129 lines
2.5 KiB
Text
129 lines
2.5 KiB
Text
|
{
|
||
|
"cells": [
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"# Cours D3\n",
|
||
|
"\n",
|
||
|
"## Cours Méthodes d'analyse non supervisées\n",
|
||
|
"\n",
|
||
|
"Exemple de clustering complete linkage :\n",
|
||
|
"On prend 4 singletons avec leur matrice de dissimilarité."
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 1,
|
||
|
"metadata": {},
|
||
|
"outputs": [],
|
||
|
"source": [
|
||
|
"import numpy as np"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 4,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"name": "stdout",
|
||
|
"output_type": "stream",
|
||
|
"text": [
|
||
|
"[[0. 0.3 0.4 0.8 ]\n",
|
||
|
" [0.3 0. 0.5 0.8 ]\n",
|
||
|
" [0.4 0.5 0. 0.45]\n",
|
||
|
" [0.8 0.8 0.45 0. ]]\n"
|
||
|
]
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"D = np.array([[0, 0.3, 0.4, 0.7],[0, 0, 0.5, 0.8],[0, 0, 0, 0.45],[0, 0, 0, 0]])\n",
|
||
|
"D += D.T\n",
|
||
|
"print(D)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"On link les 2 clusters les plus proches (a,b) donc on prend le max de différence entre (a,b) et c et d."
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 7,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"name": "stdout",
|
||
|
"output_type": "stream",
|
||
|
"text": [
|
||
|
"[[0. 0.5 0.8 ]\n",
|
||
|
" [0.5 0. 0.45]\n",
|
||
|
" [0.8 0.45 0. ]]\n"
|
||
|
]
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"D2 = np.array([[0, 0.5, 0.8],[0.5, 0, 0.45],[0.8, 0.45, 0]])\n",
|
||
|
"print(D2)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "markdown",
|
||
|
"metadata": {},
|
||
|
"source": [
|
||
|
"On coupe au saut le plus important sur le dendrogramme (on continu jusqu'a avoir K-clusters)"
|
||
|
]
|
||
|
},
|
||
|
{
|
||
|
"cell_type": "code",
|
||
|
"execution_count": 9,
|
||
|
"metadata": {},
|
||
|
"outputs": [
|
||
|
{
|
||
|
"name": "stdout",
|
||
|
"output_type": "stream",
|
||
|
"text": [
|
||
|
"[[0. 0.8]\n",
|
||
|
" [0.8 0. ]]\n"
|
||
|
]
|
||
|
}
|
||
|
],
|
||
|
"source": [
|
||
|
"# (a,b,c) et d\n",
|
||
|
"D3 = np.array([[0, 0.8],[0.8,0]])\n",
|
||
|
"print(D3)"
|
||
|
]
|
||
|
}
|
||
|
],
|
||
|
"metadata": {
|
||
|
"kernelspec": {
|
||
|
"display_name": "Python 3.8.10 64-bit",
|
||
|
"language": "python",
|
||
|
"name": "python3"
|
||
|
},
|
||
|
"language_info": {
|
||
|
"codemirror_mode": {
|
||
|
"name": "ipython",
|
||
|
"version": 3
|
||
|
},
|
||
|
"file_extension": ".py",
|
||
|
"mimetype": "text/x-python",
|
||
|
"name": "python",
|
||
|
"nbconvert_exporter": "python",
|
||
|
"pygments_lexer": "ipython3",
|
||
|
"version": "3.8.10"
|
||
|
},
|
||
|
"orig_nbformat": 4,
|
||
|
"vscode": {
|
||
|
"interpreter": {
|
||
|
"hash": "31f2aee4e71d21fbe5cf8b01ff0e069b9275f58929596ceb00d14d90e3e16cd6"
|
||
|
}
|
||
|
}
|
||
|
},
|
||
|
"nbformat": 4,
|
||
|
"nbformat_minor": 2
|
||
|
}
|