2021-02-02 10:31:38 +01:00
|
|
|
|
{
|
|
|
|
|
"cells": [
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
2021-02-11 09:00:27 +01:00
|
|
|
|
"execution_count": 5,
|
2021-02-02 10:31:38 +01:00
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [],
|
|
|
|
|
"source": [
|
|
|
|
|
"#Tous les codes sont basés sur l'environnement suivant\n",
|
|
|
|
|
"#python 3.7\n",
|
|
|
|
|
"#opencv 3.1.0\n",
|
|
|
|
|
"#pytorch 1.4.0\n",
|
|
|
|
|
"\n",
|
|
|
|
|
"import torch\n",
|
|
|
|
|
"from torch.autograd import Variable\n",
|
|
|
|
|
"import torch.nn as nn\n",
|
|
|
|
|
"import torch.nn.functional as F\n",
|
|
|
|
|
"import cv2\n",
|
|
|
|
|
"import matplotlib.pyplot as plt\n",
|
|
|
|
|
"import numpy as np\n",
|
|
|
|
|
"import random\n",
|
|
|
|
|
"import math\n",
|
|
|
|
|
"import pickle\n",
|
|
|
|
|
"import random\n",
|
|
|
|
|
"from PIL import Image\n",
|
|
|
|
|
"import sys\n",
|
|
|
|
|
"from glob import glob\n",
|
|
|
|
|
"from IPython.display import clear_output\n",
|
|
|
|
|
"from datetime import datetime\n",
|
|
|
|
|
"from time import time"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
2021-02-11 09:00:27 +01:00
|
|
|
|
"execution_count": 6,
|
2021-02-02 10:31:38 +01:00
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [],
|
|
|
|
|
"source": [
|
|
|
|
|
"#Les fonctions dans ce bloc ne sont pas utilisées par le réseau, mais certaines fonctions d'outils\n",
|
|
|
|
|
"\n",
|
|
|
|
|
"\n",
|
|
|
|
|
"def tensor_imshow(im_tensor,cannel):\n",
|
|
|
|
|
" b,c,h,w=im_tensor.shape\n",
|
|
|
|
|
" if c==1:\n",
|
|
|
|
|
" plt.imshow(im_tensor.squeeze().detach().numpy())\n",
|
|
|
|
|
" else:\n",
|
|
|
|
|
" plt.imshow(im_tensor.squeeze().detach().numpy()[cannel,:])\n",
|
|
|
|
|
"\n",
|
|
|
|
|
"# Obtenez des données d'entraînement\n",
|
|
|
|
|
"# frag,vt=get_training_fragment(frag_size,image)\n",
|
|
|
|
|
"# frag est un patch carrée de taille (frag_size*frag_size) a partir du image(Son emplacement est aléatoire)\n",
|
|
|
|
|
"# vt est la vérité terrain de la forme Dirac.\n",
|
|
|
|
|
"def get_training_fragment(frag_size,im):\n",
|
|
|
|
|
" h,w,c=im.shape\n",
|
|
|
|
|
" n=random.randint(0,int(h/frag_size)-1)\n",
|
|
|
|
|
" m=random.randint(0,int(w/frag_size)-1) \n",
|
|
|
|
|
" shape=frag_size/4\n",
|
|
|
|
|
" vt_h=math.ceil((h+1)/shape)\n",
|
|
|
|
|
" vt_w=math.ceil((w+1)/shape)\n",
|
|
|
|
|
" vt=np.zeros([vt_h,vt_w])\n",
|
|
|
|
|
" vt_h_po=round((vt_h-1)*(n*frag_size/(h-1)+(n+1)*frag_size/(h-1))/2)\n",
|
|
|
|
|
" vt_w_po=round((vt_w-1)*(m*frag_size/(w-1)+(m+1)*frag_size/(w-1))/2)\n",
|
|
|
|
|
" vt[vt_h_po,vt_w_po]=1\n",
|
|
|
|
|
" vt = np.float32(vt)\n",
|
|
|
|
|
" vt=torch.from_numpy(vt.reshape(1,1,vt_h,vt_w))\n",
|
|
|
|
|
" \n",
|
|
|
|
|
" return im[n*frag_size:(n+1)*frag_size,m*frag_size:(m+1)*frag_size,:],vt\n",
|
|
|
|
|
"\n",
|
|
|
|
|
"def load_training_fragment(fragment_path,vt_path):\n",
|
|
|
|
|
" # Load fragment\n",
|
|
|
|
|
" frag = cv2.imread(fragment_path)\n",
|
|
|
|
|
" \n",
|
|
|
|
|
" # Load vt data\n",
|
|
|
|
|
" with open(vt_path,'r') as f:\n",
|
|
|
|
|
" data_vt_raw = f.readlines()\n",
|
|
|
|
|
" data_vt = [int(d.rstrip('\\r\\n')) for d in data_vt_raw]\n",
|
|
|
|
|
" \n",
|
2021-02-11 09:00:27 +01:00
|
|
|
|
" #print(\"[load_training_fragment] vt: {}:{}\".format(data_vt[2],data_vt[3]))\n",
|
|
|
|
|
" \n",
|
2021-02-02 10:31:38 +01:00
|
|
|
|
" # Construct vt\n",
|
|
|
|
|
" vt = np.zeros((int(data_vt[0]/4)+1,int(data_vt[1]/4)+1))\n",
|
2021-02-11 09:00:27 +01:00
|
|
|
|
" #print(\"[load_training_fragment] point 1 placé en : {}:{}\".format(data_vt[2]/4,data_vt[3]/4))\n",
|
2021-02-02 10:31:38 +01:00
|
|
|
|
" vt[int(data_vt[2]/4),int(data_vt[3]/4)] = 1\n",
|
|
|
|
|
" vt = np.float32(vt)\n",
|
|
|
|
|
" vt = torch.from_numpy(vt.reshape(1,1,int(data_vt[0]/4)+1,int(data_vt[1]/4)+1))\n",
|
2021-02-11 09:00:27 +01:00
|
|
|
|
" #print(\"[load_training_fragment] taille de la vt: HxW {}x{}\".format(vt.shape[2],vt.shape[3]))\n",
|
2021-02-02 10:31:38 +01:00
|
|
|
|
" \n",
|
|
|
|
|
" return(frag,vt)\n",
|
|
|
|
|
"\n",
|
|
|
|
|
"\n",
|
|
|
|
|
"# Cette fonction convertit l'image en variable de type Tensor.\n",
|
|
|
|
|
"# Toutes les données de calcul du réseau sont de type Tensor\n",
|
|
|
|
|
"# Img.shape=[Height,Width,Channel]\n",
|
|
|
|
|
"# Tensor.shape=[Batch,Channel,Height,Width]\n",
|
|
|
|
|
"def img2tensor(im):\n",
|
|
|
|
|
" im=np.array(im,dtype=\"float32\")\n",
|
|
|
|
|
" tensor_cv = torch.from_numpy(np.transpose(im, (2, 0, 1)))\n",
|
|
|
|
|
" im_tensor=tensor_cv.unsqueeze(0)\n",
|
|
|
|
|
" return im_tensor\n",
|
|
|
|
|
"\n",
|
|
|
|
|
"# Trouvez les coordonnées de la valeur maximale dans une carte de corrélation\n",
|
|
|
|
|
"# x,y=show_coordonnee(carte de corrélation)\n",
|
|
|
|
|
"def show_coordonnee(position_pred):\n",
|
2021-02-11 09:00:27 +01:00
|
|
|
|
" map_corre=position_pred.squeeze().detach().cpu().numpy()\n",
|
2021-02-02 10:31:38 +01:00
|
|
|
|
" h,w=map_corre.shape\n",
|
|
|
|
|
" max_value=map_corre.max()\n",
|
|
|
|
|
" coordonnee=np.where(map_corre==max_value)\n",
|
2021-02-11 09:00:27 +01:00
|
|
|
|
" return coordonnee[0].mean(),coordonnee[1].mean()\n",
|
2021-02-02 10:31:38 +01:00
|
|
|
|
"\n",
|
|
|
|
|
"# Filtrer les patchs en fonction du nombre de pixels noirs dans le patch\n",
|
|
|
|
|
"# Si seuls les pixels non noirs sont plus grands qu'une certaine proportion(seuillage), revenez à True, sinon False\n",
|
|
|
|
|
"def test_fragment32_32(frag,seuillage):\n",
|
|
|
|
|
" a=frag[:,:,0]+frag[:,:,1]+frag[:,:,2]\n",
|
|
|
|
|
" mask = (a == 0)\n",
|
|
|
|
|
" arr_new = a[mask]\n",
|
|
|
|
|
" if arr_new.size/a.size<=(1-seuillage):\n",
|
|
|
|
|
" return True\n",
|
|
|
|
|
" else:\n",
|
|
|
|
|
" return False\n",
|
|
|
|
|
" \n",
|
|
|
|
|
"# Ces deux fonctions permettent de sauvegarder le réseau dans un fichier\n",
|
|
|
|
|
"# ou de load le réseau stocké à partir d'un fichier\n",
|
|
|
|
|
"def save_net(file_path,net):\n",
|
|
|
|
|
" pkl_file = open(file_path, 'wb')\n",
|
|
|
|
|
" pickle.dump(net,pkl_file)\n",
|
|
|
|
|
" pkl_file.close()\n",
|
|
|
|
|
"def load_net(file_path): \n",
|
|
|
|
|
" pkl_file = open(file_path, 'rb')\n",
|
|
|
|
|
" net= pickle.load(pkl_file)\n",
|
|
|
|
|
" pkl_file.close()\n",
|
|
|
|
|
" return net"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
2021-02-11 09:00:27 +01:00
|
|
|
|
"execution_count": 7,
|
2021-02-02 10:31:38 +01:00
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [],
|
|
|
|
|
"source": [
|
|
|
|
|
"# Créer un poids de type DeepMatch comme valeur initiale de Conv1 (non obligatoire)\n",
|
|
|
|
|
"def ini():\n",
|
|
|
|
|
" kernel=torch.zeros([8,3,3,3])\n",
|
|
|
|
|
" array_0=np.array([[1,2,1],[0,0,0],[-1,-2,-1]],dtype='float32')\n",
|
|
|
|
|
" array_1=np.array([[2,1,0],[1,0,-1],[0,-1,-2]],dtype='float32')\n",
|
|
|
|
|
" array_2=np.array([[1,0,-1],[2,0,-2],[1,0,-1]],dtype='float32')\n",
|
|
|
|
|
" array_3=np.array([[0,-1,-2],[1,0,-1],[2,1,0]],dtype='float32')\n",
|
|
|
|
|
" array_4=np.array([[-1,-2,-1],[0,0,0],[1,2,1]],dtype='float32')\n",
|
|
|
|
|
" array_5=np.array([[-2,-1,0],[-1,0,1],[0,1,2]],dtype='float32')\n",
|
|
|
|
|
" array_6=np.array([[-1,0,1],[-2,0,2],[-1,0,1]],dtype='float32')\n",
|
|
|
|
|
" array_7=np.array([[0,1,2],[-1,0,1],[-2,-1,0]],dtype='float32')\n",
|
|
|
|
|
" for i in range(3):\n",
|
|
|
|
|
" kernel[0,i,:]=torch.from_numpy(array_0)\n",
|
|
|
|
|
" kernel[1,i,:]=torch.from_numpy(array_1)\n",
|
|
|
|
|
" kernel[2,i,:]=torch.from_numpy(array_2)\n",
|
|
|
|
|
" kernel[3,i,:]=torch.from_numpy(array_3)\n",
|
|
|
|
|
" kernel[4,i,:]=torch.from_numpy(array_4)\n",
|
|
|
|
|
" kernel[5,i,:]=torch.from_numpy(array_5)\n",
|
|
|
|
|
" kernel[6,i,:]=torch.from_numpy(array_6)\n",
|
|
|
|
|
" kernel[7,i,:]=torch.from_numpy(array_7)\n",
|
|
|
|
|
" return torch.nn.Parameter(kernel,requires_grad=True) \n",
|
|
|
|
|
"\n",
|
|
|
|
|
"# Calculer le poids initial de la couche convolutive add\n",
|
|
|
|
|
"# n, m signifie qu'il y a n * m sous-patches dans le patch d'entrée\n",
|
|
|
|
|
"# Par exemple, le patch d'entrée est 16 * 16, pour les patchs 4 * 4 de la première couche, n = 4, m = 4\n",
|
|
|
|
|
"# pour les patchs 8 * 8 de la deuxième couche, n = 2, m = 2\n",
|
|
|
|
|
"def kernel_add_ini(n,m):\n",
|
|
|
|
|
" input_canal=int(n*m)\n",
|
|
|
|
|
" output_canal=int(n/2)*int(m/2)\n",
|
|
|
|
|
" for i in range(int(n/2)):\n",
|
|
|
|
|
" for j in range(int(m/2)):\n",
|
|
|
|
|
" kernel_add=np.zeros([1,input_canal],dtype='float32')\n",
|
|
|
|
|
" kernel_add[0,i*2*m+j*2]=1\n",
|
|
|
|
|
" kernel_add[0,i*2*m+j*2+1]=1\n",
|
|
|
|
|
" kernel_add[0,(i*2+1)*m+j*2]=1\n",
|
|
|
|
|
" kernel_add[0,(i*2+1)*m+j*2+1]=1\n",
|
|
|
|
|
" if i==0 and j==0:\n",
|
|
|
|
|
" add=torch.from_numpy(kernel_add.reshape(1,input_canal,1,1))\n",
|
|
|
|
|
" else:\n",
|
|
|
|
|
" add_=torch.from_numpy(kernel_add.reshape(1,input_canal,1,1))\n",
|
|
|
|
|
" add=torch.cat((add,add_),0)\n",
|
|
|
|
|
" return torch.nn.Parameter(add,requires_grad=False) \n",
|
|
|
|
|
"\n",
|
|
|
|
|
"# Calculer le poids initial de la couche convolutive shift\n",
|
|
|
|
|
"# shift+add Peut réaliser l'étape de l'agrégation\n",
|
|
|
|
|
"# Voir ci-dessus pour les paramètres n et m. \n",
|
|
|
|
|
"# Pour des étapes plus détaillées, veuillez consulter mon rapport de stage\n",
|
|
|
|
|
"def kernel_shift_ini(n,m):\n",
|
|
|
|
|
" input_canal=int(n*m)\n",
|
|
|
|
|
" output_canal=int(n*m)\n",
|
|
|
|
|
" \n",
|
|
|
|
|
" kernel_shift=torch.zeros([output_canal,input_canal,3,3])\n",
|
|
|
|
|
" \n",
|
|
|
|
|
" array_0=np.array([[1,0,0],[0,0,0],[0,0,0]],dtype='float32')\n",
|
|
|
|
|
" array_1=np.array([[0,0,1],[0,0,0],[0,0,0]],dtype='float32')\n",
|
|
|
|
|
" array_2=np.array([[0,0,0],[0,0,0],[1,0,0]],dtype='float32')\n",
|
|
|
|
|
" array_3=np.array([[0,0,0],[0,0,0],[0,0,1]],dtype='float32')\n",
|
|
|
|
|
" \n",
|
|
|
|
|
" kernel_shift_0=torch.from_numpy(array_0)\n",
|
|
|
|
|
" kernel_shift_1=torch.from_numpy(array_1)\n",
|
|
|
|
|
" kernel_shift_2=torch.from_numpy(array_2)\n",
|
|
|
|
|
" kernel_shift_3=torch.from_numpy(array_3)\n",
|
|
|
|
|
" \n",
|
|
|
|
|
" \n",
|
|
|
|
|
" for i in range(n):\n",
|
|
|
|
|
" for j in range(m):\n",
|
|
|
|
|
" if i==0 and j==0:\n",
|
|
|
|
|
" kernel_shift[0,0,:]=kernel_shift_0\n",
|
|
|
|
|
" else:\n",
|
|
|
|
|
" if i%2==0 and j%2==0:\n",
|
|
|
|
|
" kernel_shift[i*m+j,i*m+j,:]=kernel_shift_0\n",
|
|
|
|
|
" if i%2==0 and j%2==1:\n",
|
|
|
|
|
" kernel_shift[i*m+j,i*m+j,:]=kernel_shift_1\n",
|
|
|
|
|
" if i%2==1 and j%2==0:\n",
|
|
|
|
|
" kernel_shift[i*m+j,i*m+j,:]=kernel_shift_2\n",
|
|
|
|
|
" if i%2==1 and j%2==1:\n",
|
|
|
|
|
" kernel_shift[i*m+j,i*m+j,:]=kernel_shift_3\n",
|
|
|
|
|
" \n",
|
|
|
|
|
" return torch.nn.Parameter(kernel_shift,requires_grad=False) \n",
|
|
|
|
|
"\n",
|
|
|
|
|
"# Trouvez le petit patch(4 * 4) dans la n ème ligne et la m ème colonne du patch d'entrée\n",
|
|
|
|
|
"# Ceci est utilisé pour calculer la convolution et obtenir la carte de corrélation\n",
|
|
|
|
|
"def get_patch(fragment,psize,n,m):\n",
|
|
|
|
|
" return fragment[:,:,n*psize:(n+1)*psize,m*psize:(m+1)*psize]\n",
|
|
|
|
|
"###################################################################################################################\n",
|
|
|
|
|
"class Net(nn.Module):\n",
|
|
|
|
|
" def __init__(self,frag_size,psize):\n",
|
|
|
|
|
" super(Net, self).__init__()\n",
|
|
|
|
|
" \n",
|
|
|
|
|
" h_fr=frag_size\n",
|
|
|
|
|
" w_fr=frag_size\n",
|
|
|
|
|
" \n",
|
|
|
|
|
" n=int(h_fr/psize) # n*m patches dans le patch d'entrée\n",
|
|
|
|
|
" m=int(w_fr/psize)\n",
|
|
|
|
|
" \n",
|
|
|
|
|
" self.conv1 = nn.Conv2d(3,8,kernel_size=3,stride=1,padding=1)\n",
|
|
|
|
|
" # Si vous souhaitez initialiser Conv1 avec les poids de DeepMatch, exécutez la ligne suivante\n",
|
|
|
|
|
" #self.conv1.weight=ini()\n",
|
|
|
|
|
" self.Relu = nn.ReLU(inplace=True)\n",
|
|
|
|
|
" self.maxpooling=nn.MaxPool2d(3,stride=2, padding=1)\n",
|
|
|
|
|
" \n",
|
|
|
|
|
" self.shift1=nn.Conv2d(n*m,n*m,kernel_size=3,stride=1,padding=1)\n",
|
|
|
|
|
" self.shift1.weight=kernel_shift_ini(n,m)\n",
|
|
|
|
|
" self.add1 = nn.Conv2d(n*m,int(n/2)*int(m/2),kernel_size=1,stride=1,padding=0)\n",
|
|
|
|
|
" self.add1.weight=kernel_add_ini(n,m)\n",
|
|
|
|
|
" \n",
|
|
|
|
|
" n=int(n/2)\n",
|
|
|
|
|
" m=int(m/2)\n",
|
|
|
|
|
" if n>=2 and m>=2:# Si n=m=1,Notre réseau n'a plus besoin de plus de couches pour agréger les cartes de corrélation\n",
|
|
|
|
|
" self.shift2=nn.Conv2d(n*m,n*m,kernel_size=3,stride=1,padding=1)\n",
|
|
|
|
|
" self.shift2.weight=kernel_shift_ini(n,m)\n",
|
|
|
|
|
" self.add2 = nn.Conv2d(n*m,int(n/2)*int(m/2),kernel_size=1,stride=1,padding=0)\n",
|
|
|
|
|
" self.add2.weight=kernel_add_ini(n,m)\n",
|
|
|
|
|
" \n",
|
|
|
|
|
" n=int(n/2)\n",
|
|
|
|
|
" m=int(m/2)\n",
|
|
|
|
|
" if n>=2 and m>=2:\n",
|
|
|
|
|
" self.shift3=nn.Conv2d(n*m,n*m,kernel_size=3,stride=1,padding=1)\n",
|
|
|
|
|
" self.shift3.weight=kernel_shift_ini(n,m)\n",
|
|
|
|
|
" self.add3 = nn.Conv2d(n*m,int(n/2)*int(m/2),kernel_size=1,stride=1,padding=0)\n",
|
|
|
|
|
" self.add3.weight=kernel_add_ini(n,m)\n",
|
|
|
|
|
" \n",
|
|
|
|
|
" def get_descripteur(self,img,using_cuda):\n",
|
|
|
|
|
" # Utilisez Conv1 pour calculer le descripteur,\n",
|
|
|
|
|
" descripteur_img=self.Relu(self.conv1(img))\n",
|
|
|
|
|
" b,c,h,w=descripteur_img.shape\n",
|
|
|
|
|
" couche_constante=0.5*torch.ones([1,1,h,w])\n",
|
|
|
|
|
" if using_cuda:\n",
|
|
|
|
|
" couche_constante=couche_constante.cuda()\n",
|
|
|
|
|
" # Ajouter une couche constante pour éviter la division par 0 lors de la normalisation\n",
|
|
|
|
|
" descripteur_img=torch.cat((descripteur_img,couche_constante),1)\n",
|
|
|
|
|
" # la normalisation\n",
|
|
|
|
|
" descripteur_img_norm=descripteur_img/torch.norm(descripteur_img,dim=1)\n",
|
|
|
|
|
" return descripteur_img_norm\n",
|
|
|
|
|
" \n",
|
|
|
|
|
" def forward(self,img,frag,using_cuda):\n",
|
|
|
|
|
" psize=4\n",
|
|
|
|
|
" # Utilisez Conv1 pour calculer le descripteur,\n",
|
|
|
|
|
" descripteur_input1=self.get_descripteur(img,using_cuda)\n",
|
|
|
|
|
" descripteur_input2=self.get_descripteur(frag,using_cuda)\n",
|
|
|
|
|
" \n",
|
|
|
|
|
" b,c,h,w=frag.shape\n",
|
|
|
|
|
" n=int(h/psize)\n",
|
|
|
|
|
" m=int(w/psize)\n",
|
|
|
|
|
" \n",
|
|
|
|
|
" #######################################\n",
|
|
|
|
|
" # Calculer la carte de corrélation par convolution pour les n*m patchs plus petit.\n",
|
|
|
|
|
" for i in range(n):\n",
|
|
|
|
|
" for j in range(m):\n",
|
|
|
|
|
" if i==0 and j==0:\n",
|
|
|
|
|
" map_corre=F.conv2d(descripteur_input1,get_patch(descripteur_input2,psize,i,j),padding=2)\n",
|
|
|
|
|
" else:\n",
|
|
|
|
|
" a=F.conv2d(descripteur_input1,get_patch(descripteur_input2,psize,i,j),padding=2)\n",
|
|
|
|
|
" map_corre=torch.cat((map_corre,a),1)\n",
|
|
|
|
|
" ########################################\n",
|
|
|
|
|
" # Étape de polymérisation\n",
|
|
|
|
|
" map_corre=self.maxpooling(map_corre)\n",
|
|
|
|
|
" map_corre=self.shift1(map_corre)\n",
|
|
|
|
|
" map_corre=self.add1(map_corre)\n",
|
|
|
|
|
" \n",
|
|
|
|
|
" #########################################\n",
|
|
|
|
|
" # Répétez l'étape d'agrégation jusqu'à obtenir le graphique de corrélation du patch d'entrée\n",
|
|
|
|
|
" n=int(n/2)\n",
|
|
|
|
|
" m=int(m/2)\n",
|
|
|
|
|
" if n>=2 and m>=2:\n",
|
|
|
|
|
" map_corre=self.maxpooling(map_corre)\n",
|
|
|
|
|
" map_corre=self.shift2(map_corre)\n",
|
|
|
|
|
" map_corre=self.add2(map_corre)\n",
|
|
|
|
|
" \n",
|
|
|
|
|
" \n",
|
|
|
|
|
" n=int(n/2)\n",
|
|
|
|
|
" m=int(m/2)\n",
|
|
|
|
|
" if n>=2 and m>=2:\n",
|
|
|
|
|
" map_corre=self.maxpooling(map_corre)\n",
|
|
|
|
|
" map_corre=self.shift3(map_corre)\n",
|
|
|
|
|
" map_corre=self.add3(map_corre)\n",
|
|
|
|
|
" \n",
|
|
|
|
|
" \n",
|
|
|
|
|
" b,c,h,w=map_corre.shape\n",
|
|
|
|
|
" # Normalisation de la division par maximum\n",
|
|
|
|
|
" map_corre=map_corre/(map_corre.max())\n",
|
|
|
|
|
" # Normalisation SoftMax\n",
|
|
|
|
|
" #map_corre=(F.softmax(map_corre.reshape(1,1,h*w,1),dim=2)).reshape(b,c,h,w)\n",
|
|
|
|
|
" return map_corre"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
2021-02-11 09:00:27 +01:00
|
|
|
|
"execution_count": 8,
|
2021-02-02 10:31:38 +01:00
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [],
|
|
|
|
|
"source": [
|
|
|
|
|
"def run_net(net,img,frag,frag_size,using_cuda):\n",
|
|
|
|
|
" h,w,c=frag.shape\n",
|
|
|
|
|
" n=int(h/frag_size)\n",
|
|
|
|
|
" m=int(w/frag_size)\n",
|
|
|
|
|
" frag_list=[]\n",
|
|
|
|
|
" #####################################\n",
|
|
|
|
|
" # Obtenez des patchs carrés des fragments et mettez-les dans la frag_list\n",
|
|
|
|
|
" for i in range(n):\n",
|
|
|
|
|
" for j in range(m):\n",
|
|
|
|
|
" frag_32=frag[i*frag_size:(i+1)*frag_size,j*frag_size:(j+1)*frag_size]\n",
|
|
|
|
|
" if test_fragment32_32(frag_32,0.6):\n",
|
|
|
|
|
" frag_list.append(frag_32)\n",
|
|
|
|
|
" img_tensor=img2tensor(img)\n",
|
|
|
|
|
" ######################################\n",
|
|
|
|
|
" if using_cuda:\n",
|
|
|
|
|
" img_tensor=img_tensor.cuda()\n",
|
|
|
|
|
" \n",
|
|
|
|
|
" coordonnee_list=[]\n",
|
|
|
|
|
" #######################################\n",
|
|
|
|
|
" # Utilisez le réseau pour calculer les positions de tous les patchs dans frag_list[]\n",
|
|
|
|
|
" # Mettez le résultat du calcul dans coordonnee_list[]\n",
|
|
|
|
|
" for i in range(len(frag_list)):\n",
|
|
|
|
|
" frag_tensor=img2tensor(frag_list[i])\n",
|
|
|
|
|
" if using_cuda:\n",
|
|
|
|
|
" frag_tensor=frag_tensor.cuda()\n",
|
|
|
|
|
" res=net.forward(img_tensor,frag_tensor,using_cuda)\n",
|
|
|
|
|
" if using_cuda:\n",
|
|
|
|
|
" res=res.cpu()\n",
|
|
|
|
|
" po_h,po_w=show_coordonnee(res)\n",
|
|
|
|
|
" coordonnee_list.append([po_h,po_w])\n",
|
|
|
|
|
" h_img,w_img,c=img.shape\n",
|
|
|
|
|
" position=[]\n",
|
|
|
|
|
" for i in range(len(coordonnee_list)):\n",
|
|
|
|
|
" x=int(round(h_img*coordonnee_list[i][0]))\n",
|
|
|
|
|
" y=int(round(w_img*coordonnee_list[i][1]))\n",
|
|
|
|
|
" position.append([x,y])\n",
|
|
|
|
|
" return position"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
2021-02-11 09:00:27 +01:00
|
|
|
|
"execution_count": 9,
|
2021-02-02 10:31:38 +01:00
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [
|
|
|
|
|
{
|
|
|
|
|
"name": "stdout",
|
|
|
|
|
"output_type": "stream",
|
|
|
|
|
"text": [
|
2021-02-11 09:00:27 +01:00
|
|
|
|
"Net sauvegardés dans ./trained_net/net_trainned_02-02_21-44_0002\n",
|
|
|
|
|
"Poids sauvegardés dans ./trained_net/save_weights_02-02_21-44_2\n"
|
2021-02-02 10:31:38 +01:00
|
|
|
|
]
|
|
|
|
|
}
|
|
|
|
|
],
|
|
|
|
|
"source": [
|
|
|
|
|
"if __name__=='__main__':\n",
|
|
|
|
|
" \n",
|
|
|
|
|
" # La taille du patch d'entrée est de 16*16\n",
|
|
|
|
|
" frag_size=16\n",
|
|
|
|
|
" # La taille du plus petit patch dans réseau est de 4 *4 fixée\n",
|
|
|
|
|
" psize=4\n",
|
|
|
|
|
" using_cuda=True\n",
|
|
|
|
|
" \n",
|
|
|
|
|
" # Variable des données\n",
|
2021-02-11 09:00:27 +01:00
|
|
|
|
" base_dir = './training_data_maybe-good/'\n",
|
2021-02-02 10:31:38 +01:00
|
|
|
|
" fresque_filename = base_dir+'fresque_small{}.ppm'\n",
|
|
|
|
|
" fresque_filename_wild = base_dir+'fresque_small*.ppm'\n",
|
|
|
|
|
" fragment_filename = base_dir+'fragments/fresque{}/frag_dev_{:05}.ppm'\n",
|
|
|
|
|
" fragments_filename_wild = base_dir+'fragments/fresque{}/frag_dev_*.ppm'\n",
|
|
|
|
|
" vt_filename = base_dir+'fragments/fresque{}/vt/frag_dev_{:05}_vt.txt'\n",
|
|
|
|
|
" fragment_id_offset = 200\n",
|
|
|
|
|
" \n",
|
|
|
|
|
" \n",
|
|
|
|
|
" net=Net(frag_size,psize)\n",
|
|
|
|
|
" \n",
|
|
|
|
|
" # Pour chaque fresque, le nombre d'itérations est de 1000\n",
|
|
|
|
|
" itera=1000\n",
|
|
|
|
|
" \n",
|
|
|
|
|
" if using_cuda:\n",
|
|
|
|
|
" net=net.cuda()\n",
|
|
|
|
|
" \n",
|
|
|
|
|
" # Choisissez l'optimiseur et la fonction de coût\n",
|
|
|
|
|
" optimizer = torch.optim.Adam(net.parameters())\n",
|
|
|
|
|
" loss_func = torch.nn.MSELoss()\n",
|
|
|
|
|
" \n",
|
|
|
|
|
" # Dans le processus d'apprentissage du réseau,le changement d'erreur est placé dans loss_value=[] \n",
|
|
|
|
|
" # et le changement de Conv1 poids est placé dans para_value[]\n",
|
|
|
|
|
" loss_value=[]\n",
|
|
|
|
|
" w_values=[]\n",
|
|
|
|
|
" ####################################################training_net\n",
|
|
|
|
|
" \n",
|
|
|
|
|
" # Detection des fresques\n",
|
|
|
|
|
" fresques_paths = glob(fresque_filename_wild) \n",
|
|
|
|
|
" N_fresque = len(fresques_paths)\n",
|
|
|
|
|
" \n",
|
|
|
|
|
" time_old = time()\n",
|
|
|
|
|
" \n",
|
|
|
|
|
" # Iteration sur les fresques trouvées\n",
|
|
|
|
|
" for fresque_id,fresque_path in enumerate(fresques_paths):\n",
|
|
|
|
|
" # Charge la fresque\n",
|
|
|
|
|
" fresque=cv2.imread(fresque_path)\n",
|
|
|
|
|
" h,w,c=fresque.shape\n",
|
|
|
|
|
" fresque_tensor=img2tensor(fresque)\n",
|
|
|
|
|
" \n",
|
|
|
|
|
" # Si GPU, conversion de la fresque\n",
|
|
|
|
|
" if using_cuda:\n",
|
|
|
|
|
" fresque_tensor=fresque_tensor.cuda()\n",
|
|
|
|
|
" \n",
|
2021-02-11 09:00:27 +01:00
|
|
|
|
" # Recherche des fragments d'entrainement\n",
|
2021-02-02 10:31:38 +01:00
|
|
|
|
" fragments_paths = glob(fragments_filename_wild.format(fresque_id))\n",
|
|
|
|
|
" N_fragments = len(fragments_paths)\n",
|
|
|
|
|
" for fragment_id,fragment_path in enumerate(fragments_paths):\n",
|
2021-02-11 09:00:27 +01:00
|
|
|
|
" #clear_output(wait=True)\n",
|
2021-02-02 10:31:38 +01:00
|
|
|
|
" print(\"Fresque {}, fragment {}/{} ({:.3}%)\".format(fresque_id,fragment_id,N_fragments,(fragment_id/N_fragments)*100))\n",
|
|
|
|
|
" print(\"Temps par fragment: {:.3}\".format(time()-time_old))\n",
|
|
|
|
|
" time_old = time()\n",
|
2021-02-11 09:00:27 +01:00
|
|
|
|
" # De temps en temps, enregistrez les nouveau poids\n",
|
2021-02-02 10:31:38 +01:00
|
|
|
|
" if fragment_id%50==0:\n",
|
|
|
|
|
" w_values.append(net.conv1.weight.data.cpu().numpy())\n",
|
|
|
|
|
" \n",
|
|
|
|
|
" # Chargement du fragment et de la vt\n",
|
|
|
|
|
" frag,vt=load_training_fragment(fragment_path,vt_filename.format(fresque_id,fragment_id+fragment_id_offset))\n",
|
|
|
|
|
" \n",
|
|
|
|
|
" # si GPU, conversion des objects\n",
|
|
|
|
|
" frag_tensor=img2tensor(frag)\n",
|
|
|
|
|
" if using_cuda:\n",
|
|
|
|
|
" vt=vt.cuda()\n",
|
|
|
|
|
" frag_tensor=frag_tensor.cuda()\n",
|
|
|
|
|
" \n",
|
|
|
|
|
" frag_pred=net.forward(fresque_tensor,frag_tensor,using_cuda)\n",
|
|
|
|
|
" b,c,h,w=vt.shape\n",
|
|
|
|
|
" # Utilisez la fonction de coût pour calculer l'erreur\n",
|
|
|
|
|
" err_=loss_func(vt,frag_pred)\n",
|
2021-02-11 09:00:27 +01:00
|
|
|
|
" #print(\"[MAIN] position choisie dans la carte de correlation: {}\".format(show_coordonnee(frag_pred)))\n",
|
|
|
|
|
" #print(\"[MAIN] Valeur de la loss: {}\".format(err_.tolist()))\n",
|
2021-02-02 10:31:38 +01:00
|
|
|
|
" # Utilisez l'optimiseur pour ajuster le poids de Conv1\n",
|
|
|
|
|
" optimizer.zero_grad()\n",
|
|
|
|
|
" err_.backward(retain_graph=True)\n",
|
|
|
|
|
" optimizer.step()\n",
|
|
|
|
|
" \n",
|
|
|
|
|
" loss_value.append(err_.tolist())\n",
|
|
|
|
|
" \n",
|
|
|
|
|
" del frag_tensor,frag_pred,err_,vt\n",
|
|
|
|
|
" torch.cuda.empty_cache()\n",
|
|
|
|
|
" \n",
|
|
|
|
|
" # Sauvegarder le réseau\n",
|
|
|
|
|
" save_dir = './trained_net/'\n",
|
2021-02-11 09:00:27 +01:00
|
|
|
|
" expe_id = 2\n",
|
|
|
|
|
" net_filename = save_dir + \"net_trainned_{}_{:04}\".format(datetime.now().strftime(\"%m-%d_%H-%M\"),expe_id)\n",
|
2021-02-02 10:31:38 +01:00
|
|
|
|
" save_net(net_filename,net)\n",
|
|
|
|
|
" \n",
|
|
|
|
|
" # Sauvegarder les poids\n",
|
2021-02-11 09:00:27 +01:00
|
|
|
|
" poids_filename = save_dir + \"save_weights_{}_{:04}\".format(datetime.now().strftime(\"%m-%d_%H-%M\"),expe_id)\n",
|
2021-02-02 10:31:38 +01:00
|
|
|
|
" with open(poids_filename,'wb') as f:\n",
|
|
|
|
|
" pickle.dump(w_values,f)\n",
|
|
|
|
|
" \n",
|
|
|
|
|
" print(\"Net sauvegardés dans {}\".format(net_filename))\n",
|
|
|
|
|
" print(\"Poids sauvegardés dans {}\".format(poids_filename))\n",
|
|
|
|
|
" "
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
|
|
|
|
"execution_count": 21,
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [
|
|
|
|
|
{
|
|
|
|
|
"name": "stdout",
|
|
|
|
|
"output_type": "stream",
|
|
|
|
|
"text": [
|
|
|
|
|
"Poids pickled.\n"
|
|
|
|
|
]
|
|
|
|
|
}
|
|
|
|
|
],
|
|
|
|
|
"source": [
|
|
|
|
|
"with open('./save_weights','wb') as f:\n",
|
|
|
|
|
" pickle.dump(w_values,f)\n",
|
|
|
|
|
"print(\"Poids pickled.\")"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
|
|
|
|
"execution_count": 16,
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [
|
|
|
|
|
{
|
|
|
|
|
"name": "stdout",
|
|
|
|
|
"output_type": "stream",
|
|
|
|
|
"text": [
|
|
|
|
|
"(3, 3, 3)\n",
|
|
|
|
|
"(8, 3, 3, 3)\n"
|
|
|
|
|
]
|
|
|
|
|
}
|
|
|
|
|
],
|
|
|
|
|
"source": [
|
|
|
|
|
"w = w_values[0]\n",
|
|
|
|
|
"print(w.shape)\n",
|
|
|
|
|
"print(net.conv1.weight.data.cpu().numpy().shape)"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
|
|
|
|
"execution_count": 6,
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [
|
|
|
|
|
{
|
|
|
|
|
"data": {
|
|
|
|
|
"text/plain": [
|
|
|
|
|
"[<matplotlib.lines.Line2D at 0x7f9cc2acab50>]"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
"execution_count": 6,
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"output_type": "execute_result"
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"data": {
|
|
|
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD4CAYAAAD8Zh1EAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8li6FKAAAgAElEQVR4nO3dd5wTdfoH8M+zjaXXpZelwwrSlmIBUZSuWM92FjyP405PTz1+4CnoKXJYDhsox6l4eipy6iknVaQjZZeyCyy7bAWWBXZhK23r9/dHJtlJMkkmyUwmkzzv14sXm8lk5skkeeY73/kWEkKAMcaY+UUYHQBjjDFtcEJnjLEQwQmdMcZCBCd0xhgLEZzQGWMsREQZteM2bdqI+Ph4o3bPGGOmtG/fvnNCiDil5wxL6PHx8UhOTjZq94wxZkpEdNzVc1zlwhhjIYITOmOMhQhO6IwxFiI4oTPGWIjghM4YYyGCEzpjjIUITuiMMRYiTJfQM85UYNGGDJy7UGl0KIwxFlRMl9CzCi/gvU1ZKL5YZXQojDEWVEyX0Iks/9fxxByMMWbHdAk9QkronM8ZY8ye6RI6YMnoXEJnjDF7pkvoXEIPTgWll7E5vdDoMBgLa6ZL6CRVonNCDy6T3t2O6Z8mGR0GY2HNdAndVkIHZ/RgUna52ugQGAt7pkvo9a1cjI2DMcaCjQkTurXKhTM6Y4zJmS+hS/9zCZ0xxuyZLqFHWOtcuA6dMcbsmC6hcx06Y4wpM11Cj+Bmi4wxpsh0Cb2+Dp0zOmOMyZkvoXMJnTHGFJkwoVv+52aLjDFmz3QJ3VaHbnAcjDEWbEyX0Hk8dMYYU2a6hM6jLTLGmDLTJXQeD50xxpSZLqHXj7bIGGNMznQJnQfnYowxZaZL6FyHzhhjykyX0MlWh25wIIwxFmRUJXQimkhEGUSURURzFJ5vTkT/I6IUIjpCRNO1D9W6L8v/XOXCGGP2PCZ0IooEsATAJAAJAO4nogSH1Z4AkCaEGARgLIC/E1GMxrFK8Vj+5xI6Y4zZU1NCHwEgSwiRI4SoArACwDSHdQSApmS5Y9kEQDGAGk0jlfB46IwxpkxNQu8E4KTscb60TG4xgP4ACgAcAvC0EKLOcUNENIOIkokouaioyKeAuYTOGGPK1CR0UljmmE4nADgIoCOAwQAWE1EzpxcJsUwIkSiESIyLi/M6WIDHQ2eMMVfUJPR8AF1kjzvDUhKXmw7gO2GRBSAXQD9tQrTH46EzxpgyNQk9CUBvIuou3ei8D8Aqh3VOABgHAETUDkBfADlaBmpFPNoiY4wpivK0ghCihoieBLAeQCSAT4QQR4hopvT8UgCvAviUiA7BUoieLYQ4p0fA3GyRMcaUeUzoACCEWANgjcOypbK/CwCM1zY0ZVyHzhhjykzYU9SiqKLS0DgYYyzYmC6hZxZeAAC8tuaowZEwxlhwMV1Cr6l1at7OGGMMJkzojDHGlJkuobdp2gAAEBttutDDwrJt2UaHwFjYMl1WjG/dGAAwe6Iu/ZaYnxasSTc6BMbClukSurUdelSE0ogEjDEWvkyX0K24GTpjjNkzXULncjljjCkzXUJnjDGmzLQJnbv+M8aYPdMldCKudGGMMSWmS+hWPNoiY4zZM11C5/J58KusqTU6BBaG9uScx9MrDoR1Yc90Cd0qfD+y4Fd2udroEFgYeviTvfjhYAEqa8J3vCfTJXSuQmeMMWWmS+gs+L2zMdPoEBgLS6ZN6GFcTRb0vtxzwugQGAtLpkvoxLdFGWNMkekSuhUX0BljzJ75EnoYFtCPna3gpoCMMY/Ml9Al4dLW9PyFSox/exue/+6Q0aEwZgphkhoUmS6hh1uzxYuVlpJ5Ul6xwZEwFtzCLTcoMV1CDzdCultQWF5pcCSMsWBnuoQebifhgydLASCse78xxtQxXUIPN7V1YVwhyBjzimkTerjc+AiX98kY85/pEjqPh84YY8pMl9CtBHctYowpCOfcYLqEHkrl89JLVcgqrDA6DMZCAg8LYsKEbhUKdcu3Ld6Jmxdtc7uOWWuYSi9VGR0CY2HHdAndrAlOyYniS0aHoJvX16UbHQJjYcd0Cd0qBAroqpj1SiS78KLRITAWdkyX0LWqJ8sqrOA23oyFkHC+GWpluoSuhazCCty8aBve3XjM6FA84q8oY94J55ujqhI6EU0kogwiyiKiOS7WGUtEB4noCBFt1TZMZ/5URZyVxkVJPl6iUTSMsWARziX1KE8rEFEkgCUAbgGQDyCJiFYJIdJk67QA8AGAiUKIE0TUVq+APd0UfeLL/ai4UoPPHhvhcRt1JqigDt+yBmPeCeeSuZXHhA5gBIAsIUQOABDRCgDTAKTJ1nkAwHdCiBMAIIQo1DpQR67OwqtTT3t8bYSU0bkKXT8l3GyRsYBTU+XSCcBJ2eN8aZlcHwAtiWgLEe0jooeVNkREM4gomYiSi4qKfItY8sa6DFXrpeaX4mJljd0ya0IPl0kyjJBZeMHoEBjT3Y7Mc4ifsxqFFVeMDgWAuoSudB3jmAmjAAwDMAXABABziaiP04uEWCaESBRCJMbFxXkdrLeKL1bhtsU7ce3CTbZlv/rHLqxOLQDAIxkyxvyzfGcuACD1ZJnBkVioqXLJB9BF9rgzgAKFdc4JIS4CuEhE2wAMAqB5MxJvOhZ9s89yYVF2udq2bG9uMfbmWmb/MUM+N0GIjLEgoaaEngSgNxF1J6IYAPcBWOWwzg8ARhNRFBE1AjASwFFtQ/VOWkE5Fqxx31tRqcqlprYOO7PO6RJT3jnvO9vwbR7mj4935OLrpBNGh8ECxGNCF0LUAHgSwHpYkvRKIcQRIppJRDOldY4CWAcgFcBeAB8JIQ7rEbDaO9mT39tu91gIgUUb7OvdlUrob288hgc/2mMrxWtlU/pZjH1rC35Mdby4YUw/r/6YhtnfhtcE44G8NRZsV9BqqlwghFgDYI3DsqUOj98E8KZ2oWlr7eEzeG9Tlt0yebPFXdnnkXGm3NZl/fwF+zk8hRD4cGs27hveFa0ax3i9/6OnLaMqHikox9SrO3r9esaYe0aO8xQsY0ypSuih4A9f7HdaVieA/JJL+OFgAd5cbym9T7yqveLrk/JK8Ma6DBw4UYp/Ppyoa6yMMeYL0yV0rc+EY97YrOrmaHWtZZJmxyaQnhw7W4FZ36Tiup6tfQmPMcZUC8uxXORcJfPL1bVebaeyphbrDp9xWv762nSknCzF7pzzAMw7eiJjLPiZLqHrXVV1uMDSnvTZlSnYf6IEP6WdRY1UOnfnN58mY+a/99napTqyjh/zr1/yAAA/Hz2rTcCMMSYxXUJ354KX1SFK8ksu2/6+84Nf8NvPkrFkczYOnix1+7odUlPHlcn5is+fKrVs93J1LfLOXcRv/pXsd6zM4vCpMiTMWxc0vfUYM4oJ69Dry+iVNbVoEBVpezzhbffTufnqbY2H2b1Y5f+Jh9X7eEcuLlXVYkfmOdw5tLPR4TCDBbJWM9iGDzF1CX3plhwk59W3F7eWgoPJ/hOeh+hdsjnL5RcjuL4ujAWH6to6ZJ61n2DdyJaDwdJs0XQJXX7c3t54DHcv3YVd2ecNi8cdIQRKLlV7XO/N9Rl2VT2MMffm/5iGW97eFpSFOCOZLqErOX7et/krfblc8vSSo6fLkSt18V+2LceXsBhjHiTlWa58Sy7yMM1yIZHQ53znW9fm4+cvaRyJxY1vbQEAbM/0f0yYILmSYyzocfWkCRO6q7oqX1q4eNvWHAB25ZxHndR4/fF/JeOprw54vQ1Ppfyb3tqCN9a5H1iM1QvEjal1h89g8rvbbZ89C17hXAgyXUJ3pfyy57pqrfySfR5f7DmOjUfPYlVKAbKLvJvMYer7O9w+n3PuIj7Yku1PiGFJzxtTz3x9EGmny3GlxvtCAGOBYupmi3LnHAbT0tPSrdm2ducAUKrBdGuuCplcHmTMmbuTdzj/ZkKmhP7d/lMB29cOleOlh/Ps46EmnD7L7KILKDBh6xEjqlqC7VsRMgndSGUaVPfU6lQPXHGlOug6P5hZOMwsP+7vW+2mbWS
|
|
|
|
|
"text/plain": [
|
|
|
|
|
"<Figure size 432x288 with 1 Axes>"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
"metadata": {
|
|
|
|
|
"needs_background": "light"
|
|
|
|
|
},
|
|
|
|
|
"output_type": "display_data"
|
|
|
|
|
}
|
|
|
|
|
],
|
|
|
|
|
"source": [
|
|
|
|
|
"plt.plot(loss_value)"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
|
|
|
|
"execution_count": 12,
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [],
|
|
|
|
|
"source": [
|
|
|
|
|
"file_path=\"./net_trainned6000\"\n",
|
|
|
|
|
"save_net(file_path,net)"
|
|
|
|
|
]
|
|
|
|
|
}
|
|
|
|
|
],
|
|
|
|
|
"metadata": {
|
|
|
|
|
"kernelspec": {
|
|
|
|
|
"display_name": "Python 3",
|
|
|
|
|
"language": "python",
|
|
|
|
|
"name": "python3"
|
|
|
|
|
},
|
|
|
|
|
"language_info": {
|
|
|
|
|
"codemirror_mode": {
|
|
|
|
|
"name": "ipython",
|
|
|
|
|
"version": 3
|
|
|
|
|
},
|
|
|
|
|
"file_extension": ".py",
|
|
|
|
|
"mimetype": "text/x-python",
|
|
|
|
|
"name": "python",
|
|
|
|
|
"nbconvert_exporter": "python",
|
|
|
|
|
"pygments_lexer": "ipython3",
|
|
|
|
|
"version": "3.8.5"
|
|
|
|
|
}
|
|
|
|
|
},
|
|
|
|
|
"nbformat": 4,
|
|
|
|
|
"nbformat_minor": 4
|
|
|
|
|
}
|