld1_u8(pcr + i); + uint8x8_t cb_bytes = vld1_u8(pcb + i); + int8x8_t cr_biased = vreinterpret_s8_u8(vsub_u8(cr_bytes, signflip)); + int8x8_t cb_biased = vreinterpret_s8_u8(vsub_u8(cb_bytes, signflip)); + + // expand to s16 + int16x8_t yws = vreinterpretq_s16_u16(vshll_n_u8(y_bytes, 4)); + int16x8_t crw = vshll_n_s8(cr_biased, 7); + int16x8_t cbw = vshll_n_s8(cb_biased, 7); + + // color transform + int16x8_t cr0 = vqdmulhq_s16(crw, cr_const0); + int16x8_t cb0 = vqdmulhq_s16(cbw, cb_const0); + int16x8_t cr1 = vqdmulhq_s16(crw, cr_const1); + int16x8_t cb1 = vqdmulhq_s16(cbw, cb_const1); + int16x8_t rws = vaddq_s16(yws, cr0); + int16x8_t gws = vaddq_s16(vaddq_s16(yws, cb0), cr1); + int16x8_t bws = vaddq_s16(yws, cb1); + + // undo scaling, round, convert to byte + uint8x8x4_t o; + o.val[0] = vqrshrun_n_s16(rws, 4); + o.val[1] = vqrshrun_n_s16(gws, 4); + o.val[2] = vqrshrun_n_s16(bws, 4); + o.val[3] = vdup_n_u8(255); + + // store, interleaving r/g/b/a + vst4_u8(out, o); + out += 8 * 4; + } + } +#endif + + for (; i < count; ++i) + { + int y_fixed = (y[i] << 20) + (1 << 19); // rounding + int r, g, b; + int cr = pcr[i] - 128; + int cb = pcb[i] - 128; + r = y_fixed + cr * stbi__float2fixed(1.40200f); + g = y_fixed + cr * -stbi__float2fixed(0.71414f) + ((cb * -stbi__float2fixed(0.34414f)) & 0xffff0000); + b = y_fixed + cb * stbi__float2fixed(1.77200f); + r >>= 20; + g >>= 20; + b >>= 20; + if ((unsigned)r > 255) + { + if (r < 0) + r = 0; + else + r = 255; + } + if ((unsigned)g > 255) + { + if (g < 0) + g = 0; + else + g = 255; + } + if ((unsigned)b > 255) + { + if (b < 0) + b = 0; + else + b = 255; + } + out[0] = (stbi_uc)r; + out[1] = (stbi_uc)g; + out[2] = (stbi_uc)b; + out[3] = 255; + out += step; + } +} +#endif + +// set up the kernels +static void stbi__setup_jpeg(stbi__jpeg *j) +{ + j->idct_block_kernel = stbi__idct_block; + j->YCbCr_to_RGB_kernel = stbi__YCbCr_to_RGB_row; + j->resample_row_hv_2_kernel = stbi__resample_row_hv_2; + +#ifdef STBI_SSE2 + if (stbi__sse2_available()) + { + j->idct_block_kernel = stbi__idct_simd; + j->YCbCr_to_RGB_kernel = stbi__YCbCr_to_RGB_simd; + j->resample_row_hv_2_kernel = stbi__resample_row_hv_2_simd; + } +#endif + +#ifdef STBI_NEON + j->idct_block_kernel = stbi__idct_simd; + j->YCbCr_to_RGB_kernel = stbi__YCbCr_to_RGB_simd; + j->resample_row_hv_2_kernel = stbi__resample_row_hv_2_simd; +#endif +} + +// clean up the temporary component buffers +static void stbi__cleanup_jpeg(stbi__jpeg *j) +{ + stbi__free_jpeg_components(j, j->s->img_n, 0); +} + +typedef struct +{ + resample_row_func resample; + stbi_uc *line0, *line1; + int hs, vs; // expansion factor in each axis + int w_lores; // horizontal pixels pre-expansion + int ystep; // how far through vertical expansion we are + int ypos; // which pre-expansion row we're on +} stbi__resample; + +// fast 0..255 * 0..255 => 0..255 rounded multiplication +static stbi_uc stbi__blinn_8x8(stbi_uc x, stbi_uc y) +{ + unsigned int t = x * y + 128; + return (stbi_uc)((t + (t >> 8)) >> 8); +} + +static stbi_uc *load_jpeg_image(stbi__jpeg *z, int *out_x, int *out_y, int *comp, int req_comp) +{ + int n, decode_n, is_rgb; + z->s->img_n = 0; // make stbi__cleanup_jpeg safe + + // validate req_comp + if (req_comp < 0 || req_comp > 4) + return stbi__errpuc("bad req_comp", "Internal error"); + + // load a jpeg image from whichever source, but leave in YCbCr format + if (!stbi__decode_jpeg_image(z)) + { + stbi__cleanup_jpeg(z); + return NULL; + } + + // determine actual number of components to generate + n = req_comp ? req_comp : z->s->img_n >= 3 ? 3 + : 1; + + is_rgb = z->s->img_n == 3 && (z->rgb == 3 || (z->app14_color_transform == 0 && !z->jfif)); + + if (z->s->img_n == 3 && n < 3 && !is_rgb) + decode_n = 1; + else + decode_n = z->s->img_n; + + // resample and color-convert + { + int k; + unsigned int i, j; + stbi_uc *output; + stbi_uc *coutput[4]; + + stbi__resample res_comp[4]; + + for (k = 0; k < decode_n; ++k) + { + stbi__resample *r = &res_comp[k]; + + // allocate line buffer big enough for upsampling off the edges + // with upsample factor of 4 + z->img_comp[k].linebuf = (stbi_uc *)stbi__malloc(z->s->img_x + 3); + if (!z->img_comp[k].linebuf) + { + stbi__cleanup_jpeg(z); + return stbi__errpuc("outofmem", "Out of memory"); + } + + r->hs = z->img_h_max / z->img_comp[k].h; + r->vs = z->img_v_max / z->img_comp[k].v; + r->ystep = r->vs >> 1; + r->w_lores = (z->s->img_x + r->hs - 1) / r->hs; + r->ypos = 0; + r->line0 = r->line1 = z->img_comp[k].data; + + if (r->hs == 1 && r->vs == 1) + r->resample = resample_row_1; + else if (r->hs == 1 && r->vs == 2) + r->resample = stbi__resample_row_v_2; + else if (r->hs == 2 && r->vs == 1) + r->resample = stbi__resample_row_h_2; + else if (r->hs == 2 && r->vs == 2) + r->resample = z->resample_row_hv_2_kernel; + else + r->resample = stbi__resample_row_generic; + } + + // can't error after this so, this is safe + output = (stbi_uc *)stbi__malloc_mad3(n, z->s->img_x, z->s->img_y, 1); + if (!output) + { + stbi__cleanup_jpeg(z); + return stbi__errpuc("outofmem", "Out of memory"); + } + + // now go ahead and resample + for (j = 0; j < z->s->img_y; ++j) + { + stbi_uc *out = output + n * z->s->img_x * j; + for (k = 0; k < decode_n; ++k) + { + stbi__resample *r = &res_comp[k]; + int y_bot = r->ystep >= (r->vs >> 1); + coutput[k] = r->resample(z->img_comp[k].linebuf, + y_bot ? r->line1 : r->line0, + y_bot ? r->line0 : r->line1, + r->w_lores, r->hs); + if (++r->ystep >= r->vs) + { + r->ystep = 0; + r->line0 = r->line1; + if (++r->ypos < z->img_comp[k].y) + r->line1 += z->img_comp[k].w2; + } + } + if (n >= 3) + { + stbi_uc *y = coutput[0]; + if (z->s->img_n == 3) + { + if (is_rgb) + { + for (i = 0; i < z->s->img_x; ++i) + { + out[0] = y[i]; + out[1] = coutput[1][i]; + out[2] = coutput[2][i]; + out[3] = 255; + out += n; + } + } + else + { + z->YCbCr_to_RGB_kernel(out, y, coutput[1], coutput[2], z->s->img_x, n); + } + } + else if (z->s->img_n == 4) + { + if (z->app14_color_transform == 0) + { // CMYK + for (i = 0; i < z->s->img_x; ++i) + { + stbi_uc k = coutput[3][i]; + out[0] = stbi__blinn_8x8(coutput[0][i], k); + out[1] = stbi__blinn_8x8(coutput[1][i], k); + out[2] = stbi__blinn_8x8(coutput[2][i], k); + out[3] = 255; + out += n; + } + } + else if (z->app14_color_transform == 2) + { // YCCK + z->YCbCr_to_RGB_kernel(out, y, coutput[1], coutput[2], z->s->img_x, n); + for (i = 0; i < z->s->img_x; ++i) + { + stbi_uc k = coutput[3][i]; + out[0] = stbi__blinn_8x8(255 - out[0], k); + out[1] = stbi__blinn_8x8(255 - out[1], k); + out[2] = stbi__blinn_8x8(255 - out[2], k); + out += n; + } + } + else + { // YCbCr + alpha? Ignore the fourth channel for now + z->YCbCr_to_RGB_kernel(out, y, coutput[1], coutput[2], z->s->img_x, n); + } + } + else + for (i = 0; i < z->s->img_x; ++i) + { + out[0] = out[1] = out[2] = y[i]; + out[3] = 255; // not used if n==3 + out += n; + } + } + else + { + if (is_rgb) + { + if (n == 1) + for (i = 0; i < z->s->img_x; ++i) + *out++ = stbi__compute_y(coutput[0][i], coutput[1][i], coutput[2][i]); + else + { + for (i = 0; i < z->s->img_x; ++i, out += 2) + { + out[0] = stbi__compute_y(coutput[0][i], coutput[1][i], coutput[2][i]); + out[1] = 255; + } + } + } + else if (z->s->img_n == 4 && z->app14_color_transform == 0) + { + for (i = 0; i < z->s->img_x; ++i) + { + stbi_uc k = coutput[3][i]; + stbi_uc r = stbi__blinn_8x8(coutput[0][i], k); + stbi_uc g = stbi__blinn_8x8(coutput[1][i], k); + stbi_uc b = stbi__blinn_8x8(coutput[2][i], k); + out[0] = stbi__compute_y(r, g, b); + out[1] = 255; + out += n; + } + } + else if (z->s->img_n == 4 && z->app14_color_transform == 2) + { + for (i = 0; i < z->s->img_x; ++i) + { + out[0] = stbi__blinn_8x8(255 - coutput[0][i], coutput[3][i]); + out[1] = 255; + out += n; + } + } + else + { + stbi_uc *y = coutput[0]; + if (n == 1) + for (i = 0; i < z->s->img_x; ++i) + out[i] = y[i]; + else + for (i = 0; i < z->s->img_x; ++i) + *out++ = y[i], *out++ = 255; + } + } + } + stbi__cleanup_jpeg(z); + *out_x = z->s->img_x; + *out_y = z->s->img_y; + if (comp) + *comp = z->s->img_n >= 3 ? 3 : 1; // report original components, not output + return output; + } +} + +static void *stbi__jpeg_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri) +{ + unsigned char *result; + stbi__jpeg *j = (stbi__jpeg *)stbi__malloc(sizeof(stbi__jpeg)); + STBI_NOTUSED(ri); + j->s = s; + stbi__setup_jpeg(j); + result = load_jpeg_image(j, x, y, comp, req_comp); + STBI_FREE(j); + return result; +} + +static int stbi__jpeg_test(stbi__context *s) +{ + int r; + stbi__jpeg *j = (stbi__jpeg *)stbi__malloc(sizeof(stbi__jpeg)); + j->s = s; + stbi__setup_jpeg(j); + r = stbi__decode_jpeg_header(j, STBI__SCAN_type); + stbi__rewind(s); + STBI_FREE(j); + return r; +} + +static int stbi__jpeg_info_raw(stbi__jpeg *j, int *x, int *y, int *comp) +{ + if (!stbi__decode_jpeg_header(j, STBI__SCAN_header)) + { + stbi__rewind(j->s); + return 0; + } + if (x) + *x = j->s->img_x; + if (y) + *y = j->s->img_y; + if (comp) + *comp = j->s->img_n >= 3 ? 3 : 1; + return 1; +} + +static int stbi__jpeg_info(stbi__context *s, int *x, int *y, int *comp) +{ + int result; + stbi__jpeg *j = (stbi__jpeg *)(stbi__malloc(sizeof(stbi__jpeg))); + j->s = s; + result = stbi__jpeg_info_raw(j, x, y, comp); + STBI_FREE(j); + return result; +} +#endif + +// public domain zlib decode v0.2 Sean Barrett 2006-11-18 +// simple implementation +// - all input must be provided in an upfront buffer +// - all output is written to a single output buffer (can malloc/realloc) +// performance +// - fast huffman + +#ifndef STBI_NO_ZLIB + +// fast-way is faster to check than jpeg huffman, but slow way is slower +#define STBI__ZFAST_BITS 9 // accelerate all cases in default tables +#define STBI__ZFAST_MASK ((1 << STBI__ZFAST_BITS) - 1) + +// zlib-style huffman encoding +// (jpegs packs from left, zlib from right, so can't share code) +typedef struct +{ + stbi__uint16 fast[1 << STBI__ZFAST_BITS]; + stbi__uint16 firstcode[16]; + int maxcode[17]; + stbi__uint16 firstsymbol[16]; + stbi_uc size[288]; + stbi__uint16 value[288]; +} stbi__zhuffman; + +stbi_inline static int stbi__bitreverse16(int n) +{ + n = ((n & 0xAAAA) >> 1) | ((n & 0x5555) << 1); + n = ((n & 0xCCCC) >> 2) | ((n & 0x3333) << 2); + n = ((n & 0xF0F0) >> 4) | ((n & 0x0F0F) << 4); + n = ((n & 0xFF00) >> 8) | ((n & 0x00FF) << 8); + return n; +} + +stbi_inline static int stbi__bit_reverse(int v, int bits) +{ + STBI_ASSERT(bits <= 16); + // to bit reverse n bits, reverse 16 and shift + // e.g. 11 bits, bit reverse and shift away 5 + return stbi__bitreverse16(v) >> (16 - bits); +} + +static int stbi__zbuild_huffman(stbi__zhuffman *z, const stbi_uc *sizelist, int num) +{ + int i, k = 0; + int code, next_code[16], sizes[17]; + + // DEFLATE spec for generating codes + memset(sizes, 0, sizeof(sizes)); + memset(z->fast, 0, sizeof(z->fast)); + for (i = 0; i < num; ++i) + ++sizes[sizelist[i]]; + sizes[0] = 0; + for (i = 1; i < 16; ++i) + if (sizes[i] > (1 << i)) + return stbi__err("bad sizes", "Corrupt PNG"); + code = 0; + for (i = 1; i < 16; ++i) + { + next_code[i] = code; + z->firstcode[i] = (stbi__uint16)code; + z->firstsymbol[i] = (stbi__uint16)k; + code = (code + sizes[i]); + if (sizes[i]) + if (code - 1 >= (1 << i)) + return stbi__err("bad codelengths", "Corrupt PNG"); + z->maxcode[i] = code << (16 - i); // preshift for inner loop + code <<= 1; + k += sizes[i]; + } + z->maxcode[16] = 0x10000; // sentinel + for (i = 0; i < num; ++i) + { + int s = sizelist[i]; + if (s) + { + int c = next_code[s] - z->firstcode[s] + z->firstsymbol[s]; + stbi__uint16 fastv = (stbi__uint16)((s << 9) | i); + z->size[c] = (stbi_uc)s; + z->value[c] = (stbi__uint16)i; + if (s <= STBI__ZFAST_BITS) + { + int j = stbi__bit_reverse(next_code[s], s); + while (j < (1 << STBI__ZFAST_BITS)) + { + z->fast[j] = fastv; + j += (1 << s); + } + } + ++next_code[s]; + } + } + return 1; +} + +// zlib-from-memory implementation for PNG reading +// because PNG allows splitting the zlib stream arbitrarily, +// and it's annoying structurally to have PNG call ZLIB call PNG, +// we require PNG read all the IDATs and combine them into a single +// memory buffer + +typedef struct +{ + stbi_uc *zbuffer, *zbuffer_end; + int num_bits; + stbi__uint32 code_buffer; + + char *zout; + char *zout_start; + char *zout_end; + int z_expandable; + + stbi__zhuffman z_length, z_distance; +} stbi__zbuf; + +stbi_inline static stbi_uc stbi__zget8(stbi__zbuf *z) +{ + if (z->zbuffer >= z->zbuffer_end) + return 0; + return *z->zbuffer++; +} + +static void stbi__fill_bits(stbi__zbuf *z) +{ + do + { + STBI_ASSERT(z->code_buffer < (1U << z->num_bits)); + z->code_buffer |= (unsigned int)stbi__zget8(z) << z->num_bits; + z->num_bits += 8; + } while (z->num_bits <= 24); +} + +stbi_inline static unsigned int stbi__zreceive(stbi__zbuf *z, int n) +{ + unsigned int k; + if (z->num_bits < n) + stbi__fill_bits(z); + k = z->code_buffer & ((1 << n) - 1); + z->code_buffer >>= n; + z->num_bits -= n; + return k; +} + +static int stbi__zhuffman_decode_slowpath(stbi__zbuf *a, stbi__zhuffman *z) +{ + int b, s, k; + // not resolved by fast table, so compute it the slow way + // use jpeg approach, which requires MSbits at top + k = stbi__bit_reverse(a->code_buffer, 16); + for (s = STBI__ZFAST_BITS + 1;; ++s) + if (k < z->maxcode[s]) + break; + if (s == 16) + return -1; // invalid code! + // code size is s, so: + b = (k >> (16 - s)) - z->firstcode[s] + z->firstsymbol[s]; + STBI_ASSERT(z->size[b] == s); + a->code_buffer >>= s; + a->num_bits -= s; + return z->value[b]; +} + +stbi_inline static int stbi__zhuffman_decode(stbi__zbuf *a, stbi__zhuffman *z) +{ + int b, s; + if (a->num_bits < 16) + stbi__fill_bits(a); + b = z->fast[a->code_buffer & STBI__ZFAST_MASK]; + if (b) + { + s = b >> 9; + a->code_buffer >>= s; + a->num_bits -= s; + return b & 511; + } + return stbi__zhuffman_decode_slowpath(a, z); +} + +static int stbi__zexpand(stbi__zbuf *z, char *zout, int n) // need to make room for n bytes +{ + char *q; + int cur, limit, old_limit; + z->zout = zout; + if (!z->z_expandable) + return stbi__err("output buffer limit", "Corrupt PNG"); + cur = (int)(z->zout - z->zout_start); + limit = old_limit = (int)(z->zout_end - z->zout_start); + while (cur + n > limit) + limit *= 2; + q = (char *)STBI_REALLOC_SIZED(z->zout_start, old_limit, limit); + STBI_NOTUSED(old_limit); + if (q == NULL) + return stbi__err("outofmem", "Out of memory"); + z->zout_start = q; + z->zout = q + cur; + z->zout_end = q + limit; + return 1; +} + +static int stbi__zlength_base[31] = { + 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, + 15, 17, 19, 23, 27, 31, 35, 43, 51, 59, + 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0}; + +static int stbi__zlength_extra[31] = + {0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 0, 0}; + +static int stbi__zdist_base[32] = {1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193, + 257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145, 8193, 12289, 16385, 24577, 0, 0}; + +static int stbi__zdist_extra[32] = + {0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13}; + +static int stbi__parse_huffman_block(stbi__zbuf *a) +{ + char *zout = a->zout; + for (;;) + { + int z = stbi__zhuffman_decode(a, &a->z_length); + if (z < 256) + { + if (z < 0) + return stbi__err("bad huffman code", "Corrupt PNG"); // error in huffman codes + if (zout >= a->zout_end) + { + if (!stbi__zexpand(a, zout, 1)) + return 0; + zout = a->zout; + } + *zout++ = (char)z; + } + else + { + stbi_uc *p; + int len, dist; + if (z == 256) + { + a->zout = zout; + return 1; + } + z -= 257; + len = stbi__zlength_base[z]; + if (stbi__zlength_extra[z]) + len += stbi__zreceive(a, stbi__zlength_extra[z]); + z = stbi__zhuffman_decode(a, &a->z_distance); + if (z < 0) + return stbi__err("bad huffman code", "Corrupt PNG"); + dist = stbi__zdist_base[z]; + if (stbi__zdist_extra[z]) + dist += stbi__zreceive(a, stbi__zdist_extra[z]); + if (zout - a->zout_start < dist) + return stbi__err("bad dist", "Corrupt PNG"); + if (zout + len > a->zout_end) + { + if (!stbi__zexpand(a, zout, len)) + return 0; + zout = a->zout; + } + p = (stbi_uc *)(zout - dist); + if (dist == 1) + { // run of one byte; common in images. + stbi_uc v = *p; + if (len) + { + do + *zout++ = v; + while (--len); + } + } + else + { + if (len) + { + do + *zout++ = *p++; + while (--len); + } + } + } + } +} + +static int stbi__compute_huffman_codes(stbi__zbuf *a) +{ + static stbi_uc length_dezigzag[19] = {16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15}; + stbi__zhuffman z_codelength; + stbi_uc lencodes[286 + 32 + 137]; // padding for maximum single op + stbi_uc codelength_sizes[19]; + int i, n; + + int hlit = stbi__zreceive(a, 5) + 257; + int hdist = stbi__zreceive(a, 5) + 1; + int hclen = stbi__zreceive(a, 4) + 4; + int ntot = hlit + hdist; + + memset(codelength_sizes, 0, sizeof(codelength_sizes)); + for (i = 0; i < hclen; ++i) + { + int s = stbi__zreceive(a, 3); + codelength_sizes[length_dezigzag[i]] = (stbi_uc)s; + } + if (!stbi__zbuild_huffman(&z_codelength, codelength_sizes, 19)) + return 0; + + n = 0; + while (n < ntot) + { + int c = stbi__zhuffman_decode(a, &z_codelength); + if (c < 0 || c >= 19) + return stbi__err("bad codelengths", "Corrupt PNG"); + if (c < 16) + lencodes[n++] = (stbi_uc)c; + else + { + stbi_uc fill = 0; + if (c == 16) + { + c = stbi__zreceive(a, 2) + 3; + if (n == 0) + return stbi__err("bad codelengths", "Corrupt PNG"); + fill = lencodes[n - 1]; + } + else if (c == 17) + c = stbi__zreceive(a, 3) + 3; + else + { + STBI_ASSERT(c == 18); + c = stbi__zreceive(a, 7) + 11; + } + if (ntot - n < c) + return stbi__err("bad codelengths", "Corrupt PNG"); + memset(lencodes + n, fill, c); + n += c; + } + } + if (n != ntot) + return stbi__err("bad codelengths", "Corrupt PNG"); + if (!stbi__zbuild_huffman(&a->z_length, lencodes, hlit)) + return 0; + if (!stbi__zbuild_huffman(&a->z_distance, lencodes + hlit, hdist)) + return 0; + return 1; +} + +static int stbi__parse_uncompressed_block(stbi__zbuf *a) +{ + stbi_uc header[4]; + int len, nlen, k; + if (a->num_bits & 7) + stbi__zreceive(a, a->num_bits & 7); // discard + // drain the bit-packed data into header + k = 0; + while (a->num_bits > 0) + { + header[k++] = (stbi_uc)(a->code_buffer & 255); // suppress MSVC run-time check + a->code_buffer >>= 8; + a->num_bits -= 8; + } + STBI_ASSERT(a->num_bits == 0); + // now fill header the normal way + while (k < 4) + header[k++] = stbi__zget8(a); + len = header[1] * 256 + header[0]; + nlen = header[3] * 256 + header[2]; + if (nlen != (len ^ 0xffff)) + return stbi__err("zlib corrupt", "Corrupt PNG"); + if (a->zbuffer + len > a->zbuffer_end) + return stbi__err("read past buffer", "Corrupt PNG"); + if (a->zout + len > a->zout_end) + if (!stbi__zexpand(a, a->zout, len)) + return 0; + memcpy(a->zout, a->zbuffer, len); + a->zbuffer += len; + a->zout += len; + return 1; +} + +static int stbi__parse_zlib_header(stbi__zbuf *a) +{ + int cmf = stbi__zget8(a); + int cm = cmf & 15; + /* int cinfo = cmf >> 4; */ + int flg = stbi__zget8(a); + if ((cmf * 256 + flg) % 31 != 0) + return stbi__err("bad zlib header", "Corrupt PNG"); // zlib spec + if (flg & 32) + return stbi__err("no preset dict", "Corrupt PNG"); // preset dictionary not allowed in png + if (cm != 8) + return stbi__err("bad compression", "Corrupt PNG"); // DEFLATE required for png + // window = 1 << (8 + cinfo)... but who cares, we fully buffer output + return 1; +} + +static const stbi_uc stbi__zdefault_length[288] = + { + 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, + 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, + 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, + 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, + 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, + 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, + 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, + 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, + 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8}; +static const stbi_uc stbi__zdefault_distance[32] = + { + 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5}; +/* +Init algorithm: +{ + int i; // use <= to match clearly with spec + for (i=0; i <= 143; ++i) stbi__zdefault_length[i] = 8; + for ( ; i <= 255; ++i) stbi__zdefault_length[i] = 9; + for ( ; i <= 279; ++i) stbi__zdefault_length[i] = 7; + for ( ; i <= 287; ++i) stbi__zdefault_length[i] = 8; + + for (i=0; i <= 31; ++i) stbi__zdefault_distance[i] = 5; +} +*/ + +static int stbi__parse_zlib(stbi__zbuf *a, int parse_header) +{ + int final, type; + if (parse_header) + if (!stbi__parse_zlib_header(a)) + return 0; + a->num_bits = 0; + a->code_buffer = 0; + do + { + final = stbi__zreceive(a, 1); + type = stbi__zreceive(a, 2); + if (type == 0) + { + if (!stbi__parse_uncompressed_block(a)) + return 0; + } + else if (type == 3) + { + return 0; + } + else + { + if (type == 1) + { + // use fixed code lengths + if (!stbi__zbuild_huffman(&a->z_length, stbi__zdefault_length, 288)) + return 0; + if (!stbi__zbuild_huffman(&a->z_distance, stbi__zdefault_distance, 32)) + return 0; + } + else + { + if (!stbi__compute_huffman_codes(a)) + return 0; + } + if (!stbi__parse_huffman_block(a)) + return 0; + } + } while (!final); + return 1; +} + +static int stbi__do_zlib(stbi__zbuf *a, char *obuf, int olen, int exp, int parse_header) +{ + a->zout_start = obuf; + a->zout = obuf; + a->zout_end = obuf + olen; + a->z_expandable = exp; + + return stbi__parse_zlib(a, parse_header); +} + +STBIDEF char *stbi_zlib_decode_malloc_guesssize(const char *buffer, int len, int initial_size, int *outlen) +{ + stbi__zbuf a; + char *p = (char *)stbi__malloc(initial_size); + if (p == NULL) + return NULL; + a.zbuffer = (stbi_uc *)buffer; + a.zbuffer_end = (stbi_uc *)buffer + len; + if (stbi__do_zlib(&a, p, initial_size, 1, 1)) + { + if (outlen) + *outlen = (int)(a.zout - a.zout_start); + return a.zout_start; + } + else + { + STBI_FREE(a.zout_start); + return NULL; + } +} + +STBIDEF char *stbi_zlib_decode_malloc(char const *buffer, int len, int *outlen) +{ + return stbi_zlib_decode_malloc_guesssize(buffer, len, 16384, outlen); +} + +STBIDEF char *stbi_zlib_decode_malloc_guesssize_headerflag(const char *buffer, int len, int initial_size, int *outlen, int parse_header) +{ + stbi__zbuf a; + char *p = (char *)stbi__malloc(initial_size); + if (p == NULL) + return NULL; + a.zbuffer = (stbi_uc *)buffer; + a.zbuffer_end = (stbi_uc *)buffer + len; + if (stbi__do_zlib(&a, p, initial_size, 1, parse_header)) + { + if (outlen) + *outlen = (int)(a.zout - a.zout_start); + return a.zout_start; + } + else + { + STBI_FREE(a.zout_start); + return NULL; + } +} + +STBIDEF int stbi_zlib_decode_buffer(char *obuffer, int olen, char const *ibuffer, int ilen) +{ + stbi__zbuf a; + a.zbuffer = (stbi_uc *)ibuffer; + a.zbuffer_end = (stbi_uc *)ibuffer + ilen; + if (stbi__do_zlib(&a, obuffer, olen, 0, 1)) + return (int)(a.zout - a.zout_start); + else + return -1; +} + +STBIDEF char *stbi_zlib_decode_noheader_malloc(char const *buffer, int len, int *outlen) +{ + stbi__zbuf a; + char *p = (char *)stbi__malloc(16384); + if (p == NULL) + return NULL; + a.zbuffer = (stbi_uc *)buffer; + a.zbuffer_end = (stbi_uc *)buffer + len; + if (stbi__do_zlib(&a, p, 16384, 1, 0)) + { + if (outlen) + *outlen = (int)(a.zout - a.zout_start); + return a.zout_start; + } + else + { + STBI_FREE(a.zout_start); + return NULL; + } +} + +STBIDEF int stbi_zlib_decode_noheader_buffer(char *obuffer, int olen, const char *ibuffer, int ilen) +{ + stbi__zbuf a; + a.zbuffer = (stbi_uc *)ibuffer; + a.zbuffer_end = (stbi_uc *)ibuffer + ilen; + if (stbi__do_zlib(&a, obuffer, olen, 0, 0)) + return (int)(a.zout - a.zout_start); + else + return -1; +} +#endif + +// public domain "baseline" PNG decoder v0.10 Sean Barrett 2006-11-18 +// simple implementation +// - only 8-bit samples +// - no CRC checking +// - allocates lots of intermediate memory +// - avoids problem of streaming data between subsystems +// - avoids explicit window management +// performance +// - uses stb_zlib, a PD zlib implementation with fast huffman decoding + +#ifndef STBI_NO_PNG +typedef struct +{ + stbi__uint32 length; + stbi__uint32 type; +} stbi__pngchunk; + +static stbi__pngchunk stbi__get_chunk_header(stbi__context *s) +{ + stbi__pngchunk c; + c.length = stbi__get32be(s); + c.type = stbi__get32be(s); + return c; +} + +static int stbi__check_png_header(stbi__context *s) +{ + static stbi_uc png_sig[8] = {137, 80, 78, 71, 13, 10, 26, 10}; + int i; + for (i = 0; i < 8; ++i) + if (stbi__get8(s) != png_sig[i]) + return stbi__err("bad png sig", "Not a PNG"); + return 1; +} + +typedef struct +{ + stbi__context *s; + stbi_uc *idata, *expanded, *out; + int depth; +} stbi__png; + +enum +{ + STBI__F_none = 0, + STBI__F_sub = 1, + STBI__F_up = 2, + STBI__F_avg = 3, + STBI__F_paeth = 4, + // synthetic filters used for first scanline to avoid needing a dummy row of 0s + STBI__F_avg_first, + STBI__F_paeth_first +}; + +static stbi_uc first_row_filter[5] = + { + STBI__F_none, + STBI__F_sub, + STBI__F_none, + STBI__F_avg_first, + STBI__F_paeth_first}; + +static int stbi__paeth(int a, int b, int c) +{ + int p = a + b - c; + int pa = abs(p - a); + int pb = abs(p - b); + int pc = abs(p - c); + if (pa <= pb && pa <= pc) + return a; + if (pb <= pc) + return b; + return c; +} + +static stbi_uc stbi__depth_scale_table[9] = {0, 0xff, 0x55, 0, 0x11, 0, 0, 0, 0x01}; + +// create the png data from post-deflated data +static int stbi__create_png_image_raw(stbi__png *a, stbi_uc *raw, stbi__uint32 raw_len, int out_n, stbi__uint32 x, stbi__uint32 y, int depth, int color) +{ + int bytes = (depth == 16 ? 2 : 1); + stbi__context *s = a->s; + stbi__uint32 i, j, stride = x * out_n * bytes; + stbi__uint32 img_len, img_width_bytes; + int k; + int img_n = s->img_n; // copy it into a local for later + + int output_bytes = out_n * bytes; + int filter_bytes = img_n * bytes; + int width = x; + + STBI_ASSERT(out_n == s->img_n || out_n == s->img_n + 1); + a->out = (stbi_uc *)stbi__malloc_mad3(x, y, output_bytes, 0); // extra bytes to write off the end into + if (!a->out) + return stbi__err("outofmem", "Out of memory"); + + img_width_bytes = (((img_n * x * depth) + 7) >> 3); + img_len = (img_width_bytes + 1) * y; + if (s->img_x == x && s->img_y == y) + { + if (raw_len != img_len) + return stbi__err("not enough pixels", "Corrupt PNG"); + } + else + { // interlaced: + if (raw_len < img_len) + return stbi__err("not enough pixels", "Corrupt PNG"); + } + + for (j = 0; j < y; ++j) + { + stbi_uc *cur = a->out + stride * j; + stbi_uc *prior; + int filter = *raw++; + + if (filter > 4) + return stbi__err("invalid filter", "Corrupt PNG"); + + if (depth < 8) + { + STBI_ASSERT(img_width_bytes <= x); + cur += x * out_n - img_width_bytes; // store output to the rightmost img_len bytes, so we can decode in place + filter_bytes = 1; + width = img_width_bytes; + } + prior = cur - stride; // bugfix: need to compute this after 'cur +=' computation above + + // if first row, use special filter that doesn't sample previous row + if (j == 0) + filter = first_row_filter[filter]; + + // handle first byte explicitly + for (k = 0; k < filter_bytes; ++k) + { + switch (filter) + { + case STBI__F_none: + cur[k] = raw[k]; + break; + case STBI__F_sub: + cur[k] = raw[k]; + break; + case STBI__F_up: + cur[k] = STBI__BYTECAST(raw[k] + prior[k]); + break; + case STBI__F_avg: + cur[k] = STBI__BYTECAST(raw[k] + (prior[k] >> 1)); + break; + case STBI__F_paeth: + cur[k] = STBI__BYTECAST(raw[k] + stbi__paeth(0, prior[k], 0)); + break; + case STBI__F_avg_first: + cur[k] = raw[k]; + break; + case STBI__F_paeth_first: + cur[k] = raw[k]; + break; + } + } + + if (depth == 8) + { + if (img_n != out_n) + cur[img_n] = 255; // first pixel + raw += img_n; + cur += out_n; + prior += out_n; + } + else if (depth == 16) + { + if (img_n != out_n) + { + cur[filter_bytes] = 255; // first pixel top byte + cur[filter_bytes + 1] = 255; // first pixel bottom byte + } + raw += filter_bytes; + cur += output_bytes; + prior += output_bytes; + } + else + { + raw += 1; + cur += 1; + prior += 1; + } + + // this is a little gross, so that we don't switch per-pixel or per-component + if (depth < 8 || img_n == out_n) + { + int nk = (width - 1) * filter_bytes; +#define STBI__CASE(f) \ + case f: \ + for (k = 0; k < nk; ++k) + switch (filter) + { + // "none" filter turns into a memcpy here; make that explicit. + case STBI__F_none: + memcpy(cur, raw, nk); + break; + STBI__CASE(STBI__F_sub) { cur[k] = STBI__BYTECAST(raw[k] + cur[k - filter_bytes]); } + break; + STBI__CASE(STBI__F_up) { cur[k] = STBI__BYTECAST(raw[k] + prior[k]); } + break; + STBI__CASE(STBI__F_avg) { cur[k] = STBI__BYTECAST(raw[k] + ((prior[k] + cur[k - filter_bytes]) >> 1)); } + break; + STBI__CASE(STBI__F_paeth) { cur[k] = STBI__BYTECAST(raw[k] + stbi__paeth(cur[k - filter_bytes], prior[k], prior[k - filter_bytes])); } + break; + STBI__CASE(STBI__F_avg_first) { cur[k] = STBI__BYTECAST(raw[k] + (cur[k - filter_bytes] >> 1)); } + break; + STBI__CASE(STBI__F_paeth_first) { cur[k] = STBI__BYTECAST(raw[k] + stbi__paeth(cur[k - filter_bytes], 0, 0)); } + break; + } +#undef STBI__CASE + raw += nk; + } + else + { + STBI_ASSERT(img_n + 1 == out_n); +#define STBI__CASE(f) \ + case f: \ + for (i = x - 1; i >= 1; --i, cur[filter_bytes] = 255, raw += filter_bytes, cur += output_bytes, prior += output_bytes) \ + for (k = 0; k < filter_bytes; ++k) + switch (filter) + { + STBI__CASE(STBI__F_none) { cur[k] = raw[k]; } + break; + STBI__CASE(STBI__F_sub) { cur[k] = STBI__BYTECAST(raw[k] + cur[k - output_bytes]); } + break; + STBI__CASE(STBI__F_up) { cur[k] = STBI__BYTECAST(raw[k] + prior[k]); } + break; + STBI__CASE(STBI__F_avg) { cur[k] = STBI__BYTECAST(raw[k] + ((prior[k] + cur[k - output_bytes]) >> 1)); } + break; + STBI__CASE(STBI__F_paeth) { cur[k] = STBI__BYTECAST(raw[k] + stbi__paeth(cur[k - output_bytes], prior[k], prior[k - output_bytes])); } + break; + STBI__CASE(STBI__F_avg_first) { cur[k] = STBI__BYTECAST(raw[k] + (cur[k - output_bytes] >> 1)); } + break; + STBI__CASE(STBI__F_paeth_first) { cur[k] = STBI__BYTECAST(raw[k] + stbi__paeth(cur[k - output_bytes], 0, 0)); } + break; + } +#undef STBI__CASE + + // the loop above sets the high byte of the pixels' alpha, but for + // 16 bit png files we also need the low byte set. we'll do that here. + if (depth == 16) + { + cur = a->out + stride * j; // start at the beginning of the row again + for (i = 0; i < x; ++i, cur += output_bytes) + { + cur[filter_bytes + 1] = 255; + } + } + } + } + + // we make a separate pass to expand bits to pixels; for performance, + // this could run two scanlines behind the above code, so it won't + // intefere with filtering but will still be in the cache. + if (depth < 8) + { + for (j = 0; j < y; ++j) + { + stbi_uc *cur = a->out + stride * j; + stbi_uc *in = a->out + stride * j + x * out_n - img_width_bytes; + // unpack 1/2/4-bit into a 8-bit buffer. allows us to keep the common 8-bit path optimal at minimal cost for 1/2/4-bit + // png guarante byte alignment, if width is not multiple of 8/4/2 we'll decode dummy trailing data that will be skipped in the later loop + stbi_uc scale = (color == 0) ? stbi__depth_scale_table[depth] : 1; // scale grayscale values to 0..255 range + + // note that the final byte might overshoot and write more data than desired. + // we can allocate enough data that this never writes out of memory, but it + // could also overwrite the next scanline. can it overwrite non-empty data + // on the next scanline? yes, consider 1-pixel-wide scanlines with 1-bit-per-pixel. + // so we need to explicitly clamp the final ones + + if (depth == 4) + { + for (k = x * img_n; k >= 2; k -= 2, ++in) + { + *cur++ = scale * ((*in >> 4)); + *cur++ = scale * ((*in) & 0x0f); + } + if (k > 0) + *cur++ = scale * ((*in >> 4)); + } + else if (depth == 2) + { + for (k = x * img_n; k >= 4; k -= 4, ++in) + { + *cur++ = scale * ((*in >> 6)); + *cur++ = scale * ((*in >> 4) & 0x03); + *cur++ = scale * ((*in >> 2) & 0x03); + *cur++ = scale * ((*in) & 0x03); + } + if (k > 0) + *cur++ = scale * ((*in >> 6)); + if (k > 1) + *cur++ = scale * ((*in >> 4) & 0x03); + if (k > 2) + *cur++ = scale * ((*in >> 2) & 0x03); + } + else if (depth == 1) + { + for (k = x * img_n; k >= 8; k -= 8, ++in) + { + *cur++ = scale * ((*in >> 7)); + *cur++ = scale * ((*in >> 6) & 0x01); + *cur++ = scale * ((*in >> 5) & 0x01); + *cur++ = scale * ((*in >> 4) & 0x01); + *cur++ = scale * ((*in >> 3) & 0x01); + *cur++ = scale * ((*in >> 2) & 0x01); + *cur++ = scale * ((*in >> 1) & 0x01); + *cur++ = scale * ((*in) & 0x01); + } + if (k > 0) + *cur++ = scale * ((*in >> 7)); + if (k > 1) + *cur++ = scale * ((*in >> 6) & 0x01); + if (k > 2) + *cur++ = scale * ((*in >> 5) & 0x01); + if (k > 3) + *cur++ = scale * ((*in >> 4) & 0x01); + if (k > 4) + *cur++ = scale * ((*in >> 3) & 0x01); + if (k > 5) + *cur++ = scale * ((*in >> 2) & 0x01); + if (k > 6) + *cur++ = scale * ((*in >> 1) & 0x01); + } + if (img_n != out_n) + { + int q; + // insert alpha = 255 + cur = a->out + stride * j; + if (img_n == 1) + { + for (q = x - 1; q >= 0; --q) + { + cur[q * 2 + 1] = 255; + cur[q * 2 + 0] = cur[q]; + } + } + else + { + STBI_ASSERT(img_n == 3); + for (q = x - 1; q >= 0; --q) + { + cur[q * 4 + 3] = 255; + cur[q * 4 + 2] = cur[q * 3 + 2]; + cur[q * 4 + 1] = cur[q * 3 + 1]; + cur[q * 4 + 0] = cur[q * 3 + 0]; + } + } + } + } + } + else if (depth == 16) + { + // force the image data from big-endian to platform-native. + // this is done in a separate pass due to the decoding relying + // on the data being untouched, but could probably be done + // per-line during decode if care is taken. + stbi_uc *cur = a->out; + stbi__uint16 *cur16 = (stbi__uint16 *)cur; + + for (i = 0; i < x * y * out_n; ++i, cur16++, cur += 2) + { + *cur16 = (cur[0] << 8) | cur[1]; + } + } + + return 1; +} + +static int stbi__create_png_image(stbi__png *a, stbi_uc *image_data, stbi__uint32 image_data_len, int out_n, int depth, int color, int interlaced) +{ + int bytes = (depth == 16 ? 2 : 1); + int out_bytes = out_n * bytes; + stbi_uc *final; + int p; + if (!interlaced) + return stbi__create_png_image_raw(a, image_data, image_data_len, out_n, a->s->img_x, a->s->img_y, depth, color); + + // de-interlacing + final = (stbi_uc *)stbi__malloc_mad3(a->s->img_x, a->s->img_y, out_bytes, 0); + for (p = 0; p < 7; ++p) + { + int xorig[] = {0, 4, 0, 2, 0, 1, 0}; + int yorig[] = {0, 0, 4, 0, 2, 0, 1}; + int xspc[] = {8, 8, 4, 4, 2, 2, 1}; + int yspc[] = {8, 8, 8, 4, 4, 2, 2}; + int i, j, x, y; + // pass1_x[4] = 0, pass1_x[5] = 1, pass1_x[12] = 1 + x = (a->s->img_x - xorig[p] + xspc[p] - 1) / xspc[p]; + y = (a->s->img_y - yorig[p] + yspc[p] - 1) / yspc[p]; + if (x && y) + { + stbi__uint32 img_len = ((((a->s->img_n * x * depth) + 7) >> 3) + 1) * y; + if (!stbi__create_png_image_raw(a, image_data, image_data_len, out_n, x, y, depth, color)) + { + STBI_FREE(final); + return 0; + } + for (j = 0; j < y; ++j) + { + for (i = 0; i < x; ++i) + { + int out_y = j * yspc[p] + yorig[p]; + int out_x = i * xspc[p] + xorig[p]; + memcpy(final + out_y * a->s->img_x * out_bytes + out_x * out_bytes, + a->out + (j * x + i) * out_bytes, out_bytes); + } + } + STBI_FREE(a->out); + image_data += img_len; + image_data_len -= img_len; + } + } + a->out = final; + + return 1; +} + +static int stbi__compute_transparency(stbi__png *z, stbi_uc tc[3], int out_n) +{ + stbi__context *s = z->s; + stbi__uint32 i, pixel_count = s->img_x * s->img_y; + stbi_uc *p = z->out; + + // compute color-based transparency, assuming we've + // already got 255 as the alpha value in the output + STBI_ASSERT(out_n == 2 || out_n == 4); + + if (out_n == 2) + { + for (i = 0; i < pixel_count; ++i) + { + p[1] = (p[0] == tc[0] ? 0 : 255); + p += 2; + } + } + else + { + for (i = 0; i < pixel_count; ++i) + { + if (p[0] == tc[0] && p[1] == tc[1] && p[2] == tc[2]) + p[3] = 0; + p += 4; + } + } + return 1; +} + +static int stbi__compute_transparency16(stbi__png *z, stbi__uint16 tc[3], int out_n) +{ + stbi__context *s = z->s; + stbi__uint32 i, pixel_count = s->img_x * s->img_y; + stbi__uint16 *p = (stbi__uint16 *)z->out; + + // compute color-based transparency, assuming we've + // already got 65535 as the alpha value in the output + STBI_ASSERT(out_n == 2 || out_n == 4); + + if (out_n == 2) + { + for (i = 0; i < pixel_count; ++i) + { + p[1] = (p[0] == tc[0] ? 0 : 65535); + p += 2; + } + } + else + { + for (i = 0; i < pixel_count; ++i) + { + if (p[0] == tc[0] && p[1] == tc[1] && p[2] == tc[2]) + p[3] = 0; + p += 4; + } + } + return 1; +} + +static int stbi__expand_png_palette(stbi__png *a, stbi_uc *palette, int len, int pal_img_n) +{ + stbi__uint32 i, pixel_count = a->s->img_x * a->s->img_y; + stbi_uc *p, *temp_out, *orig = a->out; + + p = (stbi_uc *)stbi__malloc_mad2(pixel_count, pal_img_n, 0); + if (p == NULL) + return stbi__err("outofmem", "Out of memory"); + + // between here and free(out) below, exitting would leak + temp_out = p; + + if (pal_img_n == 3) + { + for (i = 0; i < pixel_count; ++i) + { + int n = orig[i] * 4; + p[0] = palette[n]; + p[1] = palette[n + 1]; + p[2] = palette[n + 2]; + p += 3; + } + } + else + { + for (i = 0; i < pixel_count; ++i) + { + int n = orig[i] * 4; + p[0] = palette[n]; + p[1] = palette[n + 1]; + p[2] = palette[n + 2]; + p[3] = palette[n + 3]; + p += 4; + } + } + STBI_FREE(a->out); + a->out = temp_out; + + STBI_NOTUSED(len); + + return 1; +} + +static int stbi__unpremultiply_on_load = 0; +static int stbi__de_iphone_flag = 0; + +STBIDEF void stbi_set_unpremultiply_on_load(int flag_true_if_should_unpremultiply) +{ + stbi__unpremultiply_on_load = flag_true_if_should_unpremultiply; +} + +STBIDEF void stbi_convert_iphone_png_to_rgb(int flag_true_if_should_convert) +{ + stbi__de_iphone_flag = flag_true_if_should_convert; +} + +static void stbi__de_iphone(stbi__png *z) +{ + stbi__context *s = z->s; + stbi__uint32 i, pixel_count = s->img_x * s->img_y; + stbi_uc *p = z->out; + + if (s->img_out_n == 3) + { // convert bgr to rgb + for (i = 0; i < pixel_count; ++i) + { + stbi_uc t = p[0]; + p[0] = p[2]; + p[2] = t; + p += 3; + } + } + else + { + STBI_ASSERT(s->img_out_n == 4); + if (stbi__unpremultiply_on_load) + { + // convert bgr to rgb and unpremultiply + for (i = 0; i < pixel_count; ++i) + { + stbi_uc a = p[3]; + stbi_uc t = p[0]; + if (a) + { + p[0] = p[2] * 255 / a; + p[1] = p[1] * 255 / a; + p[2] = t * 255 / a; + } + else + { + p[0] = p[2]; + p[2] = t; + } + p += 4; + } + } + else + { + // convert bgr to rgb + for (i = 0; i < pixel_count; ++i) + { + stbi_uc t = p[0]; + p[0] = p[2]; + p[2] = t; + p += 4; + } + } + } +} + +#define STBI__PNG_TYPE(a, b, c, d) (((a) << 24) + ((b) << 16) + ((c) << 8) + (d)) + +static int stbi__parse_png_file(stbi__png *z, int scan, int req_comp) +{ + stbi_uc palette[1024], pal_img_n = 0; + stbi_uc has_trans = 0, tc[3]; + stbi__uint16 tc16[3]; + stbi__uint32 ioff = 0, idata_limit = 0, i, pal_len = 0; + int first = 1, k, interlace = 0, color = 0, is_iphone = 0; + stbi__context *s = z->s; + + z->expanded = NULL; + z->idata = NULL; + z->out = NULL; + + if (!stbi__check_png_header(s)) + return 0; + + if (scan == STBI__SCAN_type) + return 1; + + for (;;) + { + stbi__pngchunk c = stbi__get_chunk_header(s); + switch (c.type) + { + case STBI__PNG_TYPE('C', 'g', 'B', 'I'): + is_iphone = 1; + stbi__skip(s, c.length); + break; + case STBI__PNG_TYPE('I', 'H', 'D', 'R'): + { + int comp, filter; + if (!first) + return stbi__err("multiple IHDR", "Corrupt PNG"); + first = 0; + if (c.length != 13) + return stbi__err("bad IHDR len", "Corrupt PNG"); + s->img_x = stbi__get32be(s); + if (s->img_x > (1 << 24)) + return stbi__err("too large", "Very large image (corrupt?)"); + s->img_y = stbi__get32be(s); + if (s->img_y > (1 << 24)) + return stbi__err("too large", "Very large image (corrupt?)"); + z->depth = stbi__get8(s); + if (z->depth != 1 && z->depth != 2 && z->depth != 4 && z->depth != 8 && z->depth != 16) + return stbi__err("1/2/4/8/16-bit only", "PNG not supported: 1/2/4/8/16-bit only"); + color = stbi__get8(s); + if (color > 6) + return stbi__err("bad ctype", "Corrupt PNG"); + if (color == 3 && z->depth == 16) + return stbi__err("bad ctype", "Corrupt PNG"); + if (color == 3) + pal_img_n = 3; + else if (color & 1) + return stbi__err("bad ctype", "Corrupt PNG"); + comp = stbi__get8(s); + if (comp) + return stbi__err("bad comp method", "Corrupt PNG"); + filter = stbi__get8(s); + if (filter) + return stbi__err("bad filter method", "Corrupt PNG"); + interlace = stbi__get8(s); + if (interlace > 1) + return stbi__err("bad interlace method", "Corrupt PNG"); + if (!s->img_x || !s->img_y) + return stbi__err("0-pixel image", "Corrupt PNG"); + if (!pal_img_n) + { + s->img_n = (color & 2 ? 3 : 1) + (color & 4 ? 1 : 0); + if ((1 << 30) / s->img_x / s->img_n < s->img_y) + return stbi__err("too large", "Image too large to decode"); + if (scan == STBI__SCAN_header) + return 1; + } + else + { + // if paletted, then pal_n is our final components, and + // img_n is # components to decompress/filter. + s->img_n = 1; + if ((1 << 30) / s->img_x / 4 < s->img_y) + return stbi__err("too large", "Corrupt PNG"); + // if SCAN_header, have to scan to see if we have a tRNS + } + break; + } + + case STBI__PNG_TYPE('P', 'L', 'T', 'E'): + { + if (first) + return stbi__err("first not IHDR", "Corrupt PNG"); + if (c.length > 256 * 3) + return stbi__err("invalid PLTE", "Corrupt PNG"); + pal_len = c.length / 3; + if (pal_len * 3 != c.length) + return stbi__err("invalid PLTE", "Corrupt PNG"); + for (i = 0; i < pal_len; ++i) + { + palette[i * 4 + 0] = stbi__get8(s); + palette[i * 4 + 1] = stbi__get8(s); + palette[i * 4 + 2] = stbi__get8(s); + palette[i * 4 + 3] = 255; + } + break; + } + + case STBI__PNG_TYPE('t', 'R', 'N', 'S'): + { + if (first) + return stbi__err("first not IHDR", "Corrupt PNG"); + if (z->idata) + return stbi__err("tRNS after IDAT", "Corrupt PNG"); + if (pal_img_n) + { + if (scan == STBI__SCAN_header) + { + s->img_n = 4; + return 1; + } + if (pal_len == 0) + return stbi__err("tRNS before PLTE", "Corrupt PNG"); + if (c.length > pal_len) + return stbi__err("bad tRNS len", "Corrupt PNG"); + pal_img_n = 4; + for (i = 0; i < c.length; ++i) + palette[i * 4 + 3] = stbi__get8(s); + } + else + { + if (!(s->img_n & 1)) + return stbi__err("tRNS with alpha", "Corrupt PNG"); + if (c.length != (stbi__uint32)s->img_n * 2) + return stbi__err("bad tRNS len", "Corrupt PNG"); + has_trans = 1; + if (z->depth == 16) + { + for (k = 0; k < s->img_n; ++k) + tc16[k] = (stbi__uint16)stbi__get16be(s); // copy the values as-is + } + else + { + for (k = 0; k < s->img_n; ++k) + tc[k] = (stbi_uc)(stbi__get16be(s) & 255) * stbi__depth_scale_table[z->depth]; // non 8-bit images will be larger + } + } + break; + } + + case STBI__PNG_TYPE('I', 'D', 'A', 'T'): + { + if (first) + return stbi__err("first not IHDR", "Corrupt PNG"); + if (pal_img_n && !pal_len) + return stbi__err("no PLTE", "Corrupt PNG"); + if (scan == STBI__SCAN_header) + { + s->img_n = pal_img_n; + return 1; + } + if ((int)(ioff + c.length) < (int)ioff) + return 0; + if (ioff + c.length > idata_limit) + { + stbi__uint32 idata_limit_old = idata_limit; + stbi_uc *p; + if (idata_limit == 0) + idata_limit = c.length > 4096 ? c.length : 4096; + while (ioff + c.length > idata_limit) + idata_limit *= 2; + STBI_NOTUSED(idata_limit_old); + p = (stbi_uc *)STBI_REALLOC_SIZED(z->idata, idata_limit_old, idata_limit); + if (p == NULL) + return stbi__err("outofmem", "Out of memory"); + z->idata = p; + } + if (!stbi__getn(s, z->idata + ioff, c.length)) + return stbi__err("outofdata", "Corrupt PNG"); + ioff += c.length; + break; + } + + case STBI__PNG_TYPE('I', 'E', 'N', 'D'): + { + stbi__uint32 raw_len, bpl; + if (first) + return stbi__err("first not IHDR", "Corrupt PNG"); + if (scan != STBI__SCAN_load) + return 1; + if (z->idata == NULL) + return stbi__err("no IDAT", "Corrupt PNG"); + // initial guess for decoded data size to avoid unnecessary reallocs + bpl = (s->img_x * z->depth + 7) / 8; // bytes per line, per component + raw_len = bpl * s->img_y * s->img_n /* pixels */ + s->img_y /* filter mode per row */; + z->expanded = (stbi_uc *)stbi_zlib_decode_malloc_guesssize_headerflag((char *)z->idata, ioff, raw_len, (int *)&raw_len, !is_iphone); + if (z->expanded == NULL) + return 0; // zlib should set error + STBI_FREE(z->idata); + z->idata = NULL; + if ((req_comp == s->img_n + 1 && req_comp != 3 && !pal_img_n) || has_trans) + s->img_out_n = s->img_n + 1; + else + s->img_out_n = s->img_n; + if (!stbi__create_png_image(z, z->expanded, raw_len, s->img_out_n, z->depth, color, interlace)) + return 0; + if (has_trans) + { + if (z->depth == 16) + { + if (!stbi__compute_transparency16(z, tc16, s->img_out_n)) + return 0; + } + else + { + if (!stbi__compute_transparency(z, tc, s->img_out_n)) + return 0; + } + } + if (is_iphone && stbi__de_iphone_flag && s->img_out_n > 2) + stbi__de_iphone(z); + if (pal_img_n) + { + // pal_img_n == 3 or 4 + s->img_n = pal_img_n; // record the actual colors we had + s->img_out_n = pal_img_n; + if (req_comp >= 3) + s->img_out_n = req_comp; + if (!stbi__expand_png_palette(z, palette, pal_len, s->img_out_n)) + return 0; + } + STBI_FREE(z->expanded); + z->expanded = NULL; + return 1; + } + + default: + // if critical, fail + if (first) + return stbi__err("first not IHDR", "Corrupt PNG"); + if ((c.type & (1 << 29)) == 0) + { +#ifndef STBI_NO_FAILURE_STRINGS + // not threadsafe + static char invalid_chunk[] = "XXXX PNG chunk not known"; + invalid_chunk[0] = STBI__BYTECAST(c.type >> 24); + invalid_chunk[1] = STBI__BYTECAST(c.type >> 16); + invalid_chunk[2] = STBI__BYTECAST(c.type >> 8); + invalid_chunk[3] = STBI__BYTECAST(c.type >> 0); +#endif + return stbi__err(invalid_chunk, "PNG not supported: unknown PNG chunk type"); + } + stbi__skip(s, c.length); + break; + } + // end of PNG chunk, read and skip CRC + stbi__get32be(s); + } +} + +static void *stbi__do_png(stbi__png *p, int *x, int *y, int *n, int req_comp, stbi__result_info *ri) +{ + void *result = NULL; + if (req_comp < 0 || req_comp > 4) + return stbi__errpuc("bad req_comp", "Internal error"); + if (stbi__parse_png_file(p, STBI__SCAN_load, req_comp)) + { + if (p->depth < 8) + ri->bits_per_channel = 8; + else + ri->bits_per_channel = p->depth; + result = p->out; + p->out = NULL; + if (req_comp && req_comp != p->s->img_out_n) + { + if (ri->bits_per_channel == 8) + result = stbi__convert_format((unsigned char *)result, p->s->img_out_n, req_comp, p->s->img_x, p->s->img_y); + else + result = stbi__convert_format16((stbi__uint16 *)result, p->s->img_out_n, req_comp, p->s->img_x, p->s->img_y); + p->s->img_out_n = req_comp; + if (result == NULL) + return result; + } + *x = p->s->img_x; + *y = p->s->img_y; + if (n) + *n = p->s->img_n; + } + STBI_FREE(p->out); + p->out = NULL; + STBI_FREE(p->expanded); + p->expanded = NULL; + STBI_FREE(p->idata); + p->idata = NULL; + + return result; +} + +static void *stbi__png_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri) +{ + stbi__png p; + p.s = s; + return stbi__do_png(&p, x, y, comp, req_comp, ri); +} + +static int stbi__png_test(stbi__context *s) +{ + int r; + r = stbi__check_png_header(s); + stbi__rewind(s); + return r; +} + +static int stbi__png_info_raw(stbi__png *p, int *x, int *y, int *comp) +{ + if (!stbi__parse_png_file(p, STBI__SCAN_header, 0)) + { + stbi__rewind(p->s); + return 0; + } + if (x) + *x = p->s->img_x; + if (y) + *y = p->s->img_y; + if (comp) + *comp = p->s->img_n; + return 1; +} + +static int stbi__png_info(stbi__context *s, int *x, int *y, int *comp) +{ + stbi__png p; + p.s = s; + return stbi__png_info_raw(&p, x, y, comp); +} +#endif + +// Microsoft/Windows BMP image + +#ifndef STBI_NO_BMP +static int stbi__bmp_test_raw(stbi__context *s) +{ + int r; + int sz; + if (stbi__get8(s) != 'B') + return 0; + if (stbi__get8(s) != 'M') + return 0; + stbi__get32le(s); // discard filesize + stbi__get16le(s); // discard reserved + stbi__get16le(s); // discard reserved + stbi__get32le(s); // discard data offset + sz = stbi__get32le(s); + r = (sz == 12 || sz == 40 || sz == 56 || sz == 108 || sz == 124); + return r; +} + +static int stbi__bmp_test(stbi__context *s) +{ + int r = stbi__bmp_test_raw(s); + stbi__rewind(s); + return r; +} + +// returns 0..31 for the highest set bit +static int stbi__high_bit(unsigned int z) +{ + int n = 0; + if (z == 0) + return -1; + if (z >= 0x10000) + n += 16, z >>= 16; + if (z >= 0x00100) + n += 8, z >>= 8; + if (z >= 0x00010) + n += 4, z >>= 4; + if (z >= 0x00004) + n += 2, z >>= 2; + if (z >= 0x00002) + n += 1, z >>= 1; + return n; +} + +static int stbi__bitcount(unsigned int a) +{ + a = (a & 0x55555555) + ((a >> 1) & 0x55555555); // max 2 + a = (a & 0x33333333) + ((a >> 2) & 0x33333333); // max 4 + a = (a + (a >> 4)) & 0x0f0f0f0f; // max 8 per 4, now 8 bits + a = (a + (a >> 8)); // max 16 per 8 bits + a = (a + (a >> 16)); // max 32 per 8 bits + return a & 0xff; +} + +static int stbi__shiftsigned(int v, int shift, int bits) +{ + int result; + int z = 0; + + if (shift < 0) + v <<= -shift; + else + v >>= shift; + result = v; + + z = bits; + while (z < 8) + { + result += v >> z; + z += bits; + } + return result; +} + +typedef struct +{ + int bpp, offset, hsz; + unsigned int mr, mg, mb, ma, all_a; +} stbi__bmp_data; + +static void *stbi__bmp_parse_header(stbi__context *s, stbi__bmp_data *info) +{ + int hsz; + if (stbi__get8(s) != 'B' || stbi__get8(s) != 'M') + return stbi__errpuc("not BMP", "Corrupt BMP"); + stbi__get32le(s); // discard filesize + stbi__get16le(s); // discard reserved + stbi__get16le(s); // discard reserved + info->offset = stbi__get32le(s); + info->hsz = hsz = stbi__get32le(s); + info->mr = info->mg = info->mb = info->ma = 0; + + if (hsz != 12 && hsz != 40 && hsz != 56 && hsz != 108 && hsz != 124) + return stbi__errpuc("unknown BMP", "BMP type not supported: unknown"); + if (hsz == 12) + { + s->img_x = stbi__get16le(s); + s->img_y = stbi__get16le(s); + } + else + { + s->img_x = stbi__get32le(s); + s->img_y = stbi__get32le(s); + } + if (stbi__get16le(s) != 1) + return stbi__errpuc("bad BMP", "bad BMP"); + info->bpp = stbi__get16le(s); + if (info->bpp == 1) + return stbi__errpuc("monochrome", "BMP type not supported: 1-bit"); + if (hsz != 12) + { + int compress = stbi__get32le(s); + if (compress == 1 || compress == 2) + return stbi__errpuc("BMP RLE", "BMP type not supported: RLE"); + stbi__get32le(s); // discard sizeof + stbi__get32le(s); // discard hres + stbi__get32le(s); // discard vres + stbi__get32le(s); // discard colorsused + stbi__get32le(s); // discard max important + if (hsz == 40 || hsz == 56) + { + if (hsz == 56) + { + stbi__get32le(s); + stbi__get32le(s); + stbi__get32le(s); + stbi__get32le(s); + } + if (info->bpp == 16 || info->bpp == 32) + { + if (compress == 0) + { + if (info->bpp == 32) + { + info->mr = 0xffu << 16; + info->mg = 0xffu << 8; + info->mb = 0xffu << 0; + info->ma = 0xffu << 24; + info->all_a = 0; // if all_a is 0 at end, then we loaded alpha channel but it was all 0 + } + else + { + info->mr = 31u << 10; + info->mg = 31u << 5; + info->mb = 31u << 0; + } + } + else if (compress == 3) + { + info->mr = stbi__get32le(s); + info->mg = stbi__get32le(s); + info->mb = stbi__get32le(s); + // not documented, but generated by photoshop and handled by mspaint + if (info->mr == info->mg && info->mg == info->mb) + { + // ?!?!? + return stbi__errpuc("bad BMP", "bad BMP"); + } + } + else + return stbi__errpuc("bad BMP", "bad BMP"); + } + } + else + { + int i; + if (hsz != 108 && hsz != 124) + return stbi__errpuc("bad BMP", "bad BMP"); + info->mr = stbi__get32le(s); + info->mg = stbi__get32le(s); + info->mb = stbi__get32le(s); + info->ma = stbi__get32le(s); + stbi__get32le(s); // discard color space + for (i = 0; i < 12; ++i) + stbi__get32le(s); // discard color space parameters + if (hsz == 124) + { + stbi__get32le(s); // discard rendering intent + stbi__get32le(s); // discard offset of profile data + stbi__get32le(s); // discard size of profile data + stbi__get32le(s); // discard reserved + } + } + } + return (void *)1; +} + +static void *stbi__bmp_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri) +{ + stbi_uc *out; + unsigned int mr = 0, mg = 0, mb = 0, ma = 0, all_a; + stbi_uc pal[256][4]; + int psize = 0, i, j, width; + int flip_vertically, pad, target; + stbi__bmp_data info; + STBI_NOTUSED(ri); + + info.all_a = 255; + if (stbi__bmp_parse_header(s, &info) == NULL) + return NULL; // error code already set + + flip_vertically = ((int)s->img_y) > 0; + s->img_y = abs((int)s->img_y); + + mr = info.mr; + mg = info.mg; + mb = info.mb; + ma = info.ma; + all_a = info.all_a; + + if (info.hsz == 12) + { + if (info.bpp < 24) + psize = (info.offset - 14 - 24) / 3; + } + else + { + if (info.bpp < 16) + psize = (info.offset - 14 - info.hsz) >> 2; + } + + s->img_n = ma ? 4 : 3; + if (req_comp && req_comp >= 3) // we can directly decode 3 or 4 + target = req_comp; + else + target = s->img_n; // if they want monochrome, we'll post-convert + + // sanity-check size + if (!stbi__mad3sizes_valid(target, s->img_x, s->img_y, 0)) + return stbi__errpuc("too large", "Corrupt BMP"); + + out = (stbi_uc *)stbi__malloc_mad3(target, s->img_x, s->img_y, 0); + if (!out) + return stbi__errpuc("outofmem", "Out of memory"); + if (info.bpp < 16) + { + int z = 0; + if (psize == 0 || psize > 256) + { + STBI_FREE(out); + return stbi__errpuc("invalid", "Corrupt BMP"); + } + for (i = 0; i < psize; ++i) + { + pal[i][2] = stbi__get8(s); + pal[i][1] = stbi__get8(s); + pal[i][0] = stbi__get8(s); + if (info.hsz != 12) + stbi__get8(s); + pal[i][3] = 255; + } + stbi__skip(s, info.offset - 14 - info.hsz - psize * (info.hsz == 12 ? 3 : 4)); + if (info.bpp == 4) + width = (s->img_x + 1) >> 1; + else if (info.bpp == 8) + width = s->img_x; + else + { + STBI_FREE(out); + return stbi__errpuc("bad bpp", "Corrupt BMP"); + } + pad = (-width) & 3; + for (j = 0; j < (int)s->img_y; ++j) + { + for (i = 0; i < (int)s->img_x; i += 2) + { + int v = stbi__get8(s), v2 = 0; + if (info.bpp == 4) + { + v2 = v & 15; + v >>= 4; + } + out[z++] = pal[v][0]; + out[z++] = pal[v][1]; + out[z++] = pal[v][2]; + if (target == 4) + out[z++] = 255; + if (i + 1 == (int)s->img_x) + break; + v = (info.bpp == 8) ? stbi__get8(s) : v2; + out[z++] = pal[v][0]; + out[z++] = pal[v][1]; + out[z++] = pal[v][2]; + if (target == 4) + out[z++] = 255; + } + stbi__skip(s, pad); + } + } + else + { + int rshift = 0, gshift = 0, bshift = 0, ashift = 0, rcount = 0, gcount = 0, bcount = 0, acount = 0; + int z = 0; + int easy = 0; + stbi__skip(s, info.offset - 14 - info.hsz); + if (info.bpp == 24) + width = 3 * s->img_x; + else if (info.bpp == 16) + width = 2 * s->img_x; + else /* bpp = 32 and pad = 0 */ + width = 0; + pad = (-width) & 3; + if (info.bpp == 24) + { + easy = 1; + } + else if (info.bpp == 32) + { + if (mb == 0xff && mg == 0xff00 && mr == 0x00ff0000 && ma == 0xff000000) + easy = 2; + } + if (!easy) + { + if (!mr || !mg || !mb) + { + STBI_FREE(out); + return stbi__errpuc("bad masks", "Corrupt BMP"); + } + // right shift amt to put high bit in position #7 + rshift = stbi__high_bit(mr) - 7; + rcount = stbi__bitcount(mr); + gshift = stbi__high_bit(mg) - 7; + gcount = stbi__bitcount(mg); + bshift = stbi__high_bit(mb) - 7; + bcount = stbi__bitcount(mb); + ashift = stbi__high_bit(ma) - 7; + acount = stbi__bitcount(ma); + } + for (j = 0; j < (int)s->img_y; ++j) + { + if (easy) + { + for (i = 0; i < (int)s->img_x; ++i) + { + unsigned char a; + out[z + 2] = stbi__get8(s); + out[z + 1] = stbi__get8(s); + out[z + 0] = stbi__get8(s); + z += 3; + a = (easy == 2 ? stbi__get8(s) : 255); + all_a |= a; + if (target == 4) + out[z++] = a; + } + } + else + { + int bpp = info.bpp; + for (i = 0; i < (int)s->img_x; ++i) + { + stbi__uint32 v = (bpp == 16 ? (stbi__uint32)stbi__get16le(s) : stbi__get32le(s)); + int a; + out[z++] = STBI__BYTECAST(stbi__shiftsigned(v & mr, rshift, rcount)); + out[z++] = STBI__BYTECAST(stbi__shiftsigned(v & mg, gshift, gcount)); + out[z++] = STBI__BYTECAST(stbi__shiftsigned(v & mb, bshift, bcount)); + a = (ma ? stbi__shiftsigned(v & ma, ashift, acount) : 255); + all_a |= a; + if (target == 4) + out[z++] = STBI__BYTECAST(a); + } + } + stbi__skip(s, pad); + } + } + + // if alpha channel is all 0s, replace with all 255s + if (target == 4 && all_a == 0) + for (i = 4 * s->img_x * s->img_y - 1; i >= 0; i -= 4) + out[i] = 255; + + if (flip_vertically) + { + stbi_uc t; + for (j = 0; j < (int)s->img_y >> 1; ++j) + { + stbi_uc *p1 = out + j * s->img_x * target; + stbi_uc *p2 = out + (s->img_y - 1 - j) * s->img_x * target; + for (i = 0; i < (int)s->img_x * target; ++i) + { + t = p1[i], p1[i] = p2[i], p2[i] = t; + } + } + } + + if (req_comp && req_comp != target) + { + out = stbi__convert_format(out, target, req_comp, s->img_x, s->img_y); + if (out == NULL) + return out; // stbi__convert_format frees input on failure + } + + *x = s->img_x; + *y = s->img_y; + if (comp) + *comp = s->img_n; + return out; +} +#endif + +// Targa Truevision - TGA +// by Jonathan Dummer +#ifndef STBI_NO_TGA +// returns STBI_rgb or whatever, 0 on error +static int stbi__tga_get_comp(int bits_per_pixel, int is_grey, int *is_rgb16) +{ + // only RGB or RGBA (incl. 16bit) or grey allowed + if (is_rgb16) + *is_rgb16 = 0; + switch (bits_per_pixel) + { + case 8: + return STBI_grey; + case 16: + if (is_grey) + return STBI_grey_alpha; + // else: fall-through + case 15: + if (is_rgb16) + *is_rgb16 = 1; + return STBI_rgb; + case 24: // fall-through + case 32: + return bits_per_pixel / 8; + default: + return 0; + } +} + +static int stbi__tga_info(stbi__context *s, int *x, int *y, int *comp) +{ + int tga_w, tga_h, tga_comp, tga_image_type, tga_bits_per_pixel, tga_colormap_bpp; + int sz, tga_colormap_type; + stbi__get8(s); // discard Offset + tga_colormap_type = stbi__get8(s); // colormap type + if (tga_colormap_type > 1) + { + stbi__rewind(s); + return 0; // only RGB or indexed allowed + } + tga_image_type = stbi__get8(s); // image type + if (tga_colormap_type == 1) + { // colormapped (paletted) image + if (tga_image_type != 1 && tga_image_type != 9) + { + stbi__rewind(s); + return 0; + } + stbi__skip(s, 4); // skip index of first colormap entry and number of entries + sz = stbi__get8(s); // check bits per palette color entry + if ((sz != 8) && (sz != 15) && (sz != 16) && (sz != 24) && (sz != 32)) + { + stbi__rewind(s); + return 0; + } + stbi__skip(s, 4); // skip image x and y origin + tga_colormap_bpp = sz; + } + else + { // "normal" image w/o colormap - only RGB or grey allowed, +/- RLE + if ((tga_image_type != 2) && (tga_image_type != 3) && (tga_image_type != 10) && (tga_image_type != 11)) + { + stbi__rewind(s); + return 0; // only RGB or grey allowed, +/- RLE + } + stbi__skip(s, 9); // skip colormap specification and image x/y origin + tga_colormap_bpp = 0; + } + tga_w = stbi__get16le(s); + if (tga_w < 1) + { + stbi__rewind(s); + return 0; // test width + } + tga_h = stbi__get16le(s); + if (tga_h < 1) + { + stbi__rewind(s); + return 0; // test height + } + tga_bits_per_pixel = stbi__get8(s); // bits per pixel + stbi__get8(s); // ignore alpha bits + if (tga_colormap_bpp != 0) + { + if ((tga_bits_per_pixel != 8) && (tga_bits_per_pixel != 16)) + { + // when using a colormap, tga_bits_per_pixel is the size of the indexes + // I don't think anything but 8 or 16bit indexes makes sense + stbi__rewind(s); + return 0; + } + tga_comp = stbi__tga_get_comp(tga_colormap_bpp, 0, NULL); + } + else + { + tga_comp = stbi__tga_get_comp(tga_bits_per_pixel, (tga_image_type == 3) || (tga_image_type == 11), NULL); + } + if (!tga_comp) + { + stbi__rewind(s); + return 0; + } + if (x) + *x = tga_w; + if (y) + *y = tga_h; + if (comp) + *comp = tga_comp; + return 1; // seems to have passed everything +} + +static int stbi__tga_test(stbi__context *s) +{ + int res = 0; + int sz, tga_color_type; + stbi__get8(s); // discard Offset + tga_color_type = stbi__get8(s); // color type + if (tga_color_type > 1) + goto errorEnd; // only RGB or indexed allowed + sz = stbi__get8(s); // image type + if (tga_color_type == 1) + { // colormapped (paletted) image + if (sz != 1 && sz != 9) + goto errorEnd; // colortype 1 demands image type 1 or 9 + stbi__skip(s, 4); // skip index of first colormap entry and number of entries + sz = stbi__get8(s); // check bits per palette color entry + if ((sz != 8) && (sz != 15) && (sz != 16) && (sz != 24) && (sz != 32)) + goto errorEnd; + stbi__skip(s, 4); // skip image x and y origin + } + else + { // "normal" image w/o colormap + if ((sz != 2) && (sz != 3) && (sz != 10) && (sz != 11)) + goto errorEnd; // only RGB or grey allowed, +/- RLE + stbi__skip(s, 9); // skip colormap specification and image x/y origin + } + if (stbi__get16le(s) < 1) + goto errorEnd; // test width + if (stbi__get16le(s) < 1) + goto errorEnd; // test height + sz = stbi__get8(s); // bits per pixel + if ((tga_color_type == 1) && (sz != 8) && (sz != 16)) + goto errorEnd; // for colormapped images, bpp is size of an index + if ((sz != 8) && (sz != 15) && (sz != 16) && (sz != 24) && (sz != 32)) + goto errorEnd; + + res = 1; // if we got this far, everything's good and we can return 1 instead of 0 + +errorEnd: + stbi__rewind(s); + return res; +} + +// read 16bit value and convert to 24bit RGB +static void stbi__tga_read_rgb16(stbi__context *s, stbi_uc *out) +{ + stbi__uint16 px = (stbi__uint16)stbi__get16le(s); + stbi__uint16 fiveBitMask = 31; + // we have 3 channels with 5bits each + int r = (px >> 10) & fiveBitMask; + int g = (px >> 5) & fiveBitMask; + int b = px & fiveBitMask; + // Note that this saves the data in RGB(A) order, so it doesn't need to be swapped later + out[0] = (stbi_uc)((r * 255) / 31); + out[1] = (stbi_uc)((g * 255) / 31); + out[2] = (stbi_uc)((b * 255) / 31); + + // some people claim that the most significant bit might be used for alpha + // (possibly if an alpha-bit is set in the "image descriptor byte") + // but that only made 16bit test images completely translucent.. + // so let's treat all 15 and 16bit TGAs as RGB with no alpha. +} + +static void *stbi__tga_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri) +{ + // read in the TGA header stuff + int tga_offset = stbi__get8(s); + int tga_indexed = stbi__get8(s); + int tga_image_type = stbi__get8(s); + int tga_is_RLE = 0; + int tga_palette_start = stbi__get16le(s); + int tga_palette_len = stbi__get16le(s); + int tga_palette_bits = stbi__get8(s); + int tga_x_origin = stbi__get16le(s); + int tga_y_origin = stbi__get16le(s); + int tga_width = stbi__get16le(s); + int tga_height = stbi__get16le(s); + int tga_bits_per_pixel = stbi__get8(s); + int tga_comp, tga_rgb16 = 0; + int tga_inverted = stbi__get8(s); + // int tga_alpha_bits = tga_inverted & 15; // the 4 lowest bits - unused (useless?) + // image data + unsigned char *tga_data; + unsigned char *tga_palette = NULL; + int i, j; + unsigned char raw_data[4] = {0}; + int RLE_count = 0; + int RLE_repeating = 0; + int read_next_pixel = 1; + STBI_NOTUSED(ri); + + // do a tiny bit of precessing + if (tga_image_type >= 8) + { + tga_image_type -= 8; + tga_is_RLE = 1; + } + tga_inverted = 1 - ((tga_inverted >> 5) & 1); + + // If I'm paletted, then I'll use the number of bits from the palette + if (tga_indexed) + tga_comp = stbi__tga_get_comp(tga_palette_bits, 0, &tga_rgb16); + else + tga_comp = stbi__tga_get_comp(tga_bits_per_pixel, (tga_image_type == 3), &tga_rgb16); + + if (!tga_comp) // shouldn't really happen, stbi__tga_test() should have ensured basic consistency + return stbi__errpuc("bad format", "Can't find out TGA pixelformat"); + + // tga info + *x = tga_width; + *y = tga_height; + if (comp) + *comp = tga_comp; + + if (!stbi__mad3sizes_valid(tga_width, tga_height, tga_comp, 0)) + return stbi__errpuc("too large", "Corrupt TGA"); + + tga_data = (unsigned char *)stbi__malloc_mad3(tga_width, tga_height, tga_comp, 0); + if (!tga_data) + return stbi__errpuc("outofmem", "Out of memory"); + + // skip to the data's starting position (offset usually = 0) + stbi__skip(s, tga_offset); + + if (!tga_indexed && !tga_is_RLE && !tga_rgb16) + { + for (i = 0; i < tga_height; ++i) + { + int row = tga_inverted ? tga_height - i - 1 : i; + stbi_uc *tga_row = tga_data + row * tga_width * tga_comp; + stbi__getn(s, tga_row, tga_width * tga_comp); + } + } + else + { + // do I need to load a palette? + if (tga_indexed) + { + // any data to skip? (offset usually = 0) + stbi__skip(s, tga_palette_start); + // load the palette + tga_palette = (unsigned char *)stbi__malloc_mad2(tga_palette_len, tga_comp, 0); + if (!tga_palette) + { + STBI_FREE(tga_data); + return stbi__errpuc("outofmem", "Out of memory"); + } + if (tga_rgb16) + { + stbi_uc *pal_entry = tga_palette; + STBI_ASSERT(tga_comp == STBI_rgb); + for (i = 0; i < tga_palette_len; ++i) + { + stbi__tga_read_rgb16(s, pal_entry); + pal_entry += tga_comp; + } + } + else if (!stbi__getn(s, tga_palette, tga_palette_len * tga_comp)) + { + STBI_FREE(tga_data); + STBI_FREE(tga_palette); + return stbi__errpuc("bad palette", "Corrupt TGA"); + } + } + // load the data + for (i = 0; i < tga_width * tga_height; ++i) + { + // if I'm in RLE mode, do I need to get a RLE stbi__pngchunk? + if (tga_is_RLE) + { + if (RLE_count == 0) + { + // yep, get the next byte as a RLE command + int RLE_cmd = stbi__get8(s); + RLE_count = 1 + (RLE_cmd & 127); + RLE_repeating = RLE_cmd >> 7; + read_next_pixel = 1; + } + else if (!RLE_repeating) + { + read_next_pixel = 1; + } + } + else + { + read_next_pixel = 1; + } + // OK, if I need to read a pixel, do it now + if (read_next_pixel) + { + // load however much data we did have + if (tga_indexed) + { + // read in index, then perform the lookup + int pal_idx = (tga_bits_per_pixel == 8) ? stbi__get8(s) : stbi__get16le(s); + if (pal_idx >= tga_palette_len) + { + // invalid index + pal_idx = 0; + } + pal_idx *= tga_comp; + for (j = 0; j < tga_comp; ++j) + { + raw_data[j] = tga_palette[pal_idx + j]; + } + } + else if (tga_rgb16) + { + STBI_ASSERT(tga_comp == STBI_rgb); + stbi__tga_read_rgb16(s, raw_data); + } + else + { + // read in the data raw + for (j = 0; j < tga_comp; ++j) + { + raw_data[j] = stbi__get8(s); + } + } + // clear the reading flag for the next pixel + read_next_pixel = 0; + } // end of reading a pixel + + // copy data + for (j = 0; j < tga_comp; ++j) + tga_data[i * tga_comp + j] = raw_data[j]; + + // in case we're in RLE mode, keep counting down + --RLE_count; + } + // do I need to invert the image? + if (tga_inverted) + { + for (j = 0; j * 2 < tga_height; ++j) + { + int index1 = j * tga_width * tga_comp; + int index2 = (tga_height - 1 - j) * tga_width * tga_comp; + for (i = tga_width * tga_comp; i > 0; --i) + { + unsigned char temp = tga_data[index1]; + tga_data[index1] = tga_data[index2]; + tga_data[index2] = temp; + ++index1; + ++index2; + } + } + } + // clear my palette, if I had one + if (tga_palette != NULL) + { + STBI_FREE(tga_palette); + } + } + + // swap RGB - if the source data was RGB16, it already is in the right order + if (tga_comp >= 3 && !tga_rgb16) + { + unsigned char *tga_pixel = tga_data; + for (i = 0; i < tga_width * tga_height; ++i) + { + unsigned char temp = tga_pixel[0]; + tga_pixel[0] = tga_pixel[2]; + tga_pixel[2] = temp; + tga_pixel += tga_comp; + } + } + + // convert to target component count + if (req_comp && req_comp != tga_comp) + tga_data = stbi__convert_format(tga_data, tga_comp, req_comp, tga_width, tga_height); + + // the things I do to get rid of an error message, and yet keep + // Microsoft's C compilers happy... [8^( + tga_palette_start = tga_palette_len = tga_palette_bits = + tga_x_origin = tga_y_origin = 0; + // OK, done + return tga_data; +} +#endif + +// ************************************************************************************************* +// Photoshop PSD loader -- PD by Thatcher Ulrich, integration by Nicolas Schulz, tweaked by STB + +#ifndef STBI_NO_PSD +static int stbi__psd_test(stbi__context *s) +{ + int r = (stbi__get32be(s) == 0x38425053); + stbi__rewind(s); + return r; +} + +static int stbi__psd_decode_rle(stbi__context *s, stbi_uc *p, int pixelCount) +{ + int count, nleft, len; + + count = 0; + while ((nleft = pixelCount - count) > 0) + { + len = stbi__get8(s); + if (len == 128) + { + // No-op. + } + else if (len < 128) + { + // Copy next len+1 bytes literally. + len++; + if (len > nleft) + return 0; // corrupt data + count += len; + while (len) + { + *p = stbi__get8(s); + p += 4; + len--; + } + } + else if (len > 128) + { + stbi_uc val; + // Next -len+1 bytes in the dest are replicated from next source byte. + // (Interpret len as a negative 8-bit int.) + len = 257 - len; + if (len > nleft) + return 0; // corrupt data + val = stbi__get8(s); + count += len; + while (len) + { + *p = val; + p += 4; + len--; + } + } + } + + return 1; +} + +static void *stbi__psd_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri, int bpc) +{ + int pixelCount; + int channelCount, compression; + int channel, i; + int bitdepth; + int w, h; + stbi_uc *out; + STBI_NOTUSED(ri); + + // Check identifier + if (stbi__get32be(s) != 0x38425053) // "8BPS" + return stbi__errpuc("not PSD", "Corrupt PSD image"); + + // Check file type version. + if (stbi__get16be(s) != 1) + return stbi__errpuc("wrong version", "Unsupported version of PSD image"); + + // Skip 6 reserved bytes. + stbi__skip(s, 6); + + // Read the number of channels (R, G, B, A, etc). + channelCount = stbi__get16be(s); + if (channelCount < 0 || channelCount > 16) + return stbi__errpuc("wrong channel count", "Unsupported number of channels in PSD image"); + + // Read the rows and columns of the image. + h = stbi__get32be(s); + w = stbi__get32be(s); + + // Make sure the depth is 8 bits. + bitdepth = stbi__get16be(s); + if (bitdepth != 8 && bitdepth != 16) + return stbi__errpuc("unsupported bit depth", "PSD bit depth is not 8 or 16 bit"); + + // Make sure the color mode is RGB. + // Valid options are: + // 0: Bitmap + // 1: Grayscale + // 2: Indexed color + // 3: RGB color + // 4: CMYK color + // 7: Multichannel + // 8: Duotone + // 9: Lab color + if (stbi__get16be(s) != 3) + return stbi__errpuc("wrong color format", "PSD is not in RGB color format"); + + // Skip the Mode Data. (It's the palette for indexed color; other info for other modes.) + stbi__skip(s, stbi__get32be(s)); + + // Skip the image resources. (resolution, pen tool paths, etc) + stbi__skip(s, stbi__get32be(s)); + + // Skip the reserved data. + stbi__skip(s, stbi__get32be(s)); + + // Find out if the data is compressed. + // Known values: + // 0: no compression + // 1: RLE compressed + compression = stbi__get16be(s); + if (compression > 1) + return stbi__errpuc("bad compression", "PSD has an unknown compression format"); + + // Check size + if (!stbi__mad3sizes_valid(4, w, h, 0)) + return stbi__errpuc("too large", "Corrupt PSD"); + + // Create the destination image. + + if (!compression && bitdepth == 16 && bpc == 16) + { + out = (stbi_uc *)stbi__malloc_mad3(8, w, h, 0); + ri->bits_per_channel = 16; + } + else + out = (stbi_uc *)stbi__malloc(4 * w * h); + + if (!out) + return stbi__errpuc("outofmem", "Out of memory"); + pixelCount = w * h; + + // Initialize the data to zero. + // memset( out, 0, pixelCount * 4 ); + + // Finally, the image data. + if (compression) + { + // RLE as used by .PSD and .TIFF + // Loop until you get the number of unpacked bytes you are expecting: + // Read the next source byte into n. + // If n is between 0 and 127 inclusive, copy the next n+1 bytes literally. + // Else if n is between -127 and -1 inclusive, copy the next byte -n+1 times. + // Else if n is 128, noop. + // Endloop + + // The RLE-compressed data is preceeded by a 2-byte data count for each row in the data, + // which we're going to just skip. + stbi__skip(s, h * channelCount * 2); + + // Read the RLE data by channel. + for (channel = 0; channel < 4; channel++) + { + stbi_uc *p; + + p = out + channel; + if (channel >= channelCount) + { + // Fill this channel with default data. + for (i = 0; i < pixelCount; i++, p += 4) + *p = (channel == 3 ? 255 : 0); + } + else + { + // Read the RLE data. + if (!stbi__psd_decode_rle(s, p, pixelCount)) + { + STBI_FREE(out); + return stbi__errpuc("corrupt", "bad RLE data"); + } + } + } + } + else + { + // We're at the raw image data. It's each channel in order (Red, Green, Blue, Alpha, ...) + // where each channel consists of an 8-bit (or 16-bit) value for each pixel in the image. + + // Read the data by channel. + for (channel = 0; channel < 4; channel++) + { + if (channel >= channelCount) + { + // Fill this channel with default data. + if (bitdepth == 16 && bpc == 16) + { + stbi__uint16 *q = ((stbi__uint16 *)out) + channel; + stbi__uint16 val = channel == 3 ? 65535 : 0; + for (i = 0; i < pixelCount; i++, q += 4) + *q = val; + } + else + { + stbi_uc *p = out + channel; + stbi_uc val = channel == 3 ? 255 : 0; + for (i = 0; i < pixelCount; i++, p += 4) + *p = val; + } + } + else + { + if (ri->bits_per_channel == 16) + { // output bpc + stbi__uint16 *q = ((stbi__uint16 *)out) + channel; + for (i = 0; i < pixelCount; i++, q += 4) + *q = (stbi__uint16)stbi__get16be(s); + } + else + { + stbi_uc *p = out + channel; + if (bitdepth == 16) + { // input bpc + for (i = 0; i < pixelCount; i++, p += 4) + *p = (stbi_uc)(stbi__get16be(s) >> 8); + } + else + { + for (i = 0; i < pixelCount; i++, p += 4) + *p = stbi__get8(s); + } + } + } + } + } + + // remove weird white matte from PSD + if (channelCount >= 4) + { + if (ri->bits_per_channel == 16) + { + for (i = 0; i < w * h; ++i) + { + stbi__uint16 *pixel = (stbi__uint16 *)out + 4 * i; + if (pixel[3] != 0 && pixel[3] != 65535) + { + float a = pixel[3] / 65535.0f; + float ra = 1.0f / a; + float inv_a = 65535.0f * (1 - ra); + pixel[0] = (stbi__uint16)(pixel[0] * ra + inv_a); + pixel[1] = (stbi__uint16)(pixel[1] * ra + inv_a); + pixel[2] = (stbi__uint16)(pixel[2] * ra + inv_a); + } + } + } + else + { + for (i = 0; i < w * h; ++i) + { + unsigned char *pixel = out + 4 * i; + if (pixel[3] != 0 && pixel[3] != 255) + { + float a = pixel[3] / 255.0f; + float ra = 1.0f / a; + float inv_a = 255.0f * (1 - ra); + pixel[0] = (unsigned char)(pixel[0] * ra + inv_a); + pixel[1] = (unsigned char)(pixel[1] * ra + inv_a); + pixel[2] = (unsigned char)(pixel[2] * ra + inv_a); + } + } + } + } + + // convert to desired output format + if (req_comp && req_comp != 4) + { + if (ri->bits_per_channel == 16) + out = (stbi_uc *)stbi__convert_format16((stbi__uint16 *)out, 4, req_comp, w, h); + else + out = stbi__convert_format(out, 4, req_comp, w, h); + if (out == NULL) + return out; // stbi__convert_format frees input on failure + } + + if (comp) + *comp = 4; + *y = h; + *x = w; + + return out; +} +#endif + +// ************************************************************************************************* +// Softimage PIC loader +// by Tom Seddon +// +// See http://softimage.wiki.softimage.com/index.php/INFO:_PIC_file_format +// See http://ozviz.wasp.uwa.edu.au/~pbourke/dataformats/softimagepic/ + +#ifndef STBI_NO_PIC +static int stbi__pic_is4(stbi__context *s, const char *str) +{ + int i; + for (i = 0; i < 4; ++i) + if (stbi__get8(s) != (stbi_uc)str[i]) + return 0; + + return 1; +} + +static int stbi__pic_test_core(stbi__context *s) +{ + int i; + + if (!stbi__pic_is4(s, "\x53\x80\xF6\x34")) + return 0; + + for (i = 0; i < 84; ++i) + stbi__get8(s); + + if (!stbi__pic_is4(s, "PICT")) + return 0; + + return 1; +} + +typedef struct +{ + stbi_uc size, type, channel; +} stbi__pic_packet; + +static stbi_uc *stbi__readval(stbi__context *s, int channel, stbi_uc *dest) +{ + int mask = 0x80, i; + + for (i = 0; i < 4; ++i, mask >>= 1) + { + if (channel & mask) + { + if (stbi__at_eof(s)) + return stbi__errpuc("bad file", "PIC file too short"); + dest[i] = stbi__get8(s); + } + } + + return dest; +} + +static void stbi__copyval(int channel, stbi_uc *dest, const stbi_uc *src) +{ + int mask = 0x80, i; + + for (i = 0; i < 4; ++i, mask >>= 1) + if (channel & mask) + dest[i] = src[i]; +} + +static stbi_uc *stbi__pic_load_core(stbi__context *s, int width, int height, int *comp, stbi_uc *result) +{ + int act_comp = 0, num_packets = 0, y, chained; + stbi__pic_packet packets[10]; + + // this will (should...) cater for even some bizarre stuff like having data + // for the same channel in multiple packets. + do + { + stbi__pic_packet *packet; + + if (num_packets == sizeof(packets) / sizeof(packets[0])) + return stbi__errpuc("bad format", "too many packets"); + + packet = &packets[num_packets++]; + + chained = stbi__get8(s); + packet->size = stbi__get8(s); + packet->type = stbi__get8(s); + packet->channel = stbi__get8(s); + + act_comp |= packet->channel; + + if (stbi__at_eof(s)) + return stbi__errpuc("bad file", "file too short (reading packets)"); + if (packet->size != 8) + return stbi__errpuc("bad format", "packet isn't 8bpp"); + } while (chained); + + *comp = (act_comp & 0x10 ? 4 : 3); // has alpha channel? + + for (y = 0; y < height; ++y) + { + int packet_idx; + + for (packet_idx = 0; packet_idx < num_packets; ++packet_idx) + { + stbi__pic_packet *packet = &packets[packet_idx]; + stbi_uc *dest = result + y * width * 4; + + switch (packet->type) + { + default: + return stbi__errpuc("bad format", "packet has bad compression type"); + + case 0: + { // uncompressed + int x; + + for (x = 0; x < width; ++x, dest += 4) + if (!stbi__readval(s, packet->channel, dest)) + return 0; + break; + } + + case 1: // Pure RLE + { + int left = width, i; + + while (left > 0) + { + stbi_uc count, value[4]; + + count = stbi__get8(s); + if (stbi__at_eof(s)) + return stbi__errpuc("bad file", "file too short (pure read count)"); + + if (count > left) + count = (stbi_uc)left; + + if (!stbi__readval(s, packet->channel, value)) + return 0; + + for (i = 0; i < count; ++i, dest += 4) + stbi__copyval(packet->channel, dest, value); + left -= count; + } + } + break; + + case 2: + { // Mixed RLE + int left = width; + while (left > 0) + { + int count = stbi__get8(s), i; + if (stbi__at_eof(s)) + return stbi__errpuc("bad file", "file too short (mixed read count)"); + + if (count >= 128) + { // Repeated + stbi_uc value[4]; + + if (count == 128) + count = stbi__get16be(s); + else + count -= 127; + if (count > left) + return stbi__errpuc("bad file", "scanline overrun"); + + if (!stbi__readval(s, packet->channel, value)) + return 0; + + for (i = 0; i < count; ++i, dest += 4) + stbi__copyval(packet->channel, dest, value); + } + else + { // Raw + ++count; + if (count > left) + return stbi__errpuc("bad file", "scanline overrun"); + + for (i = 0; i < count; ++i, dest += 4) + if (!stbi__readval(s, packet->channel, dest)) + return 0; + } + left -= count; + } + break; + } + } + } + } + + return result; +} + +static void *stbi__pic_load(stbi__context *s, int *px, int *py, int *comp, int req_comp, stbi__result_info *ri) +{ + stbi_uc *result; + int i, x, y, internal_comp; + STBI_NOTUSED(ri); + + if (!comp) + comp = &internal_comp; + + for (i = 0; i < 92; ++i) + stbi__get8(s); + + x = stbi__get16be(s); + y = stbi__get16be(s); + if (stbi__at_eof(s)) + return stbi__errpuc("bad file", "file too short (pic header)"); + if (!stbi__mad3sizes_valid(x, y, 4, 0)) + return stbi__errpuc("too large", "PIC image too large to decode"); + + stbi__get32be(s); // skip `ratio' + stbi__get16be(s); // skip `fields' + stbi__get16be(s); // skip `pad' + + // intermediate buffer is RGBA + result = (stbi_uc *)stbi__malloc_mad3(x, y, 4, 0); + memset(result, 0xff, x * y * 4); + + if (!stbi__pic_load_core(s, x, y, comp, result)) + { + STBI_FREE(result); + result = 0; + } + *px = x; + *py = y; + if (req_comp == 0) + req_comp = *comp; + result = stbi__convert_format(result, 4, req_comp, x, y); + + return result; +} + +static int stbi__pic_test(stbi__context *s) +{ + int r = stbi__pic_test_core(s); + stbi__rewind(s); + return r; +} +#endif + +// ************************************************************************************************* +// GIF loader -- public domain by Jean-Marc Lienher -- simplified/shrunk by stb + +#ifndef STBI_NO_GIF +typedef struct +{ + stbi__int16 prefix; + stbi_uc first; + stbi_uc suffix; +} stbi__gif_lzw; + +typedef struct +{ + int w, h; + stbi_uc *out, *old_out; // output buffer (always 4 components) + int flags, bgindex, ratio, transparent, eflags, delay; + stbi_uc pal[256][4]; + stbi_uc lpal[256][4]; + stbi__gif_lzw codes[4096]; + stbi_uc *color_table; + int parse, step; + int lflags; + int start_x, start_y; + int max_x, max_y; + int cur_x, cur_y; + int line_size; +} stbi__gif; + +static int stbi__gif_test_raw(stbi__context *s) +{ + int sz; + if (stbi__get8(s) != 'G' || stbi__get8(s) != 'I' || stbi__get8(s) != 'F' || stbi__get8(s) != '8') + return 0; + sz = stbi__get8(s); + if (sz != '9' && sz != '7') + return 0; + if (stbi__get8(s) != 'a') + return 0; + return 1; +} + +static int stbi__gif_test(stbi__context *s) +{ + int r = stbi__gif_test_raw(s); + stbi__rewind(s); + return r; +} + +static void stbi__gif_parse_colortable(stbi__context *s, stbi_uc pal[256][4], int num_entries, int transp) +{ + int i; + for (i = 0; i < num_entries; ++i) + { + pal[i][2] = stbi__get8(s); + pal[i][1] = stbi__get8(s); + pal[i][0] = stbi__get8(s); + pal[i][3] = transp == i ? 0 : 255; + } +} + +static int stbi__gif_header(stbi__context *s, stbi__gif *g, int *comp, int is_info) +{ + stbi_uc version; + if (stbi__get8(s) != 'G' || stbi__get8(s) != 'I' || stbi__get8(s) != 'F' || stbi__get8(s) != '8') + return stbi__err("not GIF", "Corrupt GIF"); + + version = stbi__get8(s); + if (version != '7' && version != '9') + return stbi__err("not GIF", "Corrupt GIF"); + if (stbi__get8(s) != 'a') + return stbi__err("not GIF", "Corrupt GIF"); + + stbi__g_failure_reason = ""; + g->w = stbi__get16le(s); + g->h = stbi__get16le(s); + g->flags = stbi__get8(s); + g->bgindex = stbi__get8(s); + g->ratio = stbi__get8(s); + g->transparent = -1; + + if (comp != 0) + *comp = 4; // can't actually tell whether it's 3 or 4 until we parse the comments + + if (is_info) + return 1; + + if (g->flags & 0x80) + stbi__gif_parse_colortable(s, g->pal, 2 << (g->flags & 7), -1); + + return 1; +} + +static int stbi__gif_info_raw(stbi__context *s, int *x, int *y, int *comp) +{ + stbi__gif *g = (stbi__gif *)stbi__malloc(sizeof(stbi__gif)); + if (!stbi__gif_header(s, g, comp, 1)) + { + STBI_FREE(g); + stbi__rewind(s); + return 0; + } + if (x) + *x = g->w; + if (y) + *y = g->h; + STBI_FREE(g); + return 1; +} + +static void stbi__out_gif_code(stbi__gif *g, stbi__uint16 code) +{ + stbi_uc *p, *c; + + // recurse to decode the prefixes, since the linked-list is backwards, + // and working backwards through an interleaved image would be nasty + if (g->codes[code].prefix >= 0) + stbi__out_gif_code(g, g->codes[code].prefix); + + if (g->cur_y >= g->max_y) + return; + + p = &g->out[g->cur_x + g->cur_y]; + c = &g->color_table[g->codes[code].suffix * 4]; + + if (c[3] >= 128) + { + p[0] = c[2]; + p[1] = c[1]; + p[2] = c[0]; + p[3] = c[3]; + } + g->cur_x += 4; + + if (g->cur_x >= g->max_x) + { + g->cur_x = g->start_x; + g->cur_y += g->step; + + while (g->cur_y >= g->max_y && g->parse > 0) + { + g->step = (1 << g->parse) * g->line_size; + g->cur_y = g->start_y + (g->step >> 1); + --g->parse; + } + } +} + +static stbi_uc *stbi__process_gif_raster(stbi__context *s, stbi__gif *g) +{ + stbi_uc lzw_cs; + stbi__int32 len, init_code; + stbi__uint32 first; + stbi__int32 codesize, codemask, avail, oldcode, bits, valid_bits, clear; + stbi__gif_lzw *p; + + lzw_cs = stbi__get8(s); + if (lzw_cs > 12) + return NULL; + clear = 1 << lzw_cs; + first = 1; + codesize = lzw_cs + 1; + codemask = (1 << codesize) - 1; + bits = 0; + valid_bits = 0; + for (init_code = 0; init_code < clear; init_code++) + { + g->codes[init_code].prefix = -1; + g->codes[init_code].first = (stbi_uc)init_code; + g->codes[init_code].suffix = (stbi_uc)init_code; + } + + // support no starting clear code + avail = clear + 2; + oldcode = -1; + + len = 0; + for (;;) + { + if (valid_bits < codesize) + { + if (len == 0) + { + len = stbi__get8(s); // start new block + if (len == 0) + return g->out; + } + --len; + bits |= (stbi__int32)stbi__get8(s) << valid_bits; + valid_bits += 8; + } + else + { + stbi__int32 code = bits & codemask; + bits >>= codesize; + valid_bits -= codesize; + // @OPTIMIZE: is there some way we can accelerate the non-clear path? + if (code == clear) + { // clear code + codesize = lzw_cs + 1; + codemask = (1 << codesize) - 1; + avail = clear + 2; + oldcode = -1; + first = 0; + } + else if (code == clear + 1) + { // end of stream code + stbi__skip(s, len); + while ((len = stbi__get8(s)) > 0) + stbi__skip(s, len); + return g->out; + } + else if (code <= avail) + { + if (first) + return stbi__errpuc("no clear code", "Corrupt GIF"); + + if (oldcode >= 0) + { + p = &g->codes[avail++]; + if (avail > 4096) + return stbi__errpuc("too many codes", "Corrupt GIF"); + p->prefix = (stbi__int16)oldcode; + p->first = g->codes[oldcode].first; + p->suffix = (code == avail) ? p->first : g->codes[code].first; + } + else if (code == avail) + return stbi__errpuc("illegal code in raster", "Corrupt GIF"); + + stbi__out_gif_code(g, (stbi__uint16)code); + + if ((avail & codemask) == 0 && avail <= 0x0FFF) + { + codesize++; + codemask = (1 << codesize) - 1; + } + + oldcode = code; + } + else + { + return stbi__errpuc("illegal code in raster", "Corrupt GIF"); + } + } + } +} + +static void stbi__fill_gif_background(stbi__gif *g, int x0, int y0, int x1, int y1) +{ + int x, y; + stbi_uc *c = g->pal[g->bgindex]; + for (y = y0; y < y1; y += 4 * g->w) + { + for (x = x0; x < x1; x += 4) + { + stbi_uc *p = &g->out[y + x]; + p[0] = c[2]; + p[1] = c[1]; + p[2] = c[0]; + p[3] = 0; + } + } +} + +// this function is designed to support animated gifs, although stb_image doesn't support it +static stbi_uc *stbi__gif_load_next(stbi__context *s, stbi__gif *g, int *comp, int req_comp) +{ + int i; + stbi_uc *prev_out = 0; + + if (g->out == 0 && !stbi__gif_header(s, g, comp, 0)) + return 0; // stbi__g_failure_reason set by stbi__gif_header + + if (!stbi__mad3sizes_valid(g->w, g->h, 4, 0)) + return stbi__errpuc("too large", "GIF too large"); + + prev_out = g->out; + g->out = (stbi_uc *)stbi__malloc_mad3(4, g->w, g->h, 0); + if (g->out == 0) + return stbi__errpuc("outofmem", "Out of memory"); + + switch ((g->eflags & 0x1C) >> 2) + { + case 0: // unspecified (also always used on 1st frame) + stbi__fill_gif_background(g, 0, 0, 4 * g->w, 4 * g->w * g->h); + break; + case 1: // do not dispose + if (prev_out) + memcpy(g->out, prev_out, 4 * g->w * g->h); + g->old_out = prev_out; + break; + case 2: // dispose to background + if (prev_out) + memcpy(g->out, prev_out, 4 * g->w * g->h); + stbi__fill_gif_background(g, g->start_x, g->start_y, g->max_x, g->max_y); + break; + case 3: // dispose to previous + if (g->old_out) + { + for (i = g->start_y; i < g->max_y; i += 4 * g->w) + memcpy(&g->out[i + g->start_x], &g->old_out[i + g->start_x], g->max_x - g->start_x); + } + break; + } + + for (;;) + { + switch (stbi__get8(s)) + { + case 0x2C: /* Image Descriptor */ + { + int prev_trans = -1; + stbi__int32 x, y, w, h; + stbi_uc *o; + + x = stbi__get16le(s); + y = stbi__get16le(s); + w = stbi__get16le(s); + h = stbi__get16le(s); + if (((x + w) > (g->w)) || ((y + h) > (g->h))) + return stbi__errpuc("bad Image Descriptor", "Corrupt GIF"); + + g->line_size = g->w * 4; + g->start_x = x * 4; + g->start_y = y * g->line_size; + g->max_x = g->start_x + w * 4; + g->max_y = g->start_y + h * g->line_size; + g->cur_x = g->start_x; + g->cur_y = g->start_y; + + g->lflags = stbi__get8(s); + + if (g->lflags & 0x40) + { + g->step = 8 * g->line_size; // first interlaced spacing + g->parse = 3; + } + else + { + g->step = g->line_size; + g->parse = 0; + } + + if (g->lflags & 0x80) + { + stbi__gif_parse_colortable(s, g->lpal, 2 << (g->lflags & 7), g->eflags & 0x01 ? g->transparent : -1); + g->color_table = (stbi_uc *)g->lpal; + } + else if (g->flags & 0x80) + { + if (g->transparent >= 0 && (g->eflags & 0x01)) + { + prev_trans = g->pal[g->transparent][3]; + g->pal[g->transparent][3] = 0; + } + g->color_table = (stbi_uc *)g->pal; + } + else + return stbi__errpuc("missing color table", "Corrupt GIF"); + + o = stbi__process_gif_raster(s, g); + if (o == NULL) + return NULL; + + if (prev_trans != -1) + g->pal[g->transparent][3] = (stbi_uc)prev_trans; + + return o; + } + + case 0x21: // Comment Extension. + { + int len; + if (stbi__get8(s) == 0xF9) + { // Graphic Control Extension. + len = stbi__get8(s); + if (len == 4) + { + g->eflags = stbi__get8(s); + g->delay = stbi__get16le(s); + g->transparent = stbi__get8(s); + } + else + { + stbi__skip(s, len); + break; + } + } + while ((len = stbi__get8(s)) != 0) + stbi__skip(s, len); + break; + } + + case 0x3B: // gif stream termination code + return (stbi_uc *)s; // using '1' causes warning on some compilers + + default: + return stbi__errpuc("unknown code", "Corrupt GIF"); + } + } + + STBI_NOTUSED(req_comp); +} + +static void *stbi__gif_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri) +{ + stbi_uc *u = 0; + stbi__gif *g = (stbi__gif *)stbi__malloc(sizeof(stbi__gif)); + memset(g, 0, sizeof(*g)); + STBI_NOTUSED(ri); + + u = stbi__gif_load_next(s, g, comp, req_comp); + if (u == (stbi_uc *)s) + u = 0; // end of animated gif marker + if (u) + { + *x = g->w; + *y = g->h; + if (req_comp && req_comp != 4) + u = stbi__convert_format(u, 4, req_comp, g->w, g->h); + } + else if (g->out) + STBI_FREE(g->out); + STBI_FREE(g); + return u; +} + +static int stbi__gif_info(stbi__context *s, int *x, int *y, int *comp) +{ + return stbi__gif_info_raw(s, x, y, comp); +} +#endif + +// ************************************************************************************************* +// Radiance RGBE HDR loader +// originally by Nicolas Schulz +#ifndef STBI_NO_HDR +static int stbi__hdr_test_core(stbi__context *s, const char *signature) +{ + int i; + for (i = 0; signature[i]; ++i) + if (stbi__get8(s) != signature[i]) + return 0; + stbi__rewind(s); + return 1; +} + +static int stbi__hdr_test(stbi__context *s) +{ + int r = stbi__hdr_test_core(s, "#?RADIANCE\n"); + stbi__rewind(s); + if (!r) + { + r = stbi__hdr_test_core(s, "#?RGBE\n"); + stbi__rewind(s); + } + return r; +} + +#define STBI__HDR_BUFLEN 1024 +static char *stbi__hdr_gettoken(stbi__context *z, char *buffer) +{ + int len = 0; + char c = '\0'; + + c = (char)stbi__get8(z); + + while (!stbi__at_eof(z) && c != '\n') + { + buffer[len++] = c; + if (len == STBI__HDR_BUFLEN - 1) + { + // flush to end of line + while (!stbi__at_eof(z) && stbi__get8(z) != '\n') + ; + break; + } + c = (char)stbi__get8(z); + } + + buffer[len] = 0; + return buffer; +} + +static void stbi__hdr_convert(float *output, stbi_uc *input, int req_comp) +{ + if (input[3] != 0) + { + float f1; + // Exponent + f1 = (float)ldexp(1.0f, input[3] - (int)(128 + 8)); + if (req_comp <= 2) + output[0] = (input[0] + input[1] + input[2]) * f1 / 3; + else + { + output[0] = input[0] * f1; + output[1] = input[1] * f1; + output[2] = input[2] * f1; + } + if (req_comp == 2) + output[1] = 1; + if (req_comp == 4) + output[3] = 1; + } + else + { + switch (req_comp) + { + case 4: + output[3] = 1; /* fallthrough */ + case 3: + output[0] = output[1] = output[2] = 0; + break; + case 2: + output[1] = 1; /* fallthrough */ + case 1: + output[0] = 0; + break; + } + } +} + +static float *stbi__hdr_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri) +{ + char buffer[STBI__HDR_BUFLEN]; + char *token; + int valid = 0; + int width, height; + stbi_uc *scanline; + float *hdr_data; + int len; + unsigned char count, value; + int i, j, k, c1, c2, z; + const char *headerToken; + STBI_NOTUSED(ri); + + // Check identifier + headerToken = stbi__hdr_gettoken(s, buffer); + if (strcmp(headerToken, "#?RADIANCE") != 0 && strcmp(headerToken, "#?RGBE") != 0) + return stbi__errpf("not HDR", "Corrupt HDR image"); + + // Parse header + for (;;) + { + token = stbi__hdr_gettoken(s, buffer); + if (token[0] == 0) + break; + if (strcmp(token, "FORMAT=32-bit_rle_rgbe") == 0) + valid = 1; + } + + if (!valid) + return stbi__errpf("unsupported format", "Unsupported HDR format"); + + // Parse width and height + // can't use sscanf() if we're not using stdio! + token = stbi__hdr_gettoken(s, buffer); + if (strncmp(token, "-Y ", 3)) + return stbi__errpf("unsupported data layout", "Unsupported HDR format"); + token += 3; + height = (int)strtol(token, &token, 10); + while (*token == ' ') + ++token; + if (strncmp(token, "+X ", 3)) + return stbi__errpf("unsupported data layout", "Unsupported HDR format"); + token += 3; + width = (int)strtol(token, NULL, 10); + + *x = width; + *y = height; + + if (comp) + *comp = 3; + if (req_comp == 0) + req_comp = 3; + + if (!stbi__mad4sizes_valid(width, height, req_comp, sizeof(float), 0)) + return stbi__errpf("too large", "HDR image is too large"); + + // Read data + hdr_data = (float *)stbi__malloc_mad4(width, height, req_comp, sizeof(float), 0); + if (!hdr_data) + return stbi__errpf("outofmem", "Out of memory"); + + // Load image data + // image data is stored as some number of sca + if (width < 8 || width >= 32768) + { + // Read flat data + for (j = 0; j < height; ++j) + { + for (i = 0; i < width; ++i) + { + stbi_uc rgbe[4]; + main_decode_loop: + stbi__getn(s, rgbe, 4); + stbi__hdr_convert(hdr_data + j * width * req_comp + i * req_comp, rgbe, req_comp); + } + } + } + else + { + // Read RLE-encoded data + scanline = NULL; + + for (j = 0; j < height; ++j) + { + c1 = stbi__get8(s); + c2 = stbi__get8(s); + len = stbi__get8(s); + if (c1 != 2 || c2 != 2 || (len & 0x80)) + { + // not run-length encoded, so we have to actually use THIS data as a decoded + // pixel (note this can't be a valid pixel--one of RGB must be >= 128) + stbi_uc rgbe[4]; + rgbe[0] = (stbi_uc)c1; + rgbe[1] = (stbi_uc)c2; + rgbe[2] = (stbi_uc)len; + rgbe[3] = (stbi_uc)stbi__get8(s); + stbi__hdr_convert(hdr_data, rgbe, req_comp); + i = 1; + j = 0; + STBI_FREE(scanline); + goto main_decode_loop; // yes, this makes no sense + } + len <<= 8; + len |= stbi__get8(s); + if (len != width) + { + STBI_FREE(hdr_data); + STBI_FREE(scanline); + return stbi__errpf("invalid decoded scanline length", "corrupt HDR"); + } + if (scanline == NULL) + { + scanline = (stbi_uc *)stbi__malloc_mad2(width, 4, 0); + if (!scanline) + { + STBI_FREE(hdr_data); + return stbi__errpf("outofmem", "Out of memory"); + } + } + + for (k = 0; k < 4; ++k) + { + int nleft; + i = 0; + while ((nleft = width - i) > 0) + { + count = stbi__get8(s); + if (count > 128) + { + // Run + value = stbi__get8(s); + count -= 128; + if (count > nleft) + { + STBI_FREE(hdr_data); + STBI_FREE(scanline); + return stbi__errpf("corrupt", "bad RLE data in HDR"); + } + for (z = 0; z < count; ++z) + scanline[i++ * 4 + k] = value; + } + else + { + // Dump + if (count > nleft) + { + STBI_FREE(hdr_data); + STBI_FREE(scanline); + return stbi__errpf("corrupt", "bad RLE data in HDR"); + } + for (z = 0; z < count; ++z) + scanline[i++ * 4 + k] = stbi__get8(s); + } + } + } + for (i = 0; i < width; ++i) + stbi__hdr_convert(hdr_data + (j * width + i) * req_comp, scanline + i * 4, req_comp); + } + if (scanline) + STBI_FREE(scanline); + } + + return hdr_data; +} + +static int stbi__hdr_info(stbi__context *s, int *x, int *y, int *comp) +{ + char buffer[STBI__HDR_BUFLEN]; + char *token; + int valid = 0; + int dummy; + + if (!x) + x = &dummy; + if (!y) + y = &dummy; + if (!comp) + comp = &dummy; + + if (stbi__hdr_test(s) == 0) + { + stbi__rewind(s); + return 0; + } + + for (;;) + { + token = stbi__hdr_gettoken(s, buffer); + if (token[0] == 0) + break; + if (strcmp(token, "FORMAT=32-bit_rle_rgbe") == 0) + valid = 1; + } + + if (!valid) + { + stbi__rewind(s); + return 0; + } + token = stbi__hdr_gettoken(s, buffer); + if (strncmp(token, "-Y ", 3)) + { + stbi__rewind(s); + return 0; + } + token += 3; + *y = (int)strtol(token, &token, 10); + while (*token == ' ') + ++token; + if (strncmp(token, "+X ", 3)) + { + stbi__rewind(s); + return 0; + } + token += 3; + *x = (int)strtol(token, NULL, 10); + *comp = 3; + return 1; +} +#endif // STBI_NO_HDR + +#ifndef STBI_NO_BMP +static int stbi__bmp_info(stbi__context *s, int *x, int *y, int *comp) +{ + void *p; + stbi__bmp_data info; + + info.all_a = 255; + p = stbi__bmp_parse_header(s, &info); + stbi__rewind(s); + if (p == NULL) + return 0; + if (x) + *x = s->img_x; + if (y) + *y = s->img_y; + if (comp) + *comp = info.ma ? 4 : 3; + return 1; +} +#endif + +#ifndef STBI_NO_PSD +static int stbi__psd_info(stbi__context *s, int *x, int *y, int *comp) +{ + int channelCount, dummy; + if (!x) + x = &dummy; + if (!y) + y = &dummy; + if (!comp) + comp = &dummy; + if (stbi__get32be(s) != 0x38425053) + { + stbi__rewind(s); + return 0; + } + if (stbi__get16be(s) != 1) + { + stbi__rewind(s); + return 0; + } + stbi__skip(s, 6); + channelCount = stbi__get16be(s); + if (channelCount < 0 || channelCount > 16) + { + stbi__rewind(s); + return 0; + } + *y = stbi__get32be(s); + *x = stbi__get32be(s); + if (stbi__get16be(s) != 8) + { + stbi__rewind(s); + return 0; + } + if (stbi__get16be(s) != 3) + { + stbi__rewind(s); + return 0; + } + *comp = 4; + return 1; +} +#endif + +#ifndef STBI_NO_PIC +static int stbi__pic_info(stbi__context *s, int *x, int *y, int *comp) +{ + int act_comp = 0, num_packets = 0, chained, dummy; + stbi__pic_packet packets[10]; + + if (!x) + x = &dummy; + if (!y) + y = &dummy; + if (!comp) + comp = &dummy; + + if (!stbi__pic_is4(s, "\x53\x80\xF6\x34")) + { + stbi__rewind(s); + return 0; + } + + stbi__skip(s, 88); + + *x = stbi__get16be(s); + *y = stbi__get16be(s); + if (stbi__at_eof(s)) + { + stbi__rewind(s); + return 0; + } + if ((*x) != 0 && (1 << 28) / (*x) < (*y)) + { + stbi__rewind(s); + return 0; + } + + stbi__skip(s, 8); + + do + { + stbi__pic_packet *packet; + + if (num_packets == sizeof(packets) / sizeof(packets[0])) + return 0; + + packet = &packets[num_packets++]; + chained = stbi__get8(s); + packet->size = stbi__get8(s); + packet->type = stbi__get8(s); + packet->channel = stbi__get8(s); + act_comp |= packet->channel; + + if (stbi__at_eof(s)) + { + stbi__rewind(s); + return 0; + } + if (packet->size != 8) + { + stbi__rewind(s); + return 0; + } + } while (chained); + + *comp = (act_comp & 0x10 ? 4 : 3); + + return 1; +} +#endif + +// ************************************************************************************************* +// Portable Gray Map and Portable Pixel Map loader +// by Ken Miller +// +// PGM: http://netpbm.sourceforge.net/doc/pgm.html +// PPM: http://netpbm.sourceforge.net/doc/ppm.html +// +// Known limitations: +// Does not support comments in the header section +// Does not support ASCII image data (formats P2 and P3) +// Does not support 16-bit-per-channel + +#ifndef STBI_NO_PNM + +static int stbi__pnm_test(stbi__context *s) +{ + char p, t; + p = (char)stbi__get8(s); + t = (char)stbi__get8(s); + if (p != 'P' || (t != '5' && t != '6')) + { + stbi__rewind(s); + return 0; + } + return 1; +} + +static void *stbi__pnm_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri) +{ + stbi_uc *out; + STBI_NOTUSED(ri); + + if (!stbi__pnm_info(s, (int *)&s->img_x, (int *)&s->img_y, (int *)&s->img_n)) + return 0; + + *x = s->img_x; + *y = s->img_y; + if (comp) + *comp = s->img_n; + + if (!stbi__mad3sizes_valid(s->img_n, s->img_x, s->img_y, 0)) + return stbi__errpuc("too large", "PNM too large"); + + out = (stbi_uc *)stbi__malloc_mad3(s->img_n, s->img_x, s->img_y, 0); + if (!out) + return stbi__errpuc("outofmem", "Out of memory"); + stbi__getn(s, out, s->img_n * s->img_x * s->img_y); + + if (req_comp && req_comp != s->img_n) + { + out = stbi__convert_format(out, s->img_n, req_comp, s->img_x, s->img_y); + if (out == NULL) + return out; // stbi__convert_format frees input on failure + } + return out; +} + +static int stbi__pnm_isspace(char c) +{ + return c == ' ' || c == '\t' || c == '\n' || c == '\v' || c == '\f' || c == '\r'; +} + +static void stbi__pnm_skip_whitespace(stbi__context *s, char *c) +{ + for (;;) + { + while (!stbi__at_eof(s) && stbi__pnm_isspace(*c)) + *c = (char)stbi__get8(s); + + if (stbi__at_eof(s) || *c != '#') + break; + + while (!stbi__at_eof(s) && *c != '\n' && *c != '\r') + *c = (char)stbi__get8(s); + } +} + +static int stbi__pnm_isdigit(char c) +{ + return c >= '0' && c <= '9'; +} + +static int stbi__pnm_getinteger(stbi__context *s, char *c) +{ + int value = 0; + + while (!stbi__at_eof(s) && stbi__pnm_isdigit(*c)) + { + value = value * 10 + (*c - '0'); + *c = (char)stbi__get8(s); + } + + return value; +} + +static int stbi__pnm_info(stbi__context *s, int *x, int *y, int *comp) +{ + int maxv, dummy; + char c, p, t; + + if (!x) + x = &dummy; + if (!y) + y = &dummy; + if (!comp) + comp = &dummy; + + stbi__rewind(s); + + // Get identifier + p = (char)stbi__get8(s); + t = (char)stbi__get8(s); + if (p != 'P' || (t != '5' && t != '6')) + { + stbi__rewind(s); + return 0; + } + + *comp = (t == '6') ? 3 : 1; // '5' is 1-component .pgm; '6' is 3-component .ppm + + c = (char)stbi__get8(s); + stbi__pnm_skip_whitespace(s, &c); + + *x = stbi__pnm_getinteger(s, &c); // read width + stbi__pnm_skip_whitespace(s, &c); + + *y = stbi__pnm_getinteger(s, &c); // read height + stbi__pnm_skip_whitespace(s, &c); + + maxv = stbi__pnm_getinteger(s, &c); // read max value + + if (maxv > 255) + return stbi__err("max value > 255", "PPM image not 8-bit"); + else + return 1; +} +#endif + +static int stbi__info_main(stbi__context *s, int *x, int *y, int *comp) +{ +#ifndef STBI_NO_JPEG + if (stbi__jpeg_info(s, x, y, comp)) + return 1; +#endif + +#ifndef STBI_NO_PNG + if (stbi__png_info(s, x, y, comp)) + return 1; +#endif + +#ifndef STBI_NO_GIF + if (stbi__gif_info(s, x, y, comp)) + return 1; +#endif + +#ifndef STBI_NO_BMP + if (stbi__bmp_info(s, x, y, comp)) + return 1; +#endif + +#ifndef STBI_NO_PSD + if (stbi__psd_info(s, x, y, comp)) + return 1; +#endif + +#ifndef STBI_NO_PIC + if (stbi__pic_info(s, x, y, comp)) + return 1; +#endif + +#ifndef STBI_NO_PNM + if (stbi__pnm_info(s, x, y, comp)) + return 1; +#endif + +#ifndef STBI_NO_HDR + if (stbi__hdr_info(s, x, y, comp)) + return 1; +#endif + +// test tga last because it's a crappy test! +#ifndef STBI_NO_TGA + if (stbi__tga_info(s, x, y, comp)) + return 1; +#endif + return stbi__err("unknown image type", "Image not of any known type, or corrupt"); +} + +#ifndef STBI_NO_STDIO +STBIDEF int stbi_info(char const *filename, int *x, int *y, int *comp) +{ + FILE *f = stbi__fopen(filename, "rb"); + int result; + if (!f) + return stbi__err("can't fopen", "Unable to open file"); + result = stbi_info_from_file(f, x, y, comp); + fclose(f); + return result; +} + +STBIDEF int stbi_info_from_file(FILE *f, int *x, int *y, int *comp) +{ + int r; + stbi__context s; + long pos = ftell(f); + stbi__start_file(&s, f); + r = stbi__info_main(&s, x, y, comp); + fseek(f, pos, SEEK_SET); + return r; +} +#endif // !STBI_NO_STDIO + +STBIDEF int stbi_info_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp) +{ + stbi__context s; + stbi__start_mem(&s, buffer, len); + return stbi__info_main(&s, x, y, comp); +} + +STBIDEF int stbi_info_from_callbacks(stbi_io_callbacks const *c, void *user, int *x, int *y, int *comp) +{ + stbi__context s; + stbi__start_callbacks(&s, (stbi_io_callbacks *)c, user); + return stbi__info_main(&s, x, y, comp); +} + +#endif // STB_IMAGE_IMPLEMENTATION + +/* + revision history: + 2.15 (2017-03-18) fix png-1,2,4 bug; now all Imagenet JPGs decode; + warning fixes; disable run-time SSE detection on gcc; + uniform handling of optional "return" values; + thread-safe initialization of zlib tables + 2.14 (2017-03-03) remove deprecated STBI_JPEG_OLD; fixes for Imagenet JPGs + 2.13 (2016-11-29) add 16-bit API, only supported for PNG right now + 2.12 (2016-04-02) fix typo in 2.11 PSD fix that caused crashes + 2.11 (2016-04-02) allocate large structures on the stack + remove white matting for transparent PSD + fix reported channel count for PNG & BMP + re-enable SSE2 in non-gcc 64-bit + support RGB-formatted JPEG + read 16-bit PNGs (only as 8-bit) + 2.10 (2016-01-22) avoid warning introduced in 2.09 by STBI_REALLOC_SIZED + 2.09 (2016-01-16) allow comments in PNM files + 16-bit-per-pixel TGA (not bit-per-component) + info() for TGA could break due to .hdr handling + info() for BMP to shares code instead of sloppy parse + can use STBI_REALLOC_SIZED if allocator doesn't support realloc + code cleanup + 2.08 (2015-09-13) fix to 2.07 cleanup, reading RGB PSD as RGBA + 2.07 (2015-09-13) fix compiler warnings + partial animated GIF support + limited 16-bpc PSD support + #ifdef unused functions + bug with < 92 byte PIC,PNM,HDR,TGA + 2.06 (2015-04-19) fix bug where PSD returns wrong '*comp' value + 2.05 (2015-04-19) fix bug in progressive JPEG handling, fix warning + 2.04 (2015-04-15) try to re-enable SIMD on MinGW 64-bit + 2.03 (2015-04-12) extra corruption checking (mmozeiko) + stbi_set_flip_vertically_on_load (nguillemot) + fix NEON support; fix mingw support + 2.02 (2015-01-19) fix incorrect assert, fix warning + 2.01 (2015-01-17) fix various warnings; suppress SIMD on gcc 32-bit without -msse2 + 2.00b (2014-12-25) fix STBI_MALLOC in progressive JPEG + 2.00 (2014-12-25) optimize JPG, including x86 SSE2 & NEON SIMD (ryg) + progressive JPEG (stb) + PGM/PPM support (Ken Miller) + STBI_MALLOC,STBI_REALLOC,STBI_FREE + GIF bugfix -- seemingly never worked + STBI_NO_*, STBI_ONLY_* + 1.48 (2014-12-14) fix incorrectly-named assert() + 1.47 (2014-12-14) 1/2/4-bit PNG support, both direct and paletted (Omar Cornut & stb) + optimize PNG (ryg) + fix bug in interlaced PNG with user-specified channel count (stb) + 1.46 (2014-08-26) + fix broken tRNS chunk (colorkey-style transparency) in non-paletted PNG + 1.45 (2014-08-16) + fix MSVC-ARM internal compiler error by wrapping malloc + 1.44 (2014-08-07) + various warning fixes from Ronny Chevalier + 1.43 (2014-07-15) + fix MSVC-only compiler problem in code changed in 1.42 + 1.42 (2014-07-09) + don't define _CRT_SECURE_NO_WARNINGS (affects user code) + fixes to stbi__cleanup_jpeg path + added STBI_ASSERT to avoid requiring assert.h + 1.41 (2014-06-25) + fix search&replace from 1.36 that messed up comments/error messages + 1.40 (2014-06-22) + fix gcc struct-initialization warning + 1.39 (2014-06-15) + fix to TGA optimization when req_comp != number of components in TGA; + fix to GIF loading because BMP wasn't rewinding (whoops, no GIFs in my test suite) + add support for BMP version 5 (more ignored fields) + 1.38 (2014-06-06) + suppress MSVC warnings on integer casts truncating values + fix accidental rename of 'skip' field of I/O + 1.37 (2014-06-04) + remove duplicate typedef + 1.36 (2014-06-03) + convert to header file single-file library + if de-iphone isn't set, load iphone images color-swapped instead of returning NULL + 1.35 (2014-05-27) + various warnings + fix broken STBI_SIMD path + fix bug where stbi_load_from_file no longer left file pointer in correct place + fix broken non-easy path for 32-bit BMP (possibly never used) + TGA optimization by Arseny Kapoulkine + 1.34 (unknown) + use STBI_NOTUSED in stbi__resample_row_generic(), fix one more leak in tga failure case + 1.33 (2011-07-14) + make stbi_is_hdr work in STBI_NO_HDR (as specified), minor compiler-friendly improvements + 1.32 (2011-07-13) + support for "info" function for all supported filetypes (SpartanJ) + 1.31 (2011-06-20) + a few more leak fixes, bug in PNG handling (SpartanJ) + 1.30 (2011-06-11) + added ability to load files via callbacks to accomidate custom input streams (Ben Wenger) + removed deprecated format-specific test/load functions + removed support for installable file formats (stbi_loader) -- would have been broken for IO callbacks anyway + error cases in bmp and tga give messages and don't leak (Raymond Barbiero, grisha) + fix inefficiency in decoding 32-bit BMP (David Woo) + 1.29 (2010-08-16) + various warning fixes from Aurelien Pocheville + 1.28 (2010-08-01) + fix bug in GIF palette transparency (SpartanJ) + 1.27 (2010-08-01) + cast-to-stbi_uc to fix warnings + 1.26 (2010-07-24) + fix bug in file buffering for PNG reported by SpartanJ + 1.25 (2010-07-17) + refix trans_data warning (Won Chun) + 1.24 (2010-07-12) + perf improvements reading from files on platforms with lock-heavy fgetc() + minor perf improvements for jpeg + deprecated type-specific functions so we'll get feedback if they're needed + attempt to fix trans_data warning (Won Chun) + 1.23 fixed bug in iPhone support + 1.22 (2010-07-10) + removed image *writing* support + stbi_info support from Jetro Lauha + GIF support from Jean-Marc Lienher + iPhone PNG-extensions from James Brown + warning-fixes from Nicolas Schulz and Janez Zemva (i.stbi__err. Janez (U+017D)emva) + 1.21 fix use of 'stbi_uc' in header (reported by jon blow) + 1.20 added support for Softimage PIC, by Tom Seddon + 1.19 bug in interlaced PNG corruption check (found by ryg) + 1.18 (2008-08-02) + fix a threading bug (local mutable static) + 1.17 support interlaced PNG + 1.16 major bugfix - stbi__convert_format converted one too many pixels + 1.15 initialize some fields for thread safety + 1.14 fix threadsafe conversion bug + header-file-only version (#define STBI_HEADER_FILE_ONLY before including) + 1.13 threadsafe + 1.12 const qualifiers in the API + 1.11 Support installable IDCT, colorspace conversion routines + 1.10 Fixes for 64-bit (don't use "unsigned long") + optimized upsampling by Fabian "ryg" Giesen + 1.09 Fix format-conversion for PSD code (bad global variables!) + 1.08 Thatcher Ulrich's PSD code integrated by Nicolas Schulz + 1.07 attempt to fix C++ warning/errors again + 1.06 attempt to fix C++ warning/errors again + 1.05 fix TGA loading to return correct *comp and use good luminance calc + 1.04 default float alpha is 1, not 255; use 'void *' for stbi_image_free + 1.03 bugfixes to STBI_NO_STDIO, STBI_NO_HDR + 1.02 support for (subset of) HDR files, float interface for preferred access to them + 1.01 fix bug: possible bug in handling right-side up bmps... not sure + fix bug: the stbi__bmp_load() and stbi__tga_load() functions didn't work at all + 1.00 interface to zlib that skips zlib header + 0.99 correct handling of alpha in palette + 0.98 TGA loader by lonesock; dynamically add loaders (untested) + 0.97 jpeg errors on too large a file; also catch another malloc failure + 0.96 fix detection of invalid v value - particleman@mollyrocket forum + 0.95 during header scan, seek to markers in case of padding + 0.94 STBI_NO_STDIO to disable stdio usage; rename all #defines the same + 0.93 handle jpegtran output; verbose errors + 0.92 read 4,8,16,24,32-bit BMP files of several formats + 0.91 output 24-bit Windows 3.0 BMP files + 0.90 fix a few more warnings; bump version number to approach 1.0 + 0.61 bugfixes due to Marc LeBlanc, Christopher Lloyd + 0.60 fix compiling as c++ + 0.59 fix warnings: merge Dave Moore's -Wall fixes + 0.58 fix bug: zlib uncompressed mode len/nlen was wrong endian + 0.57 fix bug: jpg last huffman symbol before marker was >9 bits but less than 16 available + 0.56 fix bug: zlib uncompressed mode len vs. nlen + 0.55 fix bug: restart_interval not initialized to 0 + 0.54 allow NULL for 'int *comp' + 0.53 fix bug in png 3->4; speedup png decoding + 0.52 png handles req_comp=3,4 directly; minor cleanup; jpeg comments + 0.51 obey req_comp requests, 1-component jpegs return as 1-component, + on 'test' only check type, not whether we support this variant + 0.50 (2006-11-19) + first released version +*/ + +/* +------------------------------------------------------------------------------ +This software is available under 2 licenses -- choose whichever you prefer. +------------------------------------------------------------------------------ +ALTERNATIVE A - MIT License +Copyright (c) 2017 Sean Barrett +Permission is hereby granted, free of charge, to any person obtaining a copy of +this software and associated documentation files (the "Software"), to deal in +the Software without restriction, including without limitation the rights to +use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies +of the Software, and to permit persons to whom the Software is furnished to do +so, subject to the following conditions: +The above copyright notice and this permission notice shall be included in all +copies or substantial portions of the Software. +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +SOFTWARE. +------------------------------------------------------------------------------ +ALTERNATIVE B - Public Domain (www.unlicense.org) +This is free and unencumbered software released into the public domain. +Anyone is free to copy, modify, publish, use, compile, sell, or distribute this +software, either in source code form or as a compiled binary, for any purpose, +commercial or non-commercial, and by any means. +In jurisdictions that recognize copyright laws, the author or authors of this +software dedicate any and all copyright interest in the software to the public +domain. We make this dedication for the benefit of the public at large and to +the detriment of our heirs and successors. We intend this dedication to be an +overt act of relinquishment in perpetuity of all present and future rights to +this software under copyright law. +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN +ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION +WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. +------------------------------------------------------------------------------ +*/ diff --git a/A4/TP_A4/TP_OpenMP_2023.pdf b/A4/TP_A4/TP_OpenMP_2023.pdf new file mode 100644 index 0000000..55d7035 Binary files /dev/null and b/A4/TP_A4/TP_OpenMP_2023.pdf differ diff --git a/IR/Cours.md b/IR/Cours.md new file mode 100644 index 0000000..9cd484c --- /dev/null +++ b/IR/Cours.md @@ -0,0 +1,8 @@ +# Ethique de la recherche en robotique +Décès par mauvaise utilisation du GPS +Mauvaise utilisation de la technologie, l'utilisateur est entièrement responsable. + +## Voiture autonomes + +Responsabilité du choix : On choisit une voiture qui va devier, qui va sacrifier le conducteur, c'est sa propre responsabilité +Cas du choix aléatoire : Constructeur ou conducteur ? \ No newline at end of file