2022-12-29 17:27:20 +01:00
|
|
|
{
|
|
|
|
"cells": [
|
|
|
|
{
|
|
|
|
"attachments": {},
|
|
|
|
"cell_type": "markdown",
|
|
|
|
"metadata": {},
|
|
|
|
"source": [
|
|
|
|
"# TP 3 SVM\n",
|
|
|
|
"On se propose de faire de la modélisation par SVM sur des problématiques de discrimination, en utilisant la bibliothèque scikit-learn.\n",
|
|
|
|
"\n",
|
|
|
|
"On veut : \n",
|
|
|
|
"- Traiter un problème de discrimination linéairement séparable\n",
|
|
|
|
"- Traiter un problème non linéairement séparable (SVM à noyaux)\n",
|
|
|
|
"- Traiter le problème de la discrimination de chiffres manuscrits"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"attachments": {},
|
|
|
|
"cell_type": "markdown",
|
|
|
|
"metadata": {},
|
|
|
|
"source": [
|
|
|
|
"## Problème linéairement séparable"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
2023-01-12 16:00:39 +01:00
|
|
|
"execution_count": 120,
|
2022-12-29 17:27:20 +01:00
|
|
|
"metadata": {},
|
|
|
|
"outputs": [],
|
|
|
|
"source": [
|
|
|
|
"import matplotlib.pyplot as plt\n",
|
|
|
|
"import numpy as np\n",
|
|
|
|
"from sklearn.svm import SVC"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
2023-01-12 16:00:39 +01:00
|
|
|
"execution_count": 121,
|
2022-12-29 17:27:20 +01:00
|
|
|
"metadata": {},
|
|
|
|
"outputs": [],
|
|
|
|
"source": [
|
|
|
|
"def genere_ex_1(n1=100, n2=50, mu1=[0,3], mu2=[3,0], sd1=0.15, sd2=0.2):\n",
|
2023-01-12 16:00:39 +01:00
|
|
|
" \"\"\" Génération de point\n",
|
|
|
|
" \"\"\"\n",
|
2022-12-29 17:27:20 +01:00
|
|
|
" X = np.concatenate((np.random.multivariate_normal(mu1, np.diagflat(sd1*np.ones(2)), n1),\n",
|
|
|
|
" np.random.multivariate_normal(mu2, np.diagflat(sd2*np.ones(2)),n2)))\n",
|
|
|
|
"\n",
|
|
|
|
" Y = np.concatenate((np.ones((n1,1)), -1*np.ones((n2,1))))[:,0]\n",
|
|
|
|
" return X,Y"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
2023-01-12 16:00:39 +01:00
|
|
|
"execution_count": 122,
|
2022-12-29 17:27:20 +01:00
|
|
|
"metadata": {},
|
|
|
|
"outputs": [],
|
|
|
|
"source": [
|
|
|
|
"def plot_data_hyperplan(X, Y, classifier, name):\n",
|
2023-01-12 16:00:39 +01:00
|
|
|
" \"\"\" Affichage du classifieur \n",
|
|
|
|
" \"\"\"\n",
|
2022-12-29 17:27:20 +01:00
|
|
|
" w = classifier.coef_[0]\n",
|
|
|
|
" b = classifier.intercept_[0]\n",
|
|
|
|
" a = -w[0] / w[1]\n",
|
|
|
|
" xx = np.linspace(min(X[:,0]), max(X[:,0]))\n",
|
|
|
|
" yy = a * xx - b/w[1]\n",
|
|
|
|
"\n",
|
|
|
|
" color = ['red' if c >= 0 else 'blue' for c in Y]\n",
|
|
|
|
" plt.scatter(X[:,0], X[:,1], color=color)\n",
|
|
|
|
"\n",
|
|
|
|
" plt.plot(xx,yy, color='black')\n",
|
2023-01-12 16:00:39 +01:00
|
|
|
" plt.plot(xx, yy+1/w[1], color='green')\n",
|
|
|
|
" plt.plot(xx, yy-1/w[1], color='green')\n",
|
2022-12-29 17:27:20 +01:00
|
|
|
" plt.xlabel(\"x1\")\n",
|
|
|
|
" plt.ylabel(\"x2\")\n",
|
|
|
|
" plt.title(\"Classe 1 (red), Classe -1 (blue)\")\n",
|
|
|
|
" plt.show()"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
2023-01-12 16:00:39 +01:00
|
|
|
"execution_count": 123,
|
2022-12-29 17:27:20 +01:00
|
|
|
"metadata": {},
|
|
|
|
"outputs": [],
|
|
|
|
"source": [
|
|
|
|
"def main(X,Y):\n",
|
|
|
|
" classifier = SVC(kernel='linear', probability=True)\n",
|
|
|
|
" classifier = classifier.fit(X, Y)\n",
|
|
|
|
"\n",
|
|
|
|
" plot_data_hyperplan(X, Y, classifier, 'Graph_SVM_linear')"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
2023-01-12 16:00:39 +01:00
|
|
|
"execution_count": 135,
|
2022-12-29 17:27:20 +01:00
|
|
|
"metadata": {},
|
|
|
|
"outputs": [
|
|
|
|
{
|
|
|
|
"data": {
|
2023-01-12 16:00:39 +01:00
|
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEWCAYAAABv+EDhAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAABdtElEQVR4nO2dd3iURdfG70nvhN6L9N4SEBQFQemC0pUOQjbWV31fu58REUERFcXdBEJHpKMogiBNRMqG3nvvgYQQUnfv749JIGU32YRNnmR3ftf1XMk+ZeY8s8mcmTNnzhEkoVAoFArnw0VrARQKhUKhDUoBKBQKhZOiFIBCoVA4KUoBKBQKhZOiFIBCoVA4KUoBKBQKhZOiFICTIoQIE0LM11qO/CKE+EcI0cJOZdUQQlAI4Zb2eZkQops9yrZUfnFHCFFWCHFUCOGd9nmTEOIlK/fa7d3t/b0olAJwaIQQLwohjEKIu0KIK0KIP4QQ7bSWKytCiKeEEBuFELFCiLM23P8sgDiSewpIpEkAxuflASFEXSHEEiHEzbT32C+EeEsI4VpAMtoNIcSraX8nSUKI2TY88h6A2SQTCli0rOT5e1HkjFIADooQ4i0A3wKYAKA8gGoAfgTQW0OxrBEPYCaA/9l4vw7APGsXH3a0SXIngAAhRLAt9wshagHYAeACgCYkSwDoDyAYgP/DyFJIXIbsWGfmdqMQwhPAcACFPnvM6/eiyB2lABwQIUQJAOMAvEJyOcl4kikkV5G02MmmjV6vpo1etwghGmW41l0IcVgIESeEuCSE+G/a+TJCiN+EEDFCiFtCiL+FEC5p1yqlTdlvCCHOCCFetyYvyZ0k5wE4bcO7eQDoCGBzhnNhQoilQoj5Qog7AEYIIUoIISLTZj6XhBDj00fjQghXIcTktNH6aQA9LFS1ycp5S3wKYBvJt0heSXunYyRfJBlj4R1GCiGOpLXnaSFESIZrObXpu2nvEieEOCaE6JR23kUI8Z4Q4pQQIloIsVgIUcpG2ZH2N7ISQLQNtz8KIIbkxSznawkhdgoh7gghfrFWvxDirBDi6QyfM5kihRBthBDb0t5/nxCiQ5YiNsH270WRC0oBOCZtAXgBWJGHZ/4AUAdAOQC7ASzIcC0SQAhJfwCNAWxIO/82gIsAykLOMj4AwLQOaxWAfQAqA+gE4D9CiC75faEM1AFgttAB9QawFEBgmuyzAaQCqA2gBYDOANLt1GMA9Ew7Hwygn4V6jgBoZqNMT6fVbSvX0+oPADASwDdCiJZp16y1aT0ArwJolfY9dAFwNu2Z1wA8B6A9gEoAbgOYlgd58kITAMcsnB8GYBSAipDtPjWvBQshKgP4HXI2UgrAfwEsE0KUzXBbXr4XRS4oBeCYlAZwk2SqrQ+QnEkyjmQSgDAAzdJmEgCQAqChECKA5G2SuzOcrwigetoM42/K4FKtAJQlOY5kMsnTAKYDGGSHdwsEEGfh/L8kV5I0Q3as3QH8J232cx3ANxnqHwDgW5IXSN4C8IWF8uLS6rKF0gCu2PoCJH8neYqSzQD+BPBE2mVrbWoC4An5PbiTPEvyVNozOgAfkryY4fvrV0CLzoGw3P7zSB4kGQ/gYwAD8rH+MQTAapKrSZpJrgNghPwu08nL96LIBaUAHJNoAGVs7QDSTCIT00wId/BgZFkm7WdfyH/Cc0KIzUKItmnnvwJwEsCfaaaM99LOVwdQKW0aHyOEiIEcyZZ/6DeTo1tLdvULGX6vDsAdwJUM9YdDzm4AOUrOeP85C+X5A4ixUaZoyE7bJoQQ3YQQ29NMPDGQbZve1hbblORJAP+B7NyvCyF+FkJUSnumOoAVGd71CKTCyNbeQjoC3E07BtsqcwZsaf9zkO1fxsJ9OVEdQP8sfzftkLlt8/K9KHJBKQDH5F8ASZBmAVt4EdKE8jSAEgBqpJ0XAEByF8nekB3oSgCL087HkXybZE0AvQC8lWaXvgDgDMnADIc/yYwjufxyEoBIMxdkJGNY2wuQ718mQ/0BJNPXNa4AqJrh/moW6mkAacKyhfWQSjJX0hZRlwGYDKA8yUAAq/Ggra21KUj+RLIdZEdJSK+Y9PftlqW9vUheylo/yW4k/dKOBVmv28B+AHUtnM/anikAblq4Lx6AT4bPFTL8fgFyJpHxPXxJTsxwT16+F0UuKAXggJCMBfB/AKYJIZ4TQvgIIdzTRp5fWnjEH7LDjIb855yQfkEI4SGEGCyEKEEyBcAdAOa0az2FELWFEAJALOSo0wxgJ4C4tEVL77QZRmMhRCtL8qYtYnpBjhqFEMIrbbHX0rslQ3a47XN4/yuQZpWvhRABaeXXEkKkP7MYwOtCiCpCiJKQbo1ZaQ+5LpIu41khxAgrVX4C4DEhxFdCiApp99cWclE6MMu9HpCmnBsAUoX0a++coR6LbSqEqCeE6JimQBIBJCDtewBgAPC5EKJ6WhllhRA2e3sJIdzS2t8VgGta+1ubPe4EEGhBAQ8RQjQUQvhAOiAsJWmy8PxeAIPS/h6zrr/MB/CsEKJL2t+MlxCigxCiSoZ7Mn0viodDKQAHheTXAN4C8BFkZ3MBchFxpYXb50JO2y8BOAxge5brQwGcTTMP6QCkmw7qQHbGdyFnHT+S3Jj2j98TQHMAZyBHgjMgZxeWeBKyQ1sNOXpMgOzArRGeJlNODIPsbA9Dmi2W4oEpYTqAtZAjyd0Almd8ME1R3U1zO0z3PCqN7O0CAEizxbeFnDkdEkLEQo7yjchiLycZB+B1SCV0G3L29WuGWyy2KaTSmAjZllchZ2Pvpz3zXVoZfwoh4tLkfDSX9snIR5Bt/h6kHT4h7Zyld02GXGAfkuXSvLTzVyEdEKx5fX0MoBbku38K4KcMZV+AnIl+gAd/s/9DWj+V9XtRPDxCJYRRFEeEEP8AeLUgNoMJIZYBiCS5Ou1zO0iX2hfsXVdxJM0r528ALQpzM1jW70Xx8CgFoFAoFE6KMgEpFAqFk6IUgEKhUDgpSgEoFAqFk1KswtOWKVOGNWrU0FoMhUKhKFZERUXdJFk26/lipQBq1KgBo9GotRgKhUJRrBBCWNrtrkxACoVC4axoqgCEEIFChvE9KmR43La5P6VQKBQKe6C1Ceg7AGtI9kvbbemT2wMKhUKhsA+aKYC0UMNPAhgB3N9inqyVPAqFQuFsaGkCegQy3scsIcQeIcQMIYSvhvIoFAqFU6GlAnAD0BKAnmQLyDCx2aIyCiHGCpmw2njjxo3CllGhUCgcFi0VwEUAF0nuSPu8FFIhZIJkBMlgksFly2ZzY1UoFApFPtFMAZC8CuCCkLlOAZk39rBW8igUCkVR5NjNY3h77du4lXDL7mVr7QX0GoAFaR5ApyETZCsUCoVTk2xKxi9Hf4HeqMfGsxvh7uKOpx55Cj3r9rRrPZoqAJJ7AQRrKYNCoVAUFc7FnMP03dMxY/cMXIu/huolqmNCxwkY1WIUyvvZI6V2ZrSeASgUCoVTYzKbsObkGuiNeqw+IXPd9KjbA6HBoehSqwtcXVwLrG6lABQKhUIDrt69ipl7ZiIiKgLnYs+hvG95fPDEBxjTcgyqB1YvFBmUAlAoFIpCgiQ2nd0EQ5QBy48sR6o5FR0f6YjJnSejV71e8HD1KFR5lAJQKBSKAuZ2wm3M2TcHBqMBx6KPoaRXSbzW+jWEBIWgXpl6uRdQQCgFoFAoFAUASey6vAt6ox4/H/wZiamJaFOlDWb1noWBjQbC291baxGVAlAoFAp7cjf5LhYeWAi9UY89V/fA190Xw5sNR0hQCFpUbKG1eJlQCkChUCjswIFrB2AwGjBv/zzEJcehSbkmmNZ9GoY0HYIAzwCtxbOIUgAKhUKRTxJTE7Hs8DLojXr8c+EfeLp6YkCjAdAF69C2SlsIIbQWMUeUAlAoFIo8cvLWSYQbwzFr7yxEJ0SjdqnamPzMZAxvPhxlfMpoLZ7NKAWgUCgUNpBqTsWqY6ugN+qx7vQ6uApX9K7fG6HBoej4SEe4iOKXYVcpAIVCociBi3cuYsbuGZi+ezoux11GlYAqGNdhHEa3HI1K/pW0Fu+hUApAoVAosmCmGet
|
2022-12-29 17:27:20 +01:00
|
|
|
"text/plain": [
|
2023-01-12 16:00:39 +01:00
|
|
|
"<Figure size 432x288 with 1 Axes>"
|
2022-12-29 17:27:20 +01:00
|
|
|
]
|
|
|
|
},
|
2023-01-12 16:00:39 +01:00
|
|
|
"metadata": {
|
|
|
|
"needs_background": "light"
|
|
|
|
},
|
2022-12-29 17:27:20 +01:00
|
|
|
"output_type": "display_data"
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"source": [
|
|
|
|
"X, Y = genere_ex_1() \n",
|
|
|
|
"main(X, Y)\n"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"attachments": {},
|
|
|
|
"cell_type": "markdown",
|
|
|
|
"metadata": {},
|
|
|
|
"source": [
|
|
|
|
"## Problème non linéairement séparable\n"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
2023-01-12 16:00:39 +01:00
|
|
|
"execution_count": 136,
|
2022-12-29 17:27:20 +01:00
|
|
|
"metadata": {},
|
|
|
|
"outputs": [],
|
|
|
|
"source": [
|
|
|
|
"from sklearn.model_selection import GridSearchCV"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
2023-01-12 16:00:39 +01:00
|
|
|
"execution_count": 137,
|
2022-12-29 17:27:20 +01:00
|
|
|
"metadata": {},
|
|
|
|
"outputs": [],
|
|
|
|
"source": [
|
|
|
|
"def genere_ex_2(n=300, mu=[0,0], std=0.25, delta=0.2):\n",
|
2023-01-12 16:00:39 +01:00
|
|
|
" \"\"\" Génération de données de nuage gaussien centré en 0 et traversé par une fonction polynomiale de degré 3\n",
|
|
|
|
" \"\"\"\n",
|
2022-12-29 17:27:20 +01:00
|
|
|
" X = np.random.multivariate_normal(mu, np.diagflat(std*np.ones(2)), n)\n",
|
|
|
|
" Y = np.zeros((X.shape[0]))\n",
|
|
|
|
"\n",
|
|
|
|
" for i in range(X.shape[0]):\n",
|
|
|
|
" x = X[i,0]\n",
|
|
|
|
" y = X[i,1]\n",
|
|
|
|
" if y < x*(x-1)*(x+1):\n",
|
|
|
|
" Y[i] = -1\n",
|
|
|
|
" X[i,1] = X[i,1] - delta\n",
|
|
|
|
" else:\n",
|
|
|
|
" Y[i] = 1\n",
|
|
|
|
" X[i,1] = X[i,1] + delta\n",
|
|
|
|
" return X,Y"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
2023-01-12 16:00:39 +01:00
|
|
|
"execution_count": 138,
|
2022-12-29 17:27:20 +01:00
|
|
|
"metadata": {},
|
|
|
|
"outputs": [],
|
|
|
|
"source": [
|
|
|
|
"def plot(X,Y,classifier, nameFig):\n",
|
2023-01-12 16:00:39 +01:00
|
|
|
" \"\"\" Visualisation\n",
|
|
|
|
" \"\"\"\n",
|
2022-12-29 17:27:20 +01:00
|
|
|
" minx1 = min(X[:,0])\n",
|
|
|
|
" maxx1 = max(X[:,0])\n",
|
|
|
|
" minx2 = min(X[:,1])\n",
|
|
|
|
" maxx2 = max(X[:,1])\n",
|
|
|
|
"\n",
|
|
|
|
" xx = np.linspace(minx1, maxx1, 100)\n",
|
|
|
|
" yy = np.linspace(minx2, maxx2, 100).T\n",
|
|
|
|
" xx, yy = np.meshgrid(xx,yy)\n",
|
|
|
|
" Xfull = np.c_[xx.ravel(), yy.ravel()]\n",
|
|
|
|
"\n",
|
|
|
|
" probas = classifier.predict_proba(Xfull)\n",
|
|
|
|
" Z = classifier.decision_function(Xfull)\n",
|
|
|
|
"\n",
|
|
|
|
" k = 1\n",
|
|
|
|
" plt.title(\"Class %d\" %k)\n",
|
|
|
|
" imshow_handle = plt.imshow(probas[:, k].reshape((100,100)), extent=(minx1, maxx1, minx2, maxx2), origin='lower')\n",
|
|
|
|
" \n",
|
|
|
|
" classPos = Y>=0\n",
|
|
|
|
" classNeg = Y<0\n",
|
|
|
|
"\n",
|
|
|
|
" plt.contour(xx, yy, Z.reshape((100,100)), [-1,0,1], colors=['blue', 'black', 'red'])\n",
|
|
|
|
" plt.scatter(X[classPos, 0], X[classPos, 1], marker='o', c='r', edgecolors='k')\n",
|
|
|
|
" plt.scatter(X[classNeg, 0], X[classNeg, 1], marker='o', c='b', edgecolors='k')\n",
|
|
|
|
"\n",
|
|
|
|
" ax = plt.axes([0.8, 0.15, 0.05, 0.7])\n",
|
|
|
|
"\n",
|
|
|
|
" plt.title('Probability')\n",
|
|
|
|
" plt.colorbar(imshow_handle, cax=ax, orientation='vertical')\n",
|
|
|
|
" \n",
|
|
|
|
" plt.savefig(nameFig+'.jpg', dpi=300)\n",
|
|
|
|
" plt.show()\n",
|
|
|
|
" plt.close()"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
2023-01-12 16:00:39 +01:00
|
|
|
"execution_count": 139,
|
2022-12-29 17:27:20 +01:00
|
|
|
"metadata": {},
|
|
|
|
"outputs": [],
|
|
|
|
"source": [
|
|
|
|
"def main(X,Y,nameFig = 'GridSearchCV'):\n",
|
2023-01-12 16:00:39 +01:00
|
|
|
" \"\"\" Création du modèle avec la recherche du meilleur paramétrage de GridSearchCV \n",
|
|
|
|
" \"\"\"\n",
|
2022-12-29 17:27:20 +01:00
|
|
|
" parameters = {'kernel':('poly', 'poly'), 'C':[0.1,0.5, 1, 10], 'degree':[3,5], 'coef0':[0, 0.1, 0.5, 1, 10]}\n",
|
|
|
|
" svc = SVC(probability=True)\n",
|
|
|
|
" classifier = GridSearchCV(svc, parameters)\n",
|
|
|
|
" classifier = classifier.fit(X,Y)\n",
|
|
|
|
" print(classifier.best_params_)\n",
|
|
|
|
"\n",
|
|
|
|
" plot(X,Y, classifier=classifier, nameFig=nameFig)"
|
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"cell_type": "code",
|
2023-01-12 16:00:39 +01:00
|
|
|
"execution_count": 144,
|
2022-12-29 17:27:20 +01:00
|
|
|
"metadata": {},
|
|
|
|
"outputs": [
|
|
|
|
{
|
|
|
|
"name": "stdout",
|
|
|
|
"output_type": "stream",
|
|
|
|
"text": [
|
2023-01-12 16:00:39 +01:00
|
|
|
"{'C': 10, 'coef0': 0.5, 'degree': 3, 'kernel': 'poly'}\n"
|
2022-12-29 17:27:20 +01:00
|
|
|
]
|
|
|
|
},
|
|
|
|
{
|
|
|
|
"data": {
|
2023-01-12 16:00:39 +01:00
|
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAUEAAAEICAYAAADBWUaVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAACdpUlEQVR4nOydd5wkdZn/398KnSbvhJ2ZzQlYgmQki+IpIAK7KLIgQTAdwp3nKcIdHiriInrneZh+KghIEmQxZ0RwFQQkboDNYeLO7MQO1RW+398f3+qenpme2VmY3Zndnc+86tU91dXV1d3VTz3h83weoZRiClOYwhQOVBgTfQBTmMIUpjCRmDKCU5jCFA5oTBnBKUxhCgc0pozgFKYwhQMaU0ZwClOYwgGNKSM4hSlM4YDGlBGcwjAIIT4vhLhvoo9jClPYG5gyggcohBCXCCGeF0IkhRCtQojfCCFOnaBjuUUI8aoQwhdCfH4ijmEKBy6mjOABCCHEp4D/Bb4MTAdmA98Gzp+gQ9oAXA/8aoJefwoHMKaM4AEGIUQF8EXgE0qpFUqplFLKU0r9Qin1mRGe84gQok0I0SuEeEoIcVjBY+cIIdYIIfqFEM1CiE+H62uEEL8UQvQIIbqEEH8RQhQ935RS9yilfgP074G3PIUpjIopI3jg4SQgBjy2G8/5DbAIqANeAO4veOxO4GNKqTLgcOBP4fp/B5qAWrS3+R/AVI/mFCYdrIk+gCnsdVQDnUopf6xPUErdlbsf5uy6hRAVSqlewAMOFUK8rJTqBrrDTT2gAZijlNoA/GW83sAUpjCemPIEDzzsBGqEEGO6AAohTCHEbUKIjUKIPmBL+FBNeHshcA6wVQjxpBDipHD9V9G5vt8LITYJIW4Yv7cwhSmMH6aM4IGHp4EscMEYt78EXTB5J1ABzA3XCwCl1HNKqfPRofJPgYfD9f1KqX9XSs0HzgM+JYQ4c3zewhSmMH6YMoIHGMIQ9r+AbwkhLhBCJIQQthDibCHE7UWeUoY2mjuBBLqiDIAQIiKEuDQMjT2gD5DhY+cKIRYKIQTQCwS5x4YifP0Y+ny0hBAxIYQ5fu96ClMYGVNG8ACEUuq/gU8BNwEdwHbgWrQnNxT3AluBZmAN8MyQxy8DtoSh8seBS8P1i4A/Akm09/ltpdQTIxzS94EMsAz4z/D+ZW/grU1hD0MIoYQQC9/gc7cIId45wmOnCSFeL7atEOI/hBA/eGNHPIbjmhJVncIU9n8IIbagq/QBkEJX/K9VSiV3cz8KWBQWu97IMXxYKfXHN7qtEGIusBmwd6e4NxqmPMEpTOHAwXuVUqXAMcBx6Eggj7EWy/Y3TBnBKUzhAINSqhntCR4ehrefEEKsB9YDCCE+IoTYEJLcfy6EaByyi3PCin+nEOKrORK8EGKBEOJPQoid4WP3CyEqhzz3+JBc3y2E+GGYC0YIcYYQoqnY8Q7pZX8qvO0JWz7fFh7nEQXb1wkh0kKI2rF8HlNGcApTOMAghJiFpjW9GK66AHgrmu/5DmA5cBGa57kVeGjILpagPclj0MyBq3K7Dp/bCCwGZgGfH/LcS4F3AwuAgxjijY4Bp4e3lUqpUqXUk+HxfbBgm2XA40qpjrHscMoITmEKBw5+KoToAVYCTzJQ6V+ulOpSSmXQRuoupdQLSqkscCNwUpiLy+Er4fbb0D3oywCUUhuUUn9QSmVDA/Q/wNuGHMM3lVLblVJdwK25575J3AMsC5kIoItqPxrrkydtDqBmmqnmzrIn+jCmME74xytZjiEkF4ZQ6B68Y98SnZiDmmRQYVehCu+7ClQ/0AVN1VU4roHs6CUSKcN0LRyvgig9GDi7bEgUGMRIYGHTT7enlLoGILQb2ws2bUR/LfpYlEoKIXYCMxggyhduvzV8DkKI6cA3gNPQ1CqDgQ4iRnvum4FS6u9CiDRwhhCiFVgI/Hysz5+0RnDuLJtnfzdrog9jCuOEtxy/ha81+by9YN0TwHUzranvOUSgNI0yo1w8JWkJBKVfzDDzRz2c/N8fYssfWun8zr0cdNyHMDcezQvtH+boyBepCNaAkjAK02Ol+jWHcDTVYjp/VD/ZOuThwie2AHNy/wghStCtls0F28wCVof3Z4fPAe1ZKuAIpVSXEOIC4JtDXqvwyy587lgx0pu8Bx0StwE/UUo5Y93hVDg8hb2CG2+cxtVxwRPopuIngKvjghtvnDbBRza5IFEE4ZJSFmUvZNmyuIZutxR/fQsIgwp7Ov1OAwClYtt4H8KDwIeEEEcJIaJow/Z3pdSWgm0+I4SoCnOL/wr8OFxfhuaF9gohZgDFVIk+IYSYKYSYhuaE/rjINqOhA026nz9k/X3oXOUH0dzWMWPKCE5hr2DZ0nJu+Vot1820iAntAd7ytVqWLS2f6EObNJAFTo4EfMegalWa1w+bju+ZuNubSJTWYUmT/mwDcWMHlsroJ4wT3zfk5X0OeBRoRRcwLh6y2c+AfwAvoTUg7wzXfwFdLOkN168o8hIPAL8HNgEbgS/t5vGl0bnEv4YybSeG67ejw3jFbop1TNpweAr7H5YtLZ8yeiMgFwpLJJ6SuEphrlKYnuKlxTORKZNsUzM1FYswswH9XiNlRlMYBhftRhyEU8U5RdcrpUSRdd8FvruL7f+vyGOrgWOHrP7vgsfnhneXF3nun4GZRbZFKfX5Idv+F7r1cyi2Ac+o3ewAmfIEpzCFSQYJeApKX8wC8MKi2cj2foJUP+UlM5BZQSqo2xOh8D6LsHq9lAGvdMwYFyMohLhLCLFDCLFqhMfPCFWJXwqXYlZ8ClM4oCGRBEoRKIWHoPzFLN0NCbaVTyPYqOsSFbF60slpgEGpsX30He6HKGZrhBC3AKvQ8m1bhBD/F5K9XxFCHLOrfY6XJ3g3cNYutvmLUuqocPniOL3uFKawzyMoCGclEg/wlEHVK2k2HVpDOhvB3dIMQlBu1dKf0o0QZWxHyQOu9/9uhtgapdTnQuL0rcDZaPGORcBHge/saofjYgSVUk8BXeOxrylM4UBFEKayPAWqU1He5PDa4npc1yTb0kSsYjqWMkk60zHwiIv2CT7ivY8x2JrzgXuVxjNApRCiYbR97s3CyElCiJfRvKBPh0nUQRBCfBRtvZk9Y6pmM4UDBxKlw2EUrjIwXwwAeHHRLLyMTba1iYrahQjXJ5mto8RoRRDoevIEKEG9++0lamdXMO77/ccr2dVAIcfve0qp7+3GLmYwmJDdFK5rHekJe8vSvICeNZEUQpyD1q1bNHSj8M1+D+C4I2MHnJ+/P+HBFX0sX97F2mafxTMsbrxxWr4yPNpju7uv/Q1SKSSCshc9AlOwamEjwetp/FQfpQsbIavodxuYJlaDVGOqDO8JdHYF/P13M3e94W7CbtjoKKWOG/cdj4K9YgSVUn0F938thPi2EKJGKdW5N15/CnsXD67o43Of7uDOjOJUYGWTz9WfHuhlH+mxYoZttH3tL4Ywxw8MUHgoUsqm/qUszQsraVdleBu0E1MWb8DvMckGlZRa2yfMAIJu6/PU+HuC44BmBnelzGRwt8sw7BWKjBCiPtfcLIQ4IXzdnXvjtaew97F8eRd3ZhRvB2zg7cCdGcXy5V2jPra7+9ofUMgPlGFYKwNB5csZNhxWhxeYeNu1ESwtbSDpTtf3jaKqU3sVcg/8jQN+DlwuNE4EepVSI4bCME6eoBDiQeAM9BSzJuBm9DmbI16+D/hnIYSPlk6/eHcJjVPYd7C22efUIetODdfn7o/02O7ua3+Czgcq1Cawk5JVixpJp2J421qJxCuIBzHaHW0ES5hYI6hQ+ULO3sQYbM2v0TJhG4A08KFd7XNcjKBSalQ5HKXUNxneSD2FCcDeyK8tnmGxcohYwspwPTDqY7u7r/0FgVJINFG65GUPgNUHNyJ9gdvWSkl5AyJQpNw6TOEQUx0TTo+Ru5Ku2QMYg61RwCd2Z59THSMHEHL5tTuafBwFdzT5fO7THTy4om/XT94NjCaWsLtCCvuz8EJhKAzgKoWnIPGyixs3WVXfgOwFt6Od0kQ9Rtan36vXleFhzW57FwrwkOO+TAT
|
2022-12-29 17:27:20 +01:00
|
|
|
"text/plain": [
|
2023-01-12 16:00:39 +01:00
|
|
|
"<Figure size 432x288 with 2 Axes>"
|
2022-12-29 17:27:20 +01:00
|
|
|
]
|
|
|
|
},
|
2023-01-12 16:00:39 +01:00
|
|
|
"metadata": {
|
|
|
|
"needs_background": "light"
|
|
|
|
},
|
2022-12-29 17:27:20 +01:00
|
|
|
"output_type": "display_data"
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"source": [
|
|
|
|
"X,Y = genere_ex_2()\n",
|
|
|
|
"main(X,Y)"
|
|
|
|
]
|
|
|
|
}
|
|
|
|
],
|
|
|
|
"metadata": {
|
|
|
|
"kernelspec": {
|
|
|
|
"display_name": "Python 3",
|
|
|
|
"language": "python",
|
|
|
|
"name": "python3"
|
|
|
|
},
|
|
|
|
"language_info": {
|
|
|
|
"codemirror_mode": {
|
|
|
|
"name": "ipython",
|
|
|
|
"version": 3
|
|
|
|
},
|
|
|
|
"file_extension": ".py",
|
|
|
|
"mimetype": "text/x-python",
|
|
|
|
"name": "python",
|
|
|
|
"nbconvert_exporter": "python",
|
|
|
|
"pygments_lexer": "ipython3",
|
2023-01-12 16:00:39 +01:00
|
|
|
"version": "3.9.4"
|
2022-12-29 17:27:20 +01:00
|
|
|
},
|
|
|
|
"orig_nbformat": 4,
|
|
|
|
"vscode": {
|
|
|
|
"interpreter": {
|
2023-01-12 16:00:39 +01:00
|
|
|
"hash": "2ef431f6525756fa8a44688585fa332ef3b2e5fcfe8fe75df35bbf7028a8b511"
|
2022-12-29 17:27:20 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
},
|
|
|
|
"nbformat": 4,
|
|
|
|
"nbformat_minor": 2
|
|
|
|
}
|