ansible/roles/radius/templates/sites-enabled/inner-tunnel.j2

346 lines
9.5 KiB
Text
Raw Normal View History

2020-05-16 21:43:23 +02:00
# -*- text -*-
######################################################################
#
# This is a virtual server that handles *only* inner tunnel
# requests for EAP-TTLS and PEAP types.
#
# $Id: 2c6f9611bfc7b4b782aeb9764e47e832690739c4 $
#
######################################################################
server inner-tunnel {
#
# This next section is here to allow testing of the "inner-tunnel"
# authentication methods, independently from the "default" server.
# It is listening on "localhost", so that it can only be used from
# the same machine.
#
# $ radtest USER PASSWORD 127.0.0.1:18120 0 testing123
#
# If it works, you have configured the inner tunnel correctly. To check
# if PEAP will work, use:
#
# $ radtest -t mschap USER PASSWORD 127.0.0.1:18120 0 testing123
#
# If that works, PEAP should work. If that command doesn't work, then
#
# FIX THE INNER TUNNEL CONFIGURATION SO THAT IT WORKS.
#
# Do NOT do any PEAP tests. It won't help. Instead, concentrate
# on fixing the inner tunnel configuration. DO NOTHING ELSE.
#
listen {
ipaddr = 127.0.0.1
port = 18120
type = auth
}
# Authorization. First preprocess (hints and huntgroups files),
# then realms, and finally look in the "users" file.
#
# The order of the realm modules will determine the order that
# we try to find a matching realm.
#
# Make *sure* that 'preprocess' comes before any realm if you
# need to setup hints for the remote radius server
authorize {
if ("%{request:User-Name}" =~ /^(.*)@auro(.*)/){
update request{
Stripped-User-Name := "%{1}"
}
}
#
# Take a User-Name, and perform some checks on it, for spaces and other
# invalid characters. If the User-Name appears invalid, reject the
# request.
#
# See policy.d/filter for the definition of the filter_username policy.
#
filter_username
re2o
#
# Do checks on outer / inner User-Name, so that users
# can't spoof us by using incompatible identities
#
# filter_inner_identity
#
# The chap module will set 'Auth-Type := CHAP' if we are
# handling a CHAP request and Auth-Type has not already been set
chap
#
# If the users are logging in with an MS-CHAP-Challenge
# attribute for authentication, the mschap module will find
# the MS-CHAP-Challenge attribute, and add 'Auth-Type := MS-CHAP'
# to the request, which will cause the server to then use
# the mschap module for authentication.
mschap
#
# Pull crypt'd passwords from /etc/passwd or /etc/shadow,
# using the system API's to get the password. If you want
# to read /etc/passwd or /etc/shadow directly, see the
# passwd module, above.
#
# unix
#
# Look for IPASS style 'realm/', and if not found, look for
# '@realm', and decide whether or not to proxy, based on
# that.
# IPASS
#
# If you are using multiple kinds of realms, you probably
# want to set "ignore_null = yes" for all of them.
# Otherwise, when the first style of realm doesn't match,
# the other styles won't be checked.
#
# Note that proxying the inner tunnel authentication means
# that the user MAY use one identity in the outer session
# (e.g. "anonymous", and a different one here
# (e.g. "user@example.com"). The inner session will then be
# proxied elsewhere for authentication. If you are not
# careful, this means that the user can cause you to forward
# the authentication to another RADIUS server, and have the
# accounting logs *not* sent to the other server. This makes
# it difficult to bill people for their network activity.
#
suffix
# ntdomain
#
# The "suffix" module takes care of stripping the domain
# (e.g. "@example.com") from the User-Name attribute, and the
# next few lines ensure that the request is not proxied.
#
# If you want the inner tunnel request to be proxied, delete
# the next few lines.
#
update control {
&Proxy-To-Realm := LOCAL
}
#
# This module takes care of EAP-MSCHAPv2 authentication.
#
# It also sets the EAP-Type attribute in the request
# attribute list to the EAP type from the packet.
#
# The example below uses module failover to avoid querying all
# of the following modules if the EAP module returns "ok".
# Therefore, your LDAP and/or SQL servers will not be queried
# for the many packets that go back and forth to set up TTLS
# or PEAP. The load on those servers will therefore be reduced.
#
eap {
ok = return
}
#
# Read the 'users' file
#files
#
# Look in an SQL database. The schema of the database
# is meant to mirror the "users" file.
#
# See "Authorization Queries" in sql.conf
#-sql
#
# If you are using /etc/smbpasswd, and are also doing
# mschap authentication, the un-comment this line, and
# enable the "smbpasswd" module.
# smbpasswd
#
# The ldap module reads passwords from the LDAP database.
#-ldap
#
# Enforce daily limits on time spent logged in.
# daily
expiration
logintime
#
# If no other module has claimed responsibility for
# authentication, then try to use PAP. This allows the
# other modules listed above to add a "known good" password
# to the request, and to do nothing else. The PAP module
# will then see that password, and use it to do PAP
# authentication.
#
# This module should be listed last, so that the other modules
# get a chance to set Auth-Type for themselves.
#
pap
}
# Authentication.
#
#
# This section lists which modules are available for authentication.
# Note that it does NOT mean 'try each module in order'. It means
# that a module from the 'authorize' section adds a configuration
# attribute 'Auth-Type := FOO'. That authentication type is then
# used to pick the appropriate module from the list below.
#
# In general, you SHOULD NOT set the Auth-Type attribute. The server
# will figure it out on its own, and will do the right thing. The
# most common side effect of erroneously setting the Auth-Type
# attribute is that one authentication method will work, but the
# others will not.
#
# The common reasons to set the Auth-Type attribute by hand
# is to either forcibly reject the user, or forcibly accept him.
#
authenticate {
#
# PAP authentication, when a back-end database listed
# in the 'authorize' section supplies a password. The
# password can be clear-text, or encrypted.
Auth-Type PAP {
pap
}
#
# Most people want CHAP authentication
# A back-end database listed in the 'authorize' section
# MUST supply a CLEAR TEXT password. Encrypted passwords
# won't work.
Auth-Type CHAP {
chap
}
#
# MSCHAP authentication.
Auth-Type MS-CHAP {
mschap
}
#
# For old names, too.
#
mschap
#
# Allow EAP authentication.
eap
}
######################################################################
#
# There are no accounting requests inside of EAP-TTLS or PEAP
# tunnels.
#
######################################################################
# Session database, used for checking Simultaneous-Use. Either the radutmp
# or rlm_sql module can handle this.
# The rlm_sql module is *much* faster
session {
radutmp
#
# See "Simultaneous Use Checking Queries" in sql.conf
# sql
}
# Post-Authentication
# Once we KNOW that the user has been authenticated, there are
# additional steps we can take.
#
# Note that the last packet of the inner-tunnel authentication
# MAY NOT BE the last packet of the outer session. So updating
# the outer reply MIGHT work, and sometimes MIGHT NOT. The
# exact functionality depends on both the inner and outer
# authentication methods.
#
# If you need to send a reply attribute in the outer session,
# the ONLY safe way is to set "use_tunneled_reply = yes", and
# then update the inner-tunnel reply.
post-auth {
re2o
Post-Auth-Type REJECT {
# log failed authentications in SQL, too.
-sql
attr_filter.access_reject
#
# Let the outer session know which module failed, and why.
#
update outer.session-state {
&Module-Failure-Message := &request:Module-Failure-Message
}
}
}
#
# When the server decides to proxy a request to a home server,
# the proxied request is first passed through the pre-proxy
# stage. This stage can re-write the request, or decide to
# cancel the proxy.
#
# Only a few modules currently have this method.
#
pre-proxy {
# Uncomment the following line if you want to change attributes
# as defined in the preproxy_users file.
# files
# Uncomment the following line if you want to filter requests
# sent to remote servers based on the rules defined in the
# 'attrs.pre-proxy' file.
# attr_filter.pre-proxy
# If you want to have a log of packets proxied to a home
# server, un-comment the following line, and the
# 'detail pre_proxy_log' section, above.
# pre_proxy_log
}
#
# When the server receives a reply to a request it proxied
# to a home server, the request may be massaged here, in the
# post-proxy stage.
#
post-proxy {
# If you want to have a log of replies from a home server,
# un-comment the following line, and the 'detail post_proxy_log'
# section, above.
# post_proxy_log
# Uncomment the following line if you want to filter replies from
# remote proxies based on the rules defined in the 'attrs' file.
# attr_filter.post-proxy
#
# If you are proxying LEAP, you MUST configure the EAP
# module, and you MUST list it here, in the post-proxy
# stage.
#
# You MUST also use the 'nostrip' option in the 'realm'
# configuration. Otherwise, the User-Name attribute
# in the proxied request will not match the user name
# hidden inside of the EAP packet, and the end server will
# reject the EAP request.
#
eap
}
} # inner-tunnel server block