1138 lines
112 KiB
Text
1138 lines
112 KiB
Text
{
|
||
"cells": [
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 1,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"import torch\n",
|
||
"import matplotlib\n",
|
||
"%matplotlib notebook\n",
|
||
"from matplotlib import pyplot as plt\n",
|
||
"import pickle\n",
|
||
"import torch.nn as nn\n",
|
||
"import numpy as np"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 2,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"def load_net(file_path): \n",
|
||
" pkl_file = open(file_path, 'rb')\n",
|
||
" net= pickle.load(pkl_file)\n",
|
||
" pkl_file.close()\n",
|
||
" return net\n",
|
||
"\n",
|
||
"def ini():\n",
|
||
" kernel=torch.zeros([8,3,3,3])\n",
|
||
" array_0=np.array([[1,2,1],[0,0,0],[-1,-2,-1]],dtype='float32')\n",
|
||
" array_1=np.array([[2,1,0],[1,0,-1],[0,-1,-2]],dtype='float32')\n",
|
||
" array_2=np.array([[1,0,-1],[2,0,-2],[1,0,-1]],dtype='float32')\n",
|
||
" array_3=np.array([[0,-1,-2],[1,0,-1],[2,1,0]],dtype='float32')\n",
|
||
" array_4=np.array([[-1,-2,-1],[0,0,0],[1,2,1]],dtype='float32')\n",
|
||
" array_5=np.array([[-2,-1,0],[-1,0,1],[0,1,2]],dtype='float32')\n",
|
||
" array_6=np.array([[-1,0,1],[-2,0,2],[-1,0,1]],dtype='float32')\n",
|
||
" array_7=np.array([[0,1,2],[-1,0,1],[-2,-1,0]],dtype='float32')\n",
|
||
" for i in range(3):\n",
|
||
" kernel[0,i,:]=torch.from_numpy(array_0)\n",
|
||
" kernel[1,i,:]=torch.from_numpy(array_1)\n",
|
||
" kernel[2,i,:]=torch.from_numpy(array_2)\n",
|
||
" kernel[3,i,:]=torch.from_numpy(array_3)\n",
|
||
" kernel[4,i,:]=torch.from_numpy(array_4)\n",
|
||
" kernel[5,i,:]=torch.from_numpy(array_5)\n",
|
||
" kernel[6,i,:]=torch.from_numpy(array_6)\n",
|
||
" kernel[7,i,:]=torch.from_numpy(array_7)\n",
|
||
" return torch.nn.Parameter(kernel,requires_grad=True) \n",
|
||
"\n",
|
||
"class Net(nn.Module):\n",
|
||
" def __init__(self,frag_size,psize):\n",
|
||
" super(Net, self).__init__()\n",
|
||
" \n",
|
||
" h_fr=frag_size\n",
|
||
" w_fr=frag_size\n",
|
||
" \n",
|
||
" n=int(h_fr/psize) # n*m patches dans le patch d'entrée\n",
|
||
" m=int(w_fr/psize)\n",
|
||
" \n",
|
||
" self.conv1 = nn.Conv2d(3,4,kernel_size=3,stride=1,padding=1)\n",
|
||
" # Si vous souhaitez initialiser Conv1 avec les poids de DeepMatch, exécutez la ligne suivante\n",
|
||
" # self.conv1.weight=ini()\n",
|
||
" self.Relu = nn.ReLU(inplace=True)\n",
|
||
" self.maxpooling=nn.MaxPool2d(3,stride=2, padding=1)\n",
|
||
" \n",
|
||
" self.shift1=nn.Conv2d(n*m,n*m,kernel_size=3,stride=1,padding=1)\n",
|
||
" self.shift1.weight=kernel_shift_ini(n,m)\n",
|
||
" self.add1 = nn.Conv2d(n*m,int(n/2)*int(m/2),kernel_size=1,stride=1,padding=0)\n",
|
||
" self.add1.weight=kernel_add_ini(n,m)\n",
|
||
" \n",
|
||
" n=int(n/2)\n",
|
||
" m=int(m/2)\n",
|
||
" if n>=2 and m>=2:# Si n=m=1,Notre réseau n'a plus besoin de plus de couches pour agréger les cartes de corrélation\n",
|
||
" self.shift2=nn.Conv2d(n*m,n*m,kernel_size=3,stride=1,padding=1)\n",
|
||
" self.shift2.weight=kernel_shift_ini(n,m)\n",
|
||
" self.add2 = nn.Conv2d(n*m,int(n/2)*int(m/2),kernel_size=1,stride=1,padding=0)\n",
|
||
" self.add2.weight=kernel_add_ini(n,m)\n",
|
||
" \n",
|
||
" n=int(n/2)\n",
|
||
" m=int(m/2)\n",
|
||
" if n>=2 and m>=2:\n",
|
||
" self.shift3=nn.Conv2d(n*m,n*m,kernel_size=3,stride=1,padding=1)\n",
|
||
" self.shift3.weight=kernel_shift_ini(n,m)\n",
|
||
" self.add3 = nn.Conv2d(n*m,int(n/2)*int(m/2),kernel_size=1,stride=1,padding=0)\n",
|
||
" self.add3.weight=kernel_add_ini(n,m)\n",
|
||
" \n",
|
||
" def get_descripteur(self,img,using_cuda):\n",
|
||
" # Utilisez Conv1 pour calculer le descripteur,\n",
|
||
" descripteur_img=self.Relu(self.conv1(img))\n",
|
||
" b,c,h,w=descripteur_img.shape\n",
|
||
" couche_constante=0.5*torch.ones([1,1,h,w])\n",
|
||
" if using_cuda:\n",
|
||
" couche_constante=couche_constante.cuda()\n",
|
||
" # Ajouter une couche constante pour éviter la division par 0 lors de la normalisation\n",
|
||
" descripteur_img=torch.cat((descripteur_img,couche_constante),1)\n",
|
||
" # la normalisation\n",
|
||
" descripteur_img_norm=descripteur_img/torch.norm(descripteur_img,dim=1)\n",
|
||
" return descripteur_img_norm\n",
|
||
" \n",
|
||
" def forward(self,img,frag,using_cuda):\n",
|
||
" psize=4\n",
|
||
" # Utilisez Conv1 pour calculer le descripteur,\n",
|
||
" descripteur_input1=self.get_descripteur(img,using_cuda)\n",
|
||
" descripteur_input2=self.get_descripteur(frag,using_cuda)\n",
|
||
" \n",
|
||
" b,c,h,w=frag.shape\n",
|
||
" n=int(h/psize)\n",
|
||
" m=int(w/psize)\n",
|
||
" \n",
|
||
" #######################################\n",
|
||
" # Calculer la carte de corrélation par convolution pour les n*m patchs plus petit.\n",
|
||
" for i in range(n):\n",
|
||
" for j in range(m):\n",
|
||
" if i==0 and j==0:\n",
|
||
" map_corre=F.conv2d(descripteur_input1,get_patch(descripteur_input2,psize,i,j),padding=2)\n",
|
||
" else:\n",
|
||
" a=F.conv2d(descripteur_input1,get_patch(descripteur_input2,psize,i,j),padding=2)\n",
|
||
" map_corre=torch.cat((map_corre,a),1)\n",
|
||
" ########################################\n",
|
||
" # Étape de polymérisation\n",
|
||
" map_corre=self.maxpooling(map_corre)\n",
|
||
" map_corre=self.shift1(map_corre)\n",
|
||
" map_corre=self.add1(map_corre)\n",
|
||
" \n",
|
||
" #########################################\n",
|
||
" # Répétez l'étape d'agrégation jusqu'à obtenir le graphique de corrélation du patch d'entrée\n",
|
||
" n=int(n/2)\n",
|
||
" m=int(m/2)\n",
|
||
" if n>=2 and m>=2:\n",
|
||
" map_corre=self.maxpooling(map_corre)\n",
|
||
" map_corre=self.shift2(map_corre)\n",
|
||
" map_corre=self.add2(map_corre)\n",
|
||
" \n",
|
||
" \n",
|
||
" n=int(n/2)\n",
|
||
" m=int(m/2)\n",
|
||
" if n>=2 and m>=2:\n",
|
||
" map_corre=self.maxpooling(map_corre)\n",
|
||
" map_corre=self.shift3(map_corre)\n",
|
||
" map_corre=self.add3(map_corre)\n",
|
||
" \n",
|
||
" \n",
|
||
" b,c,h,w=map_corre.shape\n",
|
||
" # Normalisation de la division par maximum\n",
|
||
" map_corre=map_corre/(map_corre.max())\n",
|
||
" # Normalisation SoftMax\n",
|
||
" #map_corre=(F.softmax(map_corre.reshape(1,1,h*w,1),dim=2)).reshape(b,c,h,w)\n",
|
||
" return map_corre\n",
|
||
"\n",
|
||
"def normalize(a):\n",
|
||
" return((a - np.min(a))/np.ptp(a))\n",
|
||
"\n",
|
||
"def carte(w,save_filename,title):\n",
|
||
" \n",
|
||
" fig,axs = plt.subplots(3,8,figsize=(15,8))\n",
|
||
" \n",
|
||
" max_ptp = 0\n",
|
||
" ref_im = None\n",
|
||
" \n",
|
||
" for i in range(3):\n",
|
||
" for j in range(8):\n",
|
||
" im = axs[i,j].imshow(normalize(w[j,i,:,:]))\n",
|
||
" \n",
|
||
" if i == 0:\n",
|
||
" axs[i,j].set_title('Couche {}'.format(j))\n",
|
||
" if j == 0:\n",
|
||
" axs[i,j].set_ylabel('Channel {}'.format(i+1))\n",
|
||
" \n",
|
||
" axs[i,j].set_xticks([])\n",
|
||
" axs[i,j].set_yticks([])\n",
|
||
"\n",
|
||
" fig.subplots_adjust(right=0.8)\n",
|
||
" cbar_ax = fig.add_axes([0.85, 0.15, 0.05, 0.7])\n",
|
||
" fig.colorbar(im, cax=cbar_ax)\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" fig.suptitle(\"{}\".format(title),fontsize=16)\n",
|
||
" \n",
|
||
" if save_filename != None:\n",
|
||
" plt.savefig(save_filename)\n",
|
||
" #plt.close()\n",
|
||
"\n",
|
||
"def carte4(w,save_filename,title):\n",
|
||
" \n",
|
||
" fig,axs = plt.subplots(3,4,figsize=(15,8))\n",
|
||
" \n",
|
||
" max_ptp = 0\n",
|
||
" ref_im = None\n",
|
||
" \n",
|
||
" for i in range(3):\n",
|
||
" for j in range(4):\n",
|
||
" im = axs[i,j].imshow(normalize(w[j,i,:,:]))\n",
|
||
" \n",
|
||
" if i == 0:\n",
|
||
" axs[i,j].set_title('Couche {}'.format(j))\n",
|
||
" if j == 0:\n",
|
||
" axs[i,j].set_ylabel('Channel {}'.format(i+1))\n",
|
||
" \n",
|
||
" axs[i,j].set_xticks([])\n",
|
||
" axs[i,j].set_yticks([])\n",
|
||
"\n",
|
||
" fig.subplots_adjust(right=0.8)\n",
|
||
" cbar_ax = fig.add_axes([0.85, 0.15, 0.05, 0.7])\n",
|
||
" fig.colorbar(im, cax=cbar_ax)\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" fig.suptitle(\"{}\".format(title),fontsize=16)\n",
|
||
" \n",
|
||
" if save_filename != None:\n",
|
||
" plt.savefig(save_filename)\n",
|
||
" #plt.close()\n",
|
||
" \n",
|
||
"def carte_32(w,save_filename,title):\n",
|
||
" \n",
|
||
" fig,axs = plt.subplots(3,4,figsize=(15,8))\n",
|
||
" \n",
|
||
" max_ptp = 0\n",
|
||
" ref_im = None\n",
|
||
" \n",
|
||
" for i in range(3):\n",
|
||
" for j in range(4):\n",
|
||
" #im = axs[i,j].imshow(normalize(w[j,i,:,:]))\n",
|
||
" im = axs[i,j].imshow(w[j,i,:,:],cmap='coolwarm')\n",
|
||
" \n",
|
||
" for a in range(3):\n",
|
||
" for b in range(3):\n",
|
||
" text = axs[i,j].text(b, a, round(w[j, i, a, b],2),\n",
|
||
" ha=\"center\", va=\"center\", color=\"w\")\n",
|
||
" \n",
|
||
" if i == 0:\n",
|
||
" axs[i,j].set_title('Couche {}'.format(j))\n",
|
||
" if j == 0:\n",
|
||
" axs[i,j].set_ylabel('Channel {}'.format(i+1))\n",
|
||
" \n",
|
||
" axs[i,j].set_xticks([])\n",
|
||
" axs[i,j].set_yticks([])\n",
|
||
"\n",
|
||
" fig.subplots_adjust(right=0.8)\n",
|
||
" cbar_ax = fig.add_axes([0.85, 0.15, 0.05, 0.7])\n",
|
||
" \n",
|
||
" mini,maxi = np.min(w),np.max(w)\n",
|
||
" \n",
|
||
" cmap = matplotlib.cm.coolwarm\n",
|
||
" norm = matplotlib.colors.Normalize(vmin=mini, vmax=maxi)\n",
|
||
" \n",
|
||
" fig.colorbar(matplotlib.cm.ScalarMappable(norm=norm, cmap=cmap), cax=cbar_ax,orientation='vertical')\n",
|
||
" \n",
|
||
" \n",
|
||
" \n",
|
||
" fig.suptitle(\"{}\".format(title),fontsize=16)\n",
|
||
" \n",
|
||
" if save_filename != None:\n",
|
||
" plt.savefig(save_filename)\n",
|
||
" #plt.close()"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": 4,
|
||
"metadata": {
|
||
"scrolled": false
|
||
},
|
||
"outputs": [
|
||
{
|
||
"name": "stdout",
|
||
"output_type": "stream",
|
||
"text": [
|
||
"(8, 3, 3, 3)\n"
|
||
]
|
||
},
|
||
{
|
||
"data": {
|
||
"application/javascript": [
|
||
"/* Put everything inside the global mpl namespace */\n",
|
||
"window.mpl = {};\n",
|
||
"\n",
|
||
"\n",
|
||
"mpl.get_websocket_type = function() {\n",
|
||
" if (typeof(WebSocket) !== 'undefined') {\n",
|
||
" return WebSocket;\n",
|
||
" } else if (typeof(MozWebSocket) !== 'undefined') {\n",
|
||
" return MozWebSocket;\n",
|
||
" } else {\n",
|
||
" alert('Your browser does not have WebSocket support. ' +\n",
|
||
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
|
||
" 'Firefox 4 and 5 are also supported but you ' +\n",
|
||
" 'have to enable WebSockets in about:config.');\n",
|
||
" };\n",
|
||
"}\n",
|
||
"\n",
|
||
"mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
|
||
" this.id = figure_id;\n",
|
||
"\n",
|
||
" this.ws = websocket;\n",
|
||
"\n",
|
||
" this.supports_binary = (this.ws.binaryType != undefined);\n",
|
||
"\n",
|
||
" if (!this.supports_binary) {\n",
|
||
" var warnings = document.getElementById(\"mpl-warnings\");\n",
|
||
" if (warnings) {\n",
|
||
" warnings.style.display = 'block';\n",
|
||
" warnings.textContent = (\n",
|
||
" \"This browser does not support binary websocket messages. \" +\n",
|
||
" \"Performance may be slow.\");\n",
|
||
" }\n",
|
||
" }\n",
|
||
"\n",
|
||
" this.imageObj = new Image();\n",
|
||
"\n",
|
||
" this.context = undefined;\n",
|
||
" this.message = undefined;\n",
|
||
" this.canvas = undefined;\n",
|
||
" this.rubberband_canvas = undefined;\n",
|
||
" this.rubberband_context = undefined;\n",
|
||
" this.format_dropdown = undefined;\n",
|
||
"\n",
|
||
" this.image_mode = 'full';\n",
|
||
"\n",
|
||
" this.root = $('<div/>');\n",
|
||
" this._root_extra_style(this.root)\n",
|
||
" this.root.attr('style', 'display: inline-block');\n",
|
||
"\n",
|
||
" $(parent_element).append(this.root);\n",
|
||
"\n",
|
||
" this._init_header(this);\n",
|
||
" this._init_canvas(this);\n",
|
||
" this._init_toolbar(this);\n",
|
||
"\n",
|
||
" var fig = this;\n",
|
||
"\n",
|
||
" this.waiting = false;\n",
|
||
"\n",
|
||
" this.ws.onopen = function () {\n",
|
||
" fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
|
||
" fig.send_message(\"send_image_mode\", {});\n",
|
||
" if (mpl.ratio != 1) {\n",
|
||
" fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
|
||
" }\n",
|
||
" fig.send_message(\"refresh\", {});\n",
|
||
" }\n",
|
||
"\n",
|
||
" this.imageObj.onload = function() {\n",
|
||
" if (fig.image_mode == 'full') {\n",
|
||
" // Full images could contain transparency (where diff images\n",
|
||
" // almost always do), so we need to clear the canvas so that\n",
|
||
" // there is no ghosting.\n",
|
||
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
|
||
" }\n",
|
||
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
|
||
" };\n",
|
||
"\n",
|
||
" this.imageObj.onunload = function() {\n",
|
||
" fig.ws.close();\n",
|
||
" }\n",
|
||
"\n",
|
||
" this.ws.onmessage = this._make_on_message_function(this);\n",
|
||
"\n",
|
||
" this.ondownload = ondownload;\n",
|
||
"}\n",
|
||
"\n",
|
||
"mpl.figure.prototype._init_header = function() {\n",
|
||
" var titlebar = $(\n",
|
||
" '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
|
||
" 'ui-helper-clearfix\"/>');\n",
|
||
" var titletext = $(\n",
|
||
" '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
|
||
" 'text-align: center; padding: 3px;\"/>');\n",
|
||
" titlebar.append(titletext)\n",
|
||
" this.root.append(titlebar);\n",
|
||
" this.header = titletext[0];\n",
|
||
"}\n",
|
||
"\n",
|
||
"\n",
|
||
"\n",
|
||
"mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
|
||
"\n",
|
||
"}\n",
|
||
"\n",
|
||
"\n",
|
||
"mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
|
||
"\n",
|
||
"}\n",
|
||
"\n",
|
||
"mpl.figure.prototype._init_canvas = function() {\n",
|
||
" var fig = this;\n",
|
||
"\n",
|
||
" var canvas_div = $('<div/>');\n",
|
||
"\n",
|
||
" canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
|
||
"\n",
|
||
" function canvas_keyboard_event(event) {\n",
|
||
" return fig.key_event(event, event['data']);\n",
|
||
" }\n",
|
||
"\n",
|
||
" canvas_div.keydown('key_press', canvas_keyboard_event);\n",
|
||
" canvas_div.keyup('key_release', canvas_keyboard_event);\n",
|
||
" this.canvas_div = canvas_div\n",
|
||
" this._canvas_extra_style(canvas_div)\n",
|
||
" this.root.append(canvas_div);\n",
|
||
"\n",
|
||
" var canvas = $('<canvas/>');\n",
|
||
" canvas.addClass('mpl-canvas');\n",
|
||
" canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
|
||
"\n",
|
||
" this.canvas = canvas[0];\n",
|
||
" this.context = canvas[0].getContext(\"2d\");\n",
|
||
"\n",
|
||
" var backingStore = this.context.backingStorePixelRatio ||\n",
|
||
"\tthis.context.webkitBackingStorePixelRatio ||\n",
|
||
"\tthis.context.mozBackingStorePixelRatio ||\n",
|
||
"\tthis.context.msBackingStorePixelRatio ||\n",
|
||
"\tthis.context.oBackingStorePixelRatio ||\n",
|
||
"\tthis.context.backingStorePixelRatio || 1;\n",
|
||
"\n",
|
||
" mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
|
||
"\n",
|
||
" var rubberband = $('<canvas/>');\n",
|
||
" rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
|
||
"\n",
|
||
" var pass_mouse_events = true;\n",
|
||
"\n",
|
||
" canvas_div.resizable({\n",
|
||
" start: function(event, ui) {\n",
|
||
" pass_mouse_events = false;\n",
|
||
" },\n",
|
||
" resize: function(event, ui) {\n",
|
||
" fig.request_resize(ui.size.width, ui.size.height);\n",
|
||
" },\n",
|
||
" stop: function(event, ui) {\n",
|
||
" pass_mouse_events = true;\n",
|
||
" fig.request_resize(ui.size.width, ui.size.height);\n",
|
||
" },\n",
|
||
" });\n",
|
||
"\n",
|
||
" function mouse_event_fn(event) {\n",
|
||
" if (pass_mouse_events)\n",
|
||
" return fig.mouse_event(event, event['data']);\n",
|
||
" }\n",
|
||
"\n",
|
||
" rubberband.mousedown('button_press', mouse_event_fn);\n",
|
||
" rubberband.mouseup('button_release', mouse_event_fn);\n",
|
||
" // Throttle sequential mouse events to 1 every 20ms.\n",
|
||
" rubberband.mousemove('motion_notify', mouse_event_fn);\n",
|
||
"\n",
|
||
" rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
|
||
" rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
|
||
"\n",
|
||
" canvas_div.on(\"wheel\", function (event) {\n",
|
||
" event = event.originalEvent;\n",
|
||
" event['data'] = 'scroll'\n",
|
||
" if (event.deltaY < 0) {\n",
|
||
" event.step = 1;\n",
|
||
" } else {\n",
|
||
" event.step = -1;\n",
|
||
" }\n",
|
||
" mouse_event_fn(event);\n",
|
||
" });\n",
|
||
"\n",
|
||
" canvas_div.append(canvas);\n",
|
||
" canvas_div.append(rubberband);\n",
|
||
"\n",
|
||
" this.rubberband = rubberband;\n",
|
||
" this.rubberband_canvas = rubberband[0];\n",
|
||
" this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
|
||
" this.rubberband_context.strokeStyle = \"#000000\";\n",
|
||
"\n",
|
||
" this._resize_canvas = function(width, height) {\n",
|
||
" // Keep the size of the canvas, canvas container, and rubber band\n",
|
||
" // canvas in synch.\n",
|
||
" canvas_div.css('width', width)\n",
|
||
" canvas_div.css('height', height)\n",
|
||
"\n",
|
||
" canvas.attr('width', width * mpl.ratio);\n",
|
||
" canvas.attr('height', height * mpl.ratio);\n",
|
||
" canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
|
||
"\n",
|
||
" rubberband.attr('width', width);\n",
|
||
" rubberband.attr('height', height);\n",
|
||
" }\n",
|
||
"\n",
|
||
" // Set the figure to an initial 600x600px, this will subsequently be updated\n",
|
||
" // upon first draw.\n",
|
||
" this._resize_canvas(600, 600);\n",
|
||
"\n",
|
||
" // Disable right mouse context menu.\n",
|
||
" $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
|
||
" return false;\n",
|
||
" });\n",
|
||
"\n",
|
||
" function set_focus () {\n",
|
||
" canvas.focus();\n",
|
||
" canvas_div.focus();\n",
|
||
" }\n",
|
||
"\n",
|
||
" window.setTimeout(set_focus, 100);\n",
|
||
"}\n",
|
||
"\n",
|
||
"mpl.figure.prototype._init_toolbar = function() {\n",
|
||
" var fig = this;\n",
|
||
"\n",
|
||
" var nav_element = $('<div/>');\n",
|
||
" nav_element.attr('style', 'width: 100%');\n",
|
||
" this.root.append(nav_element);\n",
|
||
"\n",
|
||
" // Define a callback function for later on.\n",
|
||
" function toolbar_event(event) {\n",
|
||
" return fig.toolbar_button_onclick(event['data']);\n",
|
||
" }\n",
|
||
" function toolbar_mouse_event(event) {\n",
|
||
" return fig.toolbar_button_onmouseover(event['data']);\n",
|
||
" }\n",
|
||
"\n",
|
||
" for(var toolbar_ind in mpl.toolbar_items) {\n",
|
||
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
|
||
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
|
||
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
|
||
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
|
||
"\n",
|
||
" if (!name) {\n",
|
||
" // put a spacer in here.\n",
|
||
" continue;\n",
|
||
" }\n",
|
||
" var button = $('<button/>');\n",
|
||
" button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
|
||
" 'ui-button-icon-only');\n",
|
||
" button.attr('role', 'button');\n",
|
||
" button.attr('aria-disabled', 'false');\n",
|
||
" button.click(method_name, toolbar_event);\n",
|
||
" button.mouseover(tooltip, toolbar_mouse_event);\n",
|
||
"\n",
|
||
" var icon_img = $('<span/>');\n",
|
||
" icon_img.addClass('ui-button-icon-primary ui-icon');\n",
|
||
" icon_img.addClass(image);\n",
|
||
" icon_img.addClass('ui-corner-all');\n",
|
||
"\n",
|
||
" var tooltip_span = $('<span/>');\n",
|
||
" tooltip_span.addClass('ui-button-text');\n",
|
||
" tooltip_span.html(tooltip);\n",
|
||
"\n",
|
||
" button.append(icon_img);\n",
|
||
" button.append(tooltip_span);\n",
|
||
"\n",
|
||
" nav_element.append(button);\n",
|
||
" }\n",
|
||
"\n",
|
||
" var fmt_picker_span = $('<span/>');\n",
|
||
"\n",
|
||
" var fmt_picker = $('<select/>');\n",
|
||
" fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
|
||
" fmt_picker_span.append(fmt_picker);\n",
|
||
" nav_element.append(fmt_picker_span);\n",
|
||
" this.format_dropdown = fmt_picker[0];\n",
|
||
"\n",
|
||
" for (var ind in mpl.extensions) {\n",
|
||
" var fmt = mpl.extensions[ind];\n",
|
||
" var option = $(\n",
|
||
" '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
|
||
" fmt_picker.append(option);\n",
|
||
" }\n",
|
||
"\n",
|
||
" // Add hover states to the ui-buttons\n",
|
||
" $( \".ui-button\" ).hover(\n",
|
||
" function() { $(this).addClass(\"ui-state-hover\");},\n",
|
||
" function() { $(this).removeClass(\"ui-state-hover\");}\n",
|
||
" );\n",
|
||
"\n",
|
||
" var status_bar = $('<span class=\"mpl-message\"/>');\n",
|
||
" nav_element.append(status_bar);\n",
|
||
" this.message = status_bar[0];\n",
|
||
"}\n",
|
||
"\n",
|
||
"mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
|
||
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
|
||
" // which will in turn request a refresh of the image.\n",
|
||
" this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
|
||
"}\n",
|
||
"\n",
|
||
"mpl.figure.prototype.send_message = function(type, properties) {\n",
|
||
" properties['type'] = type;\n",
|
||
" properties['figure_id'] = this.id;\n",
|
||
" this.ws.send(JSON.stringify(properties));\n",
|
||
"}\n",
|
||
"\n",
|
||
"mpl.figure.prototype.send_draw_message = function() {\n",
|
||
" if (!this.waiting) {\n",
|
||
" this.waiting = true;\n",
|
||
" this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
|
||
" }\n",
|
||
"}\n",
|
||
"\n",
|
||
"\n",
|
||
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
|
||
" var format_dropdown = fig.format_dropdown;\n",
|
||
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
|
||
" fig.ondownload(fig, format);\n",
|
||
"}\n",
|
||
"\n",
|
||
"\n",
|
||
"mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
|
||
" var size = msg['size'];\n",
|
||
" if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
|
||
" fig._resize_canvas(size[0], size[1]);\n",
|
||
" fig.send_message(\"refresh\", {});\n",
|
||
" };\n",
|
||
"}\n",
|
||
"\n",
|
||
"mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
|
||
" var x0 = msg['x0'] / mpl.ratio;\n",
|
||
" var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
|
||
" var x1 = msg['x1'] / mpl.ratio;\n",
|
||
" var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
|
||
" x0 = Math.floor(x0) + 0.5;\n",
|
||
" y0 = Math.floor(y0) + 0.5;\n",
|
||
" x1 = Math.floor(x1) + 0.5;\n",
|
||
" y1 = Math.floor(y1) + 0.5;\n",
|
||
" var min_x = Math.min(x0, x1);\n",
|
||
" var min_y = Math.min(y0, y1);\n",
|
||
" var width = Math.abs(x1 - x0);\n",
|
||
" var height = Math.abs(y1 - y0);\n",
|
||
"\n",
|
||
" fig.rubberband_context.clearRect(\n",
|
||
" 0, 0, fig.canvas.width / mpl.ratio, fig.canvas.height / mpl.ratio);\n",
|
||
"\n",
|
||
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
|
||
"}\n",
|
||
"\n",
|
||
"mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
|
||
" // Updates the figure title.\n",
|
||
" fig.header.textContent = msg['label'];\n",
|
||
"}\n",
|
||
"\n",
|
||
"mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
|
||
" var cursor = msg['cursor'];\n",
|
||
" switch(cursor)\n",
|
||
" {\n",
|
||
" case 0:\n",
|
||
" cursor = 'pointer';\n",
|
||
" break;\n",
|
||
" case 1:\n",
|
||
" cursor = 'default';\n",
|
||
" break;\n",
|
||
" case 2:\n",
|
||
" cursor = 'crosshair';\n",
|
||
" break;\n",
|
||
" case 3:\n",
|
||
" cursor = 'move';\n",
|
||
" break;\n",
|
||
" }\n",
|
||
" fig.rubberband_canvas.style.cursor = cursor;\n",
|
||
"}\n",
|
||
"\n",
|
||
"mpl.figure.prototype.handle_message = function(fig, msg) {\n",
|
||
" fig.message.textContent = msg['message'];\n",
|
||
"}\n",
|
||
"\n",
|
||
"mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
|
||
" // Request the server to send over a new figure.\n",
|
||
" fig.send_draw_message();\n",
|
||
"}\n",
|
||
"\n",
|
||
"mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
|
||
" fig.image_mode = msg['mode'];\n",
|
||
"}\n",
|
||
"\n",
|
||
"mpl.figure.prototype.updated_canvas_event = function() {\n",
|
||
" // Called whenever the canvas gets updated.\n",
|
||
" this.send_message(\"ack\", {});\n",
|
||
"}\n",
|
||
"\n",
|
||
"// A function to construct a web socket function for onmessage handling.\n",
|
||
"// Called in the figure constructor.\n",
|
||
"mpl.figure.prototype._make_on_message_function = function(fig) {\n",
|
||
" return function socket_on_message(evt) {\n",
|
||
" if (evt.data instanceof Blob) {\n",
|
||
" /* FIXME: We get \"Resource interpreted as Image but\n",
|
||
" * transferred with MIME type text/plain:\" errors on\n",
|
||
" * Chrome. But how to set the MIME type? It doesn't seem\n",
|
||
" * to be part of the websocket stream */\n",
|
||
" evt.data.type = \"image/png\";\n",
|
||
"\n",
|
||
" /* Free the memory for the previous frames */\n",
|
||
" if (fig.imageObj.src) {\n",
|
||
" (window.URL || window.webkitURL).revokeObjectURL(\n",
|
||
" fig.imageObj.src);\n",
|
||
" }\n",
|
||
"\n",
|
||
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
|
||
" evt.data);\n",
|
||
" fig.updated_canvas_event();\n",
|
||
" fig.waiting = false;\n",
|
||
" return;\n",
|
||
" }\n",
|
||
" else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
|
||
" fig.imageObj.src = evt.data;\n",
|
||
" fig.updated_canvas_event();\n",
|
||
" fig.waiting = false;\n",
|
||
" return;\n",
|
||
" }\n",
|
||
"\n",
|
||
" var msg = JSON.parse(evt.data);\n",
|
||
" var msg_type = msg['type'];\n",
|
||
"\n",
|
||
" // Call the \"handle_{type}\" callback, which takes\n",
|
||
" // the figure and JSON message as its only arguments.\n",
|
||
" try {\n",
|
||
" var callback = fig[\"handle_\" + msg_type];\n",
|
||
" } catch (e) {\n",
|
||
" console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
|
||
" return;\n",
|
||
" }\n",
|
||
"\n",
|
||
" if (callback) {\n",
|
||
" try {\n",
|
||
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
|
||
" callback(fig, msg);\n",
|
||
" } catch (e) {\n",
|
||
" console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
|
||
" }\n",
|
||
" }\n",
|
||
" };\n",
|
||
"}\n",
|
||
"\n",
|
||
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
|
||
"mpl.findpos = function(e) {\n",
|
||
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
|
||
" var targ;\n",
|
||
" if (!e)\n",
|
||
" e = window.event;\n",
|
||
" if (e.target)\n",
|
||
" targ = e.target;\n",
|
||
" else if (e.srcElement)\n",
|
||
" targ = e.srcElement;\n",
|
||
" if (targ.nodeType == 3) // defeat Safari bug\n",
|
||
" targ = targ.parentNode;\n",
|
||
"\n",
|
||
" // jQuery normalizes the pageX and pageY\n",
|
||
" // pageX,Y are the mouse positions relative to the document\n",
|
||
" // offset() returns the position of the element relative to the document\n",
|
||
" var x = e.pageX - $(targ).offset().left;\n",
|
||
" var y = e.pageY - $(targ).offset().top;\n",
|
||
"\n",
|
||
" return {\"x\": x, \"y\": y};\n",
|
||
"};\n",
|
||
"\n",
|
||
"/*\n",
|
||
" * return a copy of an object with only non-object keys\n",
|
||
" * we need this to avoid circular references\n",
|
||
" * http://stackoverflow.com/a/24161582/3208463\n",
|
||
" */\n",
|
||
"function simpleKeys (original) {\n",
|
||
" return Object.keys(original).reduce(function (obj, key) {\n",
|
||
" if (typeof original[key] !== 'object')\n",
|
||
" obj[key] = original[key]\n",
|
||
" return obj;\n",
|
||
" }, {});\n",
|
||
"}\n",
|
||
"\n",
|
||
"mpl.figure.prototype.mouse_event = function(event, name) {\n",
|
||
" var canvas_pos = mpl.findpos(event)\n",
|
||
"\n",
|
||
" if (name === 'button_press')\n",
|
||
" {\n",
|
||
" this.canvas.focus();\n",
|
||
" this.canvas_div.focus();\n",
|
||
" }\n",
|
||
"\n",
|
||
" var x = canvas_pos.x * mpl.ratio;\n",
|
||
" var y = canvas_pos.y * mpl.ratio;\n",
|
||
"\n",
|
||
" this.send_message(name, {x: x, y: y, button: event.button,\n",
|
||
" step: event.step,\n",
|
||
" guiEvent: simpleKeys(event)});\n",
|
||
"\n",
|
||
" /* This prevents the web browser from automatically changing to\n",
|
||
" * the text insertion cursor when the button is pressed. We want\n",
|
||
" * to control all of the cursor setting manually through the\n",
|
||
" * 'cursor' event from matplotlib */\n",
|
||
" event.preventDefault();\n",
|
||
" return false;\n",
|
||
"}\n",
|
||
"\n",
|
||
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
|
||
" // Handle any extra behaviour associated with a key event\n",
|
||
"}\n",
|
||
"\n",
|
||
"mpl.figure.prototype.key_event = function(event, name) {\n",
|
||
"\n",
|
||
" // Prevent repeat events\n",
|
||
" if (name == 'key_press')\n",
|
||
" {\n",
|
||
" if (event.which === this._key)\n",
|
||
" return;\n",
|
||
" else\n",
|
||
" this._key = event.which;\n",
|
||
" }\n",
|
||
" if (name == 'key_release')\n",
|
||
" this._key = null;\n",
|
||
"\n",
|
||
" var value = '';\n",
|
||
" if (event.ctrlKey && event.which != 17)\n",
|
||
" value += \"ctrl+\";\n",
|
||
" if (event.altKey && event.which != 18)\n",
|
||
" value += \"alt+\";\n",
|
||
" if (event.shiftKey && event.which != 16)\n",
|
||
" value += \"shift+\";\n",
|
||
"\n",
|
||
" value += 'k';\n",
|
||
" value += event.which.toString();\n",
|
||
"\n",
|
||
" this._key_event_extra(event, name);\n",
|
||
"\n",
|
||
" this.send_message(name, {key: value,\n",
|
||
" guiEvent: simpleKeys(event)});\n",
|
||
" return false;\n",
|
||
"}\n",
|
||
"\n",
|
||
"mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
|
||
" if (name == 'download') {\n",
|
||
" this.handle_save(this, null);\n",
|
||
" } else {\n",
|
||
" this.send_message(\"toolbar_button\", {name: name});\n",
|
||
" }\n",
|
||
"};\n",
|
||
"\n",
|
||
"mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
|
||
" this.message.textContent = tooltip;\n",
|
||
"};\n",
|
||
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
|
||
"\n",
|
||
"mpl.extensions = [\"eps\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\"];\n",
|
||
"\n",
|
||
"mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
|
||
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
|
||
" // object with the appropriate methods. Currently this is a non binary\n",
|
||
" // socket, so there is still some room for performance tuning.\n",
|
||
" var ws = {};\n",
|
||
"\n",
|
||
" ws.close = function() {\n",
|
||
" comm.close()\n",
|
||
" };\n",
|
||
" ws.send = function(m) {\n",
|
||
" //console.log('sending', m);\n",
|
||
" comm.send(m);\n",
|
||
" };\n",
|
||
" // Register the callback with on_msg.\n",
|
||
" comm.on_msg(function(msg) {\n",
|
||
" //console.log('receiving', msg['content']['data'], msg);\n",
|
||
" // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
|
||
" ws.onmessage(msg['content']['data'])\n",
|
||
" });\n",
|
||
" return ws;\n",
|
||
"}\n",
|
||
"\n",
|
||
"mpl.mpl_figure_comm = function(comm, msg) {\n",
|
||
" // This is the function which gets called when the mpl process\n",
|
||
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
|
||
"\n",
|
||
" var id = msg.content.data.id;\n",
|
||
" // Get hold of the div created by the display call when the Comm\n",
|
||
" // socket was opened in Python.\n",
|
||
" var element = $(\"#\" + id);\n",
|
||
" var ws_proxy = comm_websocket_adapter(comm)\n",
|
||
"\n",
|
||
" function ondownload(figure, format) {\n",
|
||
" window.open(figure.imageObj.src);\n",
|
||
" }\n",
|
||
"\n",
|
||
" var fig = new mpl.figure(id, ws_proxy,\n",
|
||
" ondownload,\n",
|
||
" element.get(0));\n",
|
||
"\n",
|
||
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
|
||
" // web socket which is closed, not our websocket->open comm proxy.\n",
|
||
" ws_proxy.onopen();\n",
|
||
"\n",
|
||
" fig.parent_element = element.get(0);\n",
|
||
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
|
||
" if (!fig.cell_info) {\n",
|
||
" console.error(\"Failed to find cell for figure\", id, fig);\n",
|
||
" return;\n",
|
||
" }\n",
|
||
"\n",
|
||
" var output_index = fig.cell_info[2]\n",
|
||
" var cell = fig.cell_info[0];\n",
|
||
"\n",
|
||
"};\n",
|
||
"\n",
|
||
"mpl.figure.prototype.handle_close = function(fig, msg) {\n",
|
||
" var width = fig.canvas.width/mpl.ratio\n",
|
||
" fig.root.unbind('remove')\n",
|
||
"\n",
|
||
" // Update the output cell to use the data from the current canvas.\n",
|
||
" fig.push_to_output();\n",
|
||
" var dataURL = fig.canvas.toDataURL();\n",
|
||
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
|
||
" // the notebook keyboard shortcuts fail.\n",
|
||
" IPython.keyboard_manager.enable()\n",
|
||
" $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
|
||
" fig.close_ws(fig, msg);\n",
|
||
"}\n",
|
||
"\n",
|
||
"mpl.figure.prototype.close_ws = function(fig, msg){\n",
|
||
" fig.send_message('closing', msg);\n",
|
||
" // fig.ws.close()\n",
|
||
"}\n",
|
||
"\n",
|
||
"mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
|
||
" // Turn the data on the canvas into data in the output cell.\n",
|
||
" var width = this.canvas.width/mpl.ratio\n",
|
||
" var dataURL = this.canvas.toDataURL();\n",
|
||
" this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
|
||
"}\n",
|
||
"\n",
|
||
"mpl.figure.prototype.updated_canvas_event = function() {\n",
|
||
" // Tell IPython that the notebook contents must change.\n",
|
||
" IPython.notebook.set_dirty(true);\n",
|
||
" this.send_message(\"ack\", {});\n",
|
||
" var fig = this;\n",
|
||
" // Wait a second, then push the new image to the DOM so\n",
|
||
" // that it is saved nicely (might be nice to debounce this).\n",
|
||
" setTimeout(function () { fig.push_to_output() }, 1000);\n",
|
||
"}\n",
|
||
"\n",
|
||
"mpl.figure.prototype._init_toolbar = function() {\n",
|
||
" var fig = this;\n",
|
||
"\n",
|
||
" var nav_element = $('<div/>');\n",
|
||
" nav_element.attr('style', 'width: 100%');\n",
|
||
" this.root.append(nav_element);\n",
|
||
"\n",
|
||
" // Define a callback function for later on.\n",
|
||
" function toolbar_event(event) {\n",
|
||
" return fig.toolbar_button_onclick(event['data']);\n",
|
||
" }\n",
|
||
" function toolbar_mouse_event(event) {\n",
|
||
" return fig.toolbar_button_onmouseover(event['data']);\n",
|
||
" }\n",
|
||
"\n",
|
||
" for(var toolbar_ind in mpl.toolbar_items){\n",
|
||
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
|
||
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
|
||
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
|
||
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
|
||
"\n",
|
||
" if (!name) { continue; };\n",
|
||
"\n",
|
||
" var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
|
||
" button.click(method_name, toolbar_event);\n",
|
||
" button.mouseover(tooltip, toolbar_mouse_event);\n",
|
||
" nav_element.append(button);\n",
|
||
" }\n",
|
||
"\n",
|
||
" // Add the status bar.\n",
|
||
" var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
|
||
" nav_element.append(status_bar);\n",
|
||
" this.message = status_bar[0];\n",
|
||
"\n",
|
||
" // Add the close button to the window.\n",
|
||
" var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
|
||
" var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
|
||
" button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
|
||
" button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
|
||
" buttongrp.append(button);\n",
|
||
" var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
|
||
" titlebar.prepend(buttongrp);\n",
|
||
"}\n",
|
||
"\n",
|
||
"mpl.figure.prototype._root_extra_style = function(el){\n",
|
||
" var fig = this\n",
|
||
" el.on(\"remove\", function(){\n",
|
||
"\tfig.close_ws(fig, {});\n",
|
||
" });\n",
|
||
"}\n",
|
||
"\n",
|
||
"mpl.figure.prototype._canvas_extra_style = function(el){\n",
|
||
" // this is important to make the div 'focusable\n",
|
||
" el.attr('tabindex', 0)\n",
|
||
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
|
||
" // off when our div gets focus\n",
|
||
"\n",
|
||
" // location in version 3\n",
|
||
" if (IPython.notebook.keyboard_manager) {\n",
|
||
" IPython.notebook.keyboard_manager.register_events(el);\n",
|
||
" }\n",
|
||
" else {\n",
|
||
" // location in version 2\n",
|
||
" IPython.keyboard_manager.register_events(el);\n",
|
||
" }\n",
|
||
"\n",
|
||
"}\n",
|
||
"\n",
|
||
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
|
||
" var manager = IPython.notebook.keyboard_manager;\n",
|
||
" if (!manager)\n",
|
||
" manager = IPython.keyboard_manager;\n",
|
||
"\n",
|
||
" // Check for shift+enter\n",
|
||
" if (event.shiftKey && event.which == 13) {\n",
|
||
" this.canvas_div.blur();\n",
|
||
" // select the cell after this one\n",
|
||
" var index = IPython.notebook.find_cell_index(this.cell_info[0]);\n",
|
||
" IPython.notebook.select(index + 1);\n",
|
||
" }\n",
|
||
"}\n",
|
||
"\n",
|
||
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
|
||
" fig.ondownload(fig, null);\n",
|
||
"}\n",
|
||
"\n",
|
||
"\n",
|
||
"mpl.find_output_cell = function(html_output) {\n",
|
||
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
|
||
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
|
||
" // IPython event is triggered only after the cells have been serialised, which for\n",
|
||
" // our purposes (turning an active figure into a static one), is too late.\n",
|
||
" var cells = IPython.notebook.get_cells();\n",
|
||
" var ncells = cells.length;\n",
|
||
" for (var i=0; i<ncells; i++) {\n",
|
||
" var cell = cells[i];\n",
|
||
" if (cell.cell_type === 'code'){\n",
|
||
" for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
|
||
" var data = cell.output_area.outputs[j];\n",
|
||
" if (data.data) {\n",
|
||
" // IPython >= 3 moved mimebundle to data attribute of output\n",
|
||
" data = data.data;\n",
|
||
" }\n",
|
||
" if (data['text/html'] == html_output) {\n",
|
||
" return [cell, data, j];\n",
|
||
" }\n",
|
||
" }\n",
|
||
" }\n",
|
||
" }\n",
|
||
"}\n",
|
||
"\n",
|
||
"// Register the function which deals with the matplotlib target/channel.\n",
|
||
"// The kernel may be null if the page has been refreshed.\n",
|
||
"if (IPython.notebook.kernel != null) {\n",
|
||
" IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
|
||
"}\n"
|
||
],
|
||
"text/plain": [
|
||
"<IPython.core.display.Javascript object>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
},
|
||
{
|
||
"data": {
|
||
"text/html": [
|
||
"<img src=\"\" width=\"1500\">"
|
||
],
|
||
"text/plain": [
|
||
"<IPython.core.display.HTML object>"
|
||
]
|
||
},
|
||
"metadata": {},
|
||
"output_type": "display_data"
|
||
}
|
||
],
|
||
"source": [
|
||
"model_filename = './trained_net/net_trainned_SLLShift_E3_03-10_21-02_0007'\n",
|
||
"\n",
|
||
"net = load_net(model_filename)\n",
|
||
"\n",
|
||
"w = net.conv1.weight.data.cpu().numpy()\n",
|
||
"\n",
|
||
"print(w.shape)\n",
|
||
"\n",
|
||
"carte4(w,'poids_32_E4.svg',\"Poids du apres entrainement 32x32 4 epochs color_shift\")\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"w_values_filename = './trained_net/save_weights_NOMB02-18_20-39_0005'\n",
|
||
"\n",
|
||
"with open(w_values_filename,'rb') as f:\n",
|
||
" w_values = pickle.load(f)\n",
|
||
"\n",
|
||
"#print(w_values[0][0])\n",
|
||
"#print(w_values[-1][0])\n",
|
||
" \n",
|
||
"carte4(w_values[0],None,'Premiere')\n",
|
||
"carte4(w_values[-1],None,'Derniere')\n"
|
||
]
|
||
},
|
||
{
|
||
"cell_type": "code",
|
||
"execution_count": null,
|
||
"metadata": {},
|
||
"outputs": [],
|
||
"source": [
|
||
"w_values_filename = './trained_net/save_weights_02-03_01-33_0002'\n",
|
||
"\n",
|
||
"with open(w_values_filename,'rb') as f:\n",
|
||
" w_values = pickle.load(f)\n",
|
||
"\n",
|
||
"save_filename = './results/images_weights/image{:05}.png'\n",
|
||
"\n",
|
||
"N = len(w_values)\n",
|
||
"for i,w in enumerate(w_values):\n",
|
||
" print(w.shape)\n",
|
||
" print(\"Generating carte {}/{}\".format(i,N))\n",
|
||
" carte(w,save_filename.format(i),i*10)\n",
|
||
" \n",
|
||
"print(\"Done.\")\n"
|
||
]
|
||
}
|
||
],
|
||
"metadata": {
|
||
"kernelspec": {
|
||
"display_name": "Python 3",
|
||
"language": "python",
|
||
"name": "python3"
|
||
},
|
||
"language_info": {
|
||
"codemirror_mode": {
|
||
"name": "ipython",
|
||
"version": 3
|
||
},
|
||
"file_extension": ".py",
|
||
"mimetype": "text/x-python",
|
||
"name": "python",
|
||
"nbconvert_exporter": "python",
|
||
"pygments_lexer": "ipython3",
|
||
"version": "3.8.5"
|
||
}
|
||
},
|
||
"nbformat": 4,
|
||
"nbformat_minor": 4
|
||
}
|