implement verry basic unsafe UART

master
histausse 2 years ago
parent 0c7793fe1f
commit 037c48fba0
Signed by: histausse
GPG Key ID: 67486F107F62E9E9

@ -1,8 +1,6 @@
//! GPIO module.
use super::memory_map;
use crate::println;
use super::memory_map::gpio::*;
/// The number of pin for the raspberry 3.
const NUMBER_PIN: usize = 54;
@ -67,13 +65,12 @@ pub fn set_pin_fonction(n: usize, function: PinFunction) -> Result<(), &'static
if n >= NUMBER_PIN {
return Err("The pin does not exist.");
}
let field = memory_map::get_fsel(n);
let field = get_fsel(n);
// TODO: SYNC
let mut val = unsafe { core::ptr::read_volatile(field.get_address() as *mut u32) };
let address = field.get_address();
let mut val = unsafe { core::ptr::read_volatile(address as *mut u32) };
val &= !field.get_mask();
val |= Into::<u32>::into(function) << field.get_offset();
let address = field.get_address();
println!("Set {val:b} at 0x{address:x}");
unsafe { core::ptr::write_volatile(address as *mut u32, val); }
Ok(())
}
@ -89,12 +86,11 @@ pub fn set_pin_output_state(n: usize, state: PinOutputState) -> Result<(), &'sta
return Err("The pin does not exist.");
}
let field = match state {
PinOutputState::High => memory_map::get_set(n),
PinOutputState::Low => memory_map::get_clr(n),
PinOutputState::High => get_set(n),
PinOutputState::Low => get_clr(n),
};
let val = field.get_mask();
let address = field.get_address();
println!("Set {val:b} at 0x{address:x}");
// 0 has no effect on this field: no nead to read-modify-write
unsafe { core::ptr::write_volatile(address as *mut u32, val); }
Ok(())

@ -2,219 +2,520 @@
use crate::utils::field::Field;
pub const GPIO_OFFSET: usize = 0x0020_0000;
pub const UART0_OFFSET: usize = 0x0020_1000;
pub const START_PHYSICAL_ADDRESS: usize = 0x3F00_0000;
pub const UART0_START: usize = START_PHYSICAL_ADDRESS + UART0_OFFSET;
// ** GPIO addresses **
/// Offset between the GPIO addresses and the beginning of the physical addresses
pub const GPIO_OFFSET: usize = 0x0020_0000;
/// Beginning of the GPIO adresses
pub const GPIO_START: usize = START_PHYSICAL_ADDRESS + GPIO_OFFSET;
// Function Select
/// GPIO Function Select 0, R/W register.
/// bits 29-27: FSEL9
/// bits 26-24: FSEL8
/// bits 23-21: FSEL7
/// bits 20-18: FSEL6
/// bits 17-15: FSEL5
/// bits 14-12: FSEL4
/// bits 11-9: FSEL3
/// bits 8-6: FSEL2
/// bits 5-3: FSEL1
/// bits 2-0: FSEL0
pub const GPFSEL0: usize = GPIO_START + 0x00;
/// GPIO Function Select 1, R/W register.
/// bits 29-27: FSEL19
/// bits 26-24: FSEL18
/// bits 23-21: FSEL17
/// bits 20-18: FSEL16
/// bits 17-15: FSEL15
/// bits 14-12: FSEL14
/// bits 11-9: FSEL13
/// bits 8-6: FSEL12
/// bits 5-3: FSEL11
/// bits 2-0: FSEL10
pub const GPFSEL1:usize = GPIO_START + 0x04;
/// GPIO Function Select 2, R/W register.
/// bits 29-27: FSEL29
/// bits 26-24: FSEL28
/// bits 23-21: FSEL27
/// bits 20-18: FSEL26
/// bits 17-15: FSEL25
/// bits 14-12: FSEL24
/// bits 11-9: FSEL23
/// bits 8-6: FSEL22
/// bits 5-3: FSEL21
/// bits 2-0: FSEL20
pub const GPFSEL2:usize = GPIO_START + 0x08;
/// GPIO Function Select 3, R/W register.
/// bits 29-27: FSEL39
/// bits 26-24: FSEL38
/// bits 23-21: FSEL37
/// bits 20-18: FSEL36
/// bits 17-15: FSEL35
/// bits 14-12: FSEL34
/// bits 11-9: FSEL33
/// bits 8-6: FSEL32
/// bits 5-3: FSEL31
/// bits 2-0: FSEL30
pub const GPFSEL3:usize = GPIO_START + 0x0C;
/// GPIO Function Select 4, R/W register.
/// bits 29-27: FSEL49
/// bits 26-24: FSEL48
/// bits 23-21: FSEL47
/// bits 20-18: FSEL46
/// bits 17-15: FSEL45
/// bits 14-12: FSEL44
/// bits 11-9: FSEL43
/// bits 8-6: FSEL42
/// bits 5-3: FSEL41
/// bits 2-0: FSEL40
pub const GPFSEL4:usize = GPIO_START + 0x10;
/// GPIO Function Select 5, R/W register.
/// bits 11-9: FSEL53
/// bits 8-6: FSEL52
/// bits 5-3: FSEL51
/// bits 2-0: FSEL50
pub const GPFSEL5:usize = GPIO_START + 0x14;
/// GPIO memory map.
pub mod gpio {
use super::*;
/// Return the field FSELn.
///
/// # Panic
///
/// Panic if the pin `n` does not exist.
pub const fn get_fsel(n: usize) -> Field {
if n > 53 {
panic!("The PIN does not exist");
// Function Select
/// GPIO Function Select 0, R/W register.
///
/// # Bits distribution:
///
/// - 29-27: FSEL9
/// - 26-24: FSEL8
/// - 23-21: FSEL7
/// - 20-18: FSEL6
/// - 17-15: FSEL5
/// - 14-12: FSEL4
/// - 11-9: FSEL3
/// - 8-6: FSEL2
/// - 5-3: FSEL1
/// - 2-0: FSEL0
pub const GPFSEL0: usize = GPIO_START + 0x00;
/// GPIO Function Select 1, R/W register.
///
/// # Bits distribution:
///
/// - 29-27: FSEL19
/// - 26-24: FSEL18
/// - 23-21: FSEL17
/// - 20-18: FSEL16
/// - 17-15: FSEL15
/// - 14-12: FSEL14
/// - 11-9: FSEL13
/// - 8-6: FSEL12
/// - 5-3: FSEL11
/// - 2-0: FSEL10
pub const GPFSEL1:usize = GPIO_START + 0x04;
/// GPIO Function Select 2, R/W register.
///
/// # Bits distribution:
///
/// - 29-27: FSEL29
/// - 26-24: FSEL28
/// - 23-21: FSEL27
/// - 20-18: FSEL26
/// - 17-15: FSEL25
/// - 14-12: FSEL24
/// - 11-9: FSEL23
/// - 8-6: FSEL22
/// - 5-3: FSEL21
/// - 2-0: FSEL20
pub const GPFSEL2:usize = GPIO_START + 0x08;
/// GPIO Function Select 3, R/W register.
///
/// # Bits distribution:
///
/// - 29-27: FSEL39
/// - 26-24: FSEL38
/// - 23-21: FSEL37
/// - 20-18: FSEL36
/// - 17-15: FSEL35
/// - 14-12: FSEL34
/// - 11-9: FSEL33
/// - 8-6: FSEL32
/// - 5-3: FSEL31
/// - 2-0: FSEL30
pub const GPFSEL3:usize = GPIO_START + 0x0C;
/// GPIO Function Select 4, R/W register.
///
/// # Bits distribution:
///
/// - 29-27: FSEL49
/// - 26-24: FSEL48
/// - 23-21: FSEL47
/// - 20-18: FSEL46
/// - 17-15: FSEL45
/// - 14-12: FSEL44
/// - 11-9: FSEL43
/// - 8-6: FSEL42
/// - 5-3: FSEL41
/// - 2-0: FSEL40
pub const GPFSEL4:usize = GPIO_START + 0x10;
/// GPIO Function Select 5, R/W register.
///
/// # Bits distribution:
///
/// - 11-9: FSEL53
/// - 8-6: FSEL52
/// - 5-3: FSEL51
/// - 2-0: FSEL50
pub const GPFSEL5:usize = GPIO_START + 0x14;
/// Return the field FSELn.
///
/// # Panic
///
/// Panic if the pin `n` does not exist.
pub const fn get_fsel(n: usize) -> Field {
if n > 53 {
panic!("The PIN does not exist");
}
let address = [GPFSEL0, GPFSEL1, GPFSEL2, GPFSEL3, GPFSEL4, GPFSEL5][n/10];
let offset = 3*(n%10);
let size = 3;
Field::new(address, offset, size)
}
let address = [GPFSEL0, GPFSEL1, GPFSEL2, GPFSEL3, GPFSEL4, GPFSEL5][n/10];
let offset = 3*(n%10);
let size = 3;
Field::new(address, offset, size)
}
// Pin Output Set
/// Pin Output Set 0, W register.
/// bit 31: SET31
/// ...
/// bit 0: SET0
pub const GPSET0:usize = GPIO_START + 0x1C;
/// Pin Output Set 1, W register.
/// bit 21: SET53
/// ...
/// bit 0: SET32
pub const GPSET1:usize = GPIO_START + 0x20;
/// Return the field SETn.
///
/// # Panic
///
/// Panic if the pin `n` does not exist.
pub const fn get_set(n: usize) -> Field {
if n > 53 {
panic!("The PIN does not exist");
// Pin Output Set
/// Pin Output Set 0, W register.
///
/// # Bits distribution:
///
/// - 31: SET31
/// - ...
/// - 0: SET0
pub const GPSET0:usize = GPIO_START + 0x1C;
/// Pin Output Set 1, W register.
///
/// # Bits distribution:
///
/// - 21: SET53
/// - ...
/// - 0: SET32
pub const GPSET1:usize = GPIO_START + 0x20;
/// Return the field SETn.
///
/// # Panic
///
/// Panic if the pin `n` does not exist.
pub const fn get_set(n: usize) -> Field {
if n > 53 {
panic!("The PIN does not exist");
}
let (address, offset) = if n < 32 {
(GPSET0, n)
} else {
(GPSET1, n-32)
};
let size = 1;
Field::new(address, offset, size)
}
let (address, offset) = if n < 32 {
(GPSET0, n)
} else {
(GPSET1, n-32)
};
let size = 1;
Field::new(address, offset, size)
}
// Pin Output Clear
/// Pin Output Clear 0, W register.
/// bit 31: CLR31
/// ...
/// bit 0: CLR0
pub const GPCLR0:usize = GPIO_START + 0x28;
/// Pin Output Clear 1, W register.
/// bit 21: CLR53
/// ...
/// bit 0: CLR32
pub const GPCLR1:usize = GPIO_START + 0x2C;
/// Return the field CLRn.
///
/// # Panic
///
/// Panic if the pin `n` does not exist.
pub const fn get_clr(n: usize) -> Field {
if n > 53 {
panic!("The PIN does not exist");
// Pin Output Clear
/// Pin Output Clear 0, W register.
///
/// # Bits distribution:
///
/// - 31: CLR31
/// - ...
/// - 0: CLR0
pub const GPCLR0:usize = GPIO_START + 0x28;
/// Pin Output Clear 1, W register.
///
/// # Bits distribution:
///
/// - 21: CLR53
/// - ...
/// - 0: CLR32
pub const GPCLR1:usize = GPIO_START + 0x2C;
/// Return the field CLRn.
///
/// # Panic
///
/// Panic if the pin `n` does not exist.
pub const fn get_clr(n: usize) -> Field {
if n > 53 {
panic!("The PIN does not exist");
}
let (address, offset) = if n < 32 {
(GPCLR0, n)
} else {
(GPCLR1, n-32)
};
let size = 1;
Field::new(address, offset, size)
}
let (address, offset) = if n < 32 {
(GPCLR0, n)
} else {
(GPCLR1, n-32)
};
let size = 1;
Field::new(address, offset, size)
// Pin Level
/// Pin Level 0, R register.
pub const GPLEV0:usize = GPIO_START + 0x34;
/// Pin Level 1, R register.
pub const GPLEV1:usize = GPIO_START + 0x38;
// Pin Event Detect Status
/// Pin Event Detect Status 0, R/W register.
pub const GPEDS0:usize = GPIO_START + 0x40;
/// Pin Event Detect Status 1, R/W register.
pub const GPEDS1:usize = GPIO_START + 0x44;
// Pin Rising Edge Detect Enable
/// Pin Rising Edge Detect Enable 0, R/W register.
pub const GPREN0:usize = GPIO_START + 0x4C;
/// Pin Rising Edge Detect Enable 1, R/W register.
pub const GPREN1:usize = GPIO_START + 0x50;
// Pin Falling Edge Detect Enable
/// Pin Falling Edge Detect Enable 0, R/W register.
pub const GPFEN0:usize = GPIO_START + 0x58;
/// Pin Falling Edge Detect Enable 1, R/W register.
pub const GPFEN1:usize = GPIO_START + 0x5C;
// Pin High Detect Enable
/// Pin High Detect Enable 0, R/W register.
pub const GPHEN0:usize = GPIO_START + 0x64;
/// Pin High Detect Enable 1, R/W register.
pub const GPHEN1:usize = GPIO_START + 0x68;
// Pin Low Detect Enable
/// Pin Low Detect Enable 0, R/W register.
pub const GPLEN0:usize = GPIO_START + 0x70;
/// Pin Low Detect Enable 1, R/W register.
pub const GPLEN1:usize = GPIO_START + 0x74;
// Pin Async, Rising Edge Detect
/// Pin Async, Rising Edge Detect 0, R/W register.
pub const GPAREN0:usize = GPIO_START + 0x7C;
/// Pin Async, Rising Edge Detect 1, R/W register.
pub const GPAREN1:usize = GPIO_START + 0x80;
// Pin Async, Falling Edge Detect
/// Pin Async, Falling Edge Detect 0, R/W register.
pub const GPAFEN0:usize = GPIO_START + 0x88;
/// Pin Async, Falling Edge Detect1, R/W register.
pub const GPAFEN1:usize = GPIO_START + 0x8C;
// Pin Pull-up/down Enable, R/W
/// Pin Pull-up/down Enable, R/W register.
pub const GPPUD:usize = GPIO_START + 0x94;
// Pin Pull-up/down enable clock, R/W
/// Pin Pull-up/down enable clock 0, R/W register.
pub const GPPUDCLK0:usize = GPIO_START + 0x98;
/// Pin Pull-up/down enable clock 1, R/W register.
pub const GPPUDCLK1:usize = GPIO_START + 0x9C;
// Test ?, R/W, 4 bits
/// Test register? only 4 bits long.
pub const GPIO_TEST:usize = GPIO_START + 0xB0;
}
// ** GPIO addresses **
// Pin Level
/// Pin Level 0, R register.
pub const GPLEV0:usize = GPIO_START + 0x34;
/// Pin Level 1, R register.
pub const GPLEV1:usize = GPIO_START + 0x38;
// Pin Event Detect Status
/// Pin Event Detect Status 0, R/W register.
pub const GPEDS0:usize = GPIO_START + 0x40;
/// Pin Event Detect Status 1, R/W register.
pub const GPEDS1:usize = GPIO_START + 0x44;
// Pin Rising Edge Detect Enable
/// Pin Rising Edge Detect Enable 0, R/W register.
pub const GPREN0:usize = GPIO_START + 0x4C;
/// Pin Rising Edge Detect Enable 1, R/W register.
pub const GPREN1:usize = GPIO_START + 0x50;
// Pin Falling Edge Detect Enable
/// Pin Falling Edge Detect Enable 0, R/W register.
pub const GPFEN0:usize = GPIO_START + 0x58;
/// Pin Falling Edge Detect Enable 1, R/W register.
pub const GPFEN1:usize = GPIO_START + 0x5C;
// Pin High Detect Enable
/// Pin High Detect Enable 0, R/W register.
pub const GPHEN0:usize = GPIO_START + 0x64;
/// Pin High Detect Enable 1, R/W register.
pub const GPHEN1:usize = GPIO_START + 0x68;
// Pin Low Detect Enable
/// Pin Low Detect Enable 0, R/W register.
pub const GPLEN0:usize = GPIO_START + 0x70;
/// Pin Low Detect Enable 1, R/W register.
pub const GPLEN1:usize = GPIO_START + 0x74;
// Pin Async, Rising Edge Detect
/// Pin Async, Rising Edge Detect 0, R/W register.
pub const GPAREN0:usize = GPIO_START + 0x7C;
/// Pin Async, Rising Edge Detect 1, R/W register.
pub const GPAREN1:usize = GPIO_START + 0x80;
// Pin Async, Falling Edge Detect
/// Pin Async, Falling Edge Detect 0, R/W register.
pub const GPAFEN0:usize = GPIO_START + 0x88;
/// Pin Async, Falling Edge Detect1, R/W register.
pub const GPAFEN1:usize = GPIO_START + 0x8C;
// Pin Pull-up/down Enable, R/W
/// Pin Pull-up/down Enable, R/W register.
pub const GPPUD:usize = GPIO_START + 0x94;
// ** UART addresses **
/// Offset between the UART addresses and the beginning of the physical addresses
pub const UART_OFFSET: usize = 0x0020_1000;
/// Begeinning of the UART addresses.
pub const UART_START: usize = START_PHYSICAL_ADDRESS + UART_OFFSET;
// Pin Pull-up/down enable clock, R/W
/// Pin Pull-up/down enable clock 0, R/W register.
pub const GPPUDCLK0:usize = GPIO_START + 0x98;
/// Pin Pull-up/down enable clock 1, R/W register.
pub const GPPUDCLK1:usize = GPIO_START + 0x9C;
/// UART memory map.
pub mod uart {
use super::*;
// Test ?, R/W, 4 bits
/// Test register? only 4 bits long.
pub const GPIO_TEST:usize = GPIO_START + 0xB0;
// ** GPIO addresses **
/// Data Register, 32 bits long.
///
/// # Bits distribution:
///
/// - 31-12: reserved. Write as 0, value read don't have meaning, R/W.
/// - 11: OE, Overrun Error. Set to 1 if data received with FIFO full, R/W.
/// - 10: BE, Break Error. Set to 1 if a break condition was detected, R/W.
/// - 9: PE, Parity Error. Set to 1 when the parity don't match data, R/W.
/// - 8: FE, Framing Error. Set to 1 when character don't have valid stop bit, R/W.
/// - 7-0: DATA, Data character. R/W.
pub const DR: usize = UART_START + 0x00;
/// Receive Status Register/Error Clear Register, 32 bits long.
///
/// # Bits distribution:
///
/// - 31-12: reserved. Write as 0, value read don't have meaning, R/W.
/// - 3: OE, Overrun Error. Set to 1 if data received with FIFO full, R/W.
/// - 2: BE, Break Error. Set to 1 if a break condition was detected, R/W.
/// - 1: PE, Parity Error. Set to 1 when the parity don't match data, R/W.
/// - 0: FE, Framing Error. Set to 1 when characteur don't have valid stop bit, R/W.
pub const RSRECR: usize = UART_START + 0x04;
/// Flag register, 32 bits long.
///
/// # Bits distribution:
///
/// - 31-9: reserved. Write as 0, value read don't have meaning, R/W.
/// - 8: RI, unsuported. Write as 0, value read don't have meaning, R/W.
/// - 7: TXFE, Transmit FIFO Empty. If FIFO disabled, set when tx holding register empty.
/// If FIFO enabled, set when tx FIFP is empty. R/W.
/// - 6: RXFF, Receive FIFO Full. If FIFO disabled, set when rx holding register is full.
/// If FIFO enabled, set when rx FIFO is full. R/W.
/// - 5: TXFF, Transmit FIFO Full. If FIFO disabled, set when tx holding register full.
/// If FIFO enabled, set when tx FIFP is full. R/W.
/// - 4: RXFE, Receive FIFO Empty. If FIFO disabled, set when rx holding register is empty.
/// If FIFO enabled, set when rx FIFO is empty. R/W.
/// - 3: BUSY. Is set, UART is busy transmitting data. R/W.
/// - 2: DCD, unsuported. Write as 0, value read don't have meaning, R/W.
/// - 1: DSR, unsuported. Write as 0, value read don't have meaning, R/W.
/// - 0: CTS, Clear To Send.
pub const FR: usize = UART_START + 0x18;
/// Not in use. 32 bits long.
pub const ILPR: usize = UART_START + 0x20;
/// Integer Baud rate divisor, 32 bits long.
///
/// # Bits distribution:
///
/// - 31-16: reserved. Write as 0, value read don't have meaning, R/W.
/// - 15-0: IBRD. The integer baud rate divisor, R/W.
pub const IBRD: usize = UART_START + 0x24;
/// Fractional Baud rate divisor, 32 bits long.
///
/// # Bits distribution:
///
/// - 31-6: reserved. Write as 0, value read don't have meaning, R/W.
/// - 5-0: FBRD. The fractional baud rate divisor, R/W.
pub const FBRD: usize = UART_START + 0x28;
/// Line Constrol register, 32 bits long.
///
/// # Bits distribution:
///
/// - 31-8: reserved. Write as 0, value read don't have meaning, R/W.
/// - 7: SPS, Stick Parity Select. 0: the stick parity is disabled, 1: either
/// depending on EPS (Event Parity Select), R/W.
/// - 6-5: WLEN: World lenght. Number of data bits transmitted by frame (0b00 -> 5b, 0b11 ->
/// 8b), R/W.
/// - 4: FEN, Enable FIFOs. 0: FIFOs disabled, 1: FIFO buffers are enables, R/W.
/// - 3: STP2, 2 Stop bit select. 1: 2 stop bits are transmitted at the end of the frame
/// (rx logic is not affected), R/W.
/// - 2: EPS, Event Parity Select. 0: odd parity, check for odd number of 1 in data+parity
/// bits, 1: event parity, check for even number of 1 in data+parity. No effect when
/// PEN disable parity check. R/W.
/// - 1: PEN, Parity Enable. 0: Don't add parity bit and don't check parity, 1: add parity bit
/// and check for parity, R/W.
/// - 0: BRK: Send break. If set, send continuous low level to TXD after the current char, R/W.
pub const LCRH: usize = UART_START + 0x2C;
/// Control register, 32 bits long.
///
/// # Warning
///
/// To program the CR:
///
/// - 1) Disable UART
/// - 2) Wait for the end of tx/rx of the current char
/// - 3) Flush the transmit FIFO by setting `FEN` to 0 in [`LCRH`]
/// - 4) Reprogram `CR`.
/// - 5) Enable UART
///
/// # Bits distribution:
///
/// - 31-16: reserved. Write as 0, value read don't have meaning, R/W.
/// - 15: CTSEN, CTS hardware flow control enable. If set, data is only transmitted when
/// nUARTCTS is asserted, R/W.
/// - 14: RTSEN, RST hardware flow control enable. If set, data is only requested when there
/// is space in the receive FIFO, R/W.
/// - 13: OUT2, unsuported, Write as 0, value read don't have meaning, R.
/// - 12: OUT1, unsuported, Write as 0, value read don't have meaning, R.
/// - 11: RTS, Request To Send. When set to 1, nUARTRTS is low, R/W.
/// - 10: DTR, unsuported, Write as 0, value read don't have meaning, R.
/// - 9: RXE, Receive enable. If set, (and if UARTEN is set), the uart can read data, R/W.
/// - 8: TXE, Transmit enable. If set, (and if UARTEN is set), the uart can send data, R/W.
/// - 7: LBE, LoopBack Enable. If set, UARTTXD is fed through to the UARTRXD path, R/W.
/// - 6-3: reserved. Write as 0, value read don't have meaning, R/W.
/// - 2: SIRLP, unsuported, Write as 0, value read don't have meaning, R.
/// - 1: SIREN, unsuported, Write as 0, value read don't have meaning, R.
/// - 0: UARTEN, UART enable. If set, the UART is enable, R/W.
pub const CR: usize = UART_START + 0x30;
/// Interrupt FIFO level Select register, 32 bits long.
///
/// # Bits distribution:
///
/// - 31-12: reserved. Write as 0, value read don't have meaning, R/W.
/// - 11-9: RXIFPSEL, unsuported, Write as 0, value read don't have meaning, R.
/// - 8-6: TXIFPSEL, unsuported, Write as 0, value read don't have meaning, R.
/// - 5-3: RXIFLSEL, Receive Interrupt FIFO Level Select. The level from which the
/// reveive interrupt is send:
/// - `0b000`: Send when FIFO becom 1/8 full
/// - `0b001`: Send when FIFO becom 1/4 full
/// - `0b010`: Send when FIFO becom 1/2 full
/// - `0b011`: Send when FIFO becom 3/4 full
/// - `0b100`: Send when FIFO becom 7/7 full
/// - Other values are reserved.
/// R/W.
/// - 2-0: TXIFLSEL, Transmit Interrupt FIFO Level Select. The level from which the
/// transmit interrupt is send:
/// - `0b000`: Send when FIFO becom 1/8 full
/// - `0b001`: Send when FIFO becom 1/4 full
/// - `0b010`: Send when FIFO becom 1/2 full
/// - `0b011`: Send when FIFO becom 3/4 full
/// - `0b100`: Send when FIFO becom 7/7 full
/// - Other values are reserved.
/// R/W.
pub const IFLS: usize = UART_START + 0x34;
/// Interupt Mask Set Clear register, 32 bits long.
///
/// # Bits distribution:
///
/// - 31-11: reserved. Write as 0, value read don't have meaning, R/W.
/// - 10: OEIM, Overrun Error Interrupt Mask. Value of the mask for OE Interrupt, R/W.
/// - 9: BEIM, Break Error Interrupt Mask. Value of the mask for BE Interrupt, R/W.
/// - 8: PEIM, Parity Error Interrupt Mask. Value of the mask for PE Interrupt, R/W.
/// - 7: FEIM, Framing Error Interrupt Mask. Value of the mask for FE Interrupt, R/W.
/// - 6: RT Interrupt, Receive Timeout Interrupt Mask. Value of the mask for RTIM, R/W.
/// - 5: TXIM, Transmit Interrupt Mask. Value of the mask for TX Interrupt, R/W.
/// - 4: RXIM, Receive Interrupt Mask. Value of the mask for RX Interrupt, R/W.
/// - 3: DSRMIM, unsuported, Write as 0, value read don't have meaning, R.
/// - 2: DCDMIM, unsuported, Write as 0, value read don't have meaning, R.
/// - 1: CTSMIM, nUARTCTS Modem Interrupt Mask. Value of the mask for CTS Interrupt, R/W.
/// - 0: RIMIM, unsuported, Write as 0, value read don't have meaning, R.
pub const IMSC: usize = UART_START + 0x38;
/// Raw Interupt Status register, 32 bits long.
///
/// # Bits distribution:
///
/// - 31-11: reserved. Write as 0, value read don't have meaning, R.
/// - 10: OERIS, Overrun Error Raw Interrupt Status. Raw interrupt state of the OE Interrupt, R.
/// - 9: BERIS, Break Error Raw Interrupt Status. Raw interrupt state of the BE Interrupt, R.
/// - 8: PERIS, Parity Error Raw Interrupt Status. Raw interrupt state of the PE Interrupt, R.
/// - 7: FERIS, Framing Error Raw Interrupt Status. Raw interrupt state of the FE Interrupt, R.
/// - 6: RT Interrupt, Receive Timeout Raw Interrupt Status. Raw interrupt state of the RTRIS, R.
/// - 5: TXRIS, Transmit Raw Interrupt Status. Raw interrupt state of the TX Interrupt, R.
/// - 4: RXRIS, Receive Raw Interrupt Status. Raw interrupt state of the RX Interrupt, R.
/// - 3: DSRMRIS, unsuported, Write as 0, value read don't have meaning, R.
/// - 2: DCDMRIS, unsuported, Write as 0, value read don't have meaning, R.
/// - 1: CTSMRIS, nUARTCTS Modem Raw Interrupt Status. Raw interrupt state of the CTS Interrupt, R.
/// - 0: RRISIM, unsuported, Write as 0, value read don't have meaning, R.
pub const RIS: usize = UART_START + 0x3C;
/// Masked Interupt Status register, 32 bits long.
///
/// # Bits distribution:
///
/// - 31-11: reserved. Write as 0, value read don't have meaning, R.
/// - 10: OEMIS, Overrun Error Masked Interrupt Status. Masked interrupt state of the OE Interrupt, R.
/// - 9: BEMIS, Break Error Masked Interrupt Status. Masked interrupt state of the BE Interrupt, R.
/// - 8: PEMIS, Parity Error Masked Interrupt Status. Masked interrupt state of the PE Interrupt, R.
/// - 7: FEMIS, Framing Error Masked Interrupt Status. Masked interrupt state of the FE Interrupt, R.
/// - 6: RT Interrupt, Receive Timeout Masked Interrupt Status. Masked interrupt state of the RTMIS, R.
/// - 5: TXMIS, Transmit Masked Interrupt Status. Masked interrupt state of the TX Interrupt, R.
/// - 4: RXMIS, Receive Masked Interrupt Status. Masked interrupt state of the RX Interrupt, R.
/// - 3: DSRMMIS, unsuported, Write as 0, value read don't have meaning, R.
/// - 2: DCDMMIS, unsuported, Write as 0, value read don't have meaning, R.
/// - 1: CTSMMIS, nUARTCTS Modem Masked Interrupt Status. Masked interrupt state of the CTS Interrupt, R.
/// - 0: RMISIM, unsuported, Write as 0, value read don't have meaning, R.
pub const MIS: usize = UART_START + 0x40;
/// Interupt Clear Register, 32 bits long.
///
/// # Bits distribution:
///
/// - 31-11: reserved. Write as 0, value read don't have meaning, R.
/// - 10: OEIC, Overrun Error Interrupt Clear. Clear the OE Interrupt, R.
/// - 9: BEIC, Break Error Interrupt Clear. Clear the BE Interrupt, R.
/// - 8: PEIC, Parity Error Interrupt Clear. Clear the PE Interrupt, R.
/// - 7: FEIC, Framing Error Interrupt Clear. Clear the FE Interrupt, R.
/// - 6: RT Interrupt, Receive Timeout Interrupt Clear. Clear the RTIC, R.
/// - 5: TXIC, Transmit Interrupt Clear. Clear the TX Interrupt, R.
/// - 4: RXIC, Receive Interrupt Clear. Clear the RX Interrupt, R.
/// - 3: DSRMIC, unsuported, Write as 0, value read don't have meaning, R.
/// - 2: DCDMIC, unsuported, Write as 0, value read don't have meaning, R.
/// - 1: CTSMIC, nUARTCTS Modem Interrupt Clear. Clear the CTS Interrupt, R.
/// - 0: RICIM, unsuported, Write as 0, value read don't have meaning, R.
pub const ICR: usize = UART_START + 0x44;
/// DMA Control Register, 32 bits long.
///
/// # Bits distribution:
///
/// - 31-3: reserved. Write as 0, value read don't have meaning, R.
/// - 2: DMAONERR, unsuported, Write as 0, value read don't have meaning, R.
/// - 1: TXDMAE, unsuported, Write as 0, value read don't have meaning, R.
/// - 0: RXDMAE, unsuported, Write as 0, value read don't have meaning, R.
pub const DMACR: usize = UART_START + 0x48;
/// Test Control register, 32 bits long.
///
/// # Bits distribution:
///
/// - 31-2: reserved. Write as 0, value read don't have meaning, R.
/// - 1: ITCR1, Test FIFO enable. If set, read/write directly to the FIFOs with TDR10_0, R/W.
/// - 0: ITCR0, Integration Test Enable. If set, the UART is placed in intergration test mode,
/// R/W.
pub const ITCR: usize = UART_START + 0x80;
/// Integration Test Input register, 32 bits long.
///
/// # Bits distribution:
///
/// - 31-4: reserved. Write as 0, value read don't have meaning, R.
/// - 3: ITIP3. Reads returns the value of nUARTCTS, R/W.
/// - 2-1: reserved. Write as 0, value read don't have meaning, R.
/// - 0: ITIP0. Reads the value of UARTRXD, R/W.
pub const ITIP: usize = UART_START + 0x84;
/// Integration Test Output register, 32 bits long.
///
/// # Bits distribution:
///
/// - 31-12: reserved. Write as 0, value read don't have meaning, R.
/// - 11: ITOP11, Intra-chip Output. Writes set the value to be driven on UARTLSINTR, Reads
/// returns the value of UARTLSINTR at the output of the test multiplexor, R/W.
/// - 10: ITOP10, Intra-chip Output. Writes set the value to be driven on UARTRXINTR, Reads
/// returns the value of UARTRXINTR at the output of the test multiplexor, R/W.
/// - 9: ITOP9, Intra-chip Output. Writes set the value to be driven on UARTTXINTR, Reads
/// returns the value of UARTTXINTR at the output of the test multiplexor, R/W.
/// - 8: ITOP8, Intra-chip Output. Writes set the value to be driven on UARTRTINTR, Reads
/// returns the value of UARTRTINTR at the output of the test multiplexor, R/W.
/// - 7: ITOP7, Intra-chip Output. Writes set the value to be driven on UARTEINTR, Reads
/// returns the value of UARTEINTR at the output of the test multiplexor, R/W.
/// - 6: ITOP6, Intra-chip Output. Writes set the value to be driven on UARTINTR, Reads
/// returns the value of UARTINTR at the output of the test multiplexor, R/W.
/// - 5-4: reserved. Write as 0, value read don't have meaning, R.
/// - 3: ITIP3: Primary Output. Writes specify the value on nUARTRTS, R/W.
/// - 2-1: reserved. Write as 0, value read don't have meaning, R.
/// - 0: ITIP0, Primary Output. Writes specify the value to be driven on UARTTXD, R/W.
pub const ITOP: usize = UART_START + 0x88;
/// Test Data register, 32 bits long.
///
/// # Bits distribution:
///
/// - 31-11: reserved. Write as 0, value read don't have meaning, R.
/// - 10-0: TDR10_0. When ITCRI1 is set to 1, data read an write directly from the FIFOs, R/W.
pub const TDR: usize = UART_START + 0x8C;
}

@ -4,3 +4,5 @@
pub(self) mod memory_map;
pub mod gpio;
pub mod uart;

@ -0,0 +1,146 @@
//! Driver for the UART.
use core::arch::asm;
use core::fmt;
use core::ptr::{read_volatile, write_volatile};
use crate::utils::field::Field;
use crate::traits::console::{Write, Console};
use super::memory_map::uart::*;
pub struct Uart {
initialized: bool,
}
const TMP_UARTEN: Field = Field::new(CR, 0, 1);
const TMP_TXE: Field = Field::new(CR, 8, 1);
const TMP_BUSY: Field = Field::new(FR, 3, 1);
const TMP_TXFF: Field = Field::new(FR, 5, 1);
const TMP_FEN: Field = Field::new(LCRH, 4, 1);
const TMP_WLEN: Field = Field::new(LCRH, 5, 2);
const TMP_IBRD: Field = Field::new(IBRD, 0, 16);
const TMP_FBRD: Field = Field::new(FBRD, 0, 6);
const TMP_DATA: Field = Field::new(DR, 0, 8);
impl Uart {
// TODO: not sure this should be public outside of bsp.
/// Constructor for [`Uart`].
pub const fn new() -> Self {
Uart { initialized: false }
}
/// Initialise the UART.
pub fn init(&mut self) {
// TODO: Recover from possible previous test.
self.flush();
// Stop UART
let mut cr_val = unsafe { read_volatile(TMP_UARTEN.get_address() as *mut u32) };
cr_val &= !TMP_UARTEN.get_mask();
unsafe { write_volatile(TMP_UARTEN.get_address() as *mut u32, cr_val); }
// Flush the FIFOs
let mut lcrh_val = unsafe { read_volatile(TMP_FEN.get_address() as *mut u32) };
lcrh_val &= !TMP_FEN.get_mask();
unsafe { write_volatile(TMP_FEN.get_address() as *mut u32, lcrh_val); }
// Clear all interrupt
unsafe { write_volatile(ICR as *mut u32, 0); }
// Config UART
// 8N1 115_200 bauds.
// divbaud = freq/16/baudrate = 48_000_000 / 16 / 115_200 = 26.041666666666668
// => IBRD = 26
// => FBRD = round(0.041666666666668 * 64) = 3 // TODO: why 64?
unsafe { write_volatile(TMP_IBRD.get_address() as *mut u32, 26 & TMP_IBRD.get_mask()); }
unsafe { write_volatile(TMP_FBRD.get_address() as *mut u32, 3 & TMP_FBRD.get_mask()); }
lcrh_val = 0;
// Set word len to 8
lcrh_val |= 0b11 << TMP_WLEN.get_offset();
// Reenable the FIFOs
lcrh_val |= TMP_FEN.get_mask();
unsafe { write_volatile(LCRH as *mut u32, lcrh_val); }
let mut cr_val = 0;
cr_val |= TMP_TXE.get_mask(); // enable TX
unsafe { write_volatile(TMP_TXE.get_address() as *mut u32, cr_val); }
// Start the UART
cr_val |= TMP_UARTEN.get_mask();
unsafe { write_volatile(TMP_UARTEN.get_address() as *mut u32, cr_val); }
self.initialized = true;
}
/// Test if the UART is busy.
fn is_busy(&self) -> bool {
let fr_val = unsafe { read_volatile(TMP_BUSY.get_address() as *mut u32) };
(fr_val & TMP_BUSY.get_mask()) != 0
}
/// Test if the the TX FIFO is full.
fn is_tx_full(&self) -> bool {
let fr_val = unsafe { read_volatile(TMP_TXFF.get_address() as *mut u32) };
(fr_val & TMP_TXFF.get_mask()) != 0
}
}
// Allow the use of uart for fmt::Write::write_fmt.
impl fmt::Write for Uart {
fn write_str(&mut self, s: &str) -> fmt::Result {
for c in s.chars() {
if c == '\n' {
Write::write_char(self, '\r');
}
Write::write_char(self, c);
}
Ok(())
}
}
// TODO: add sync
impl Write for Uart {
fn write_char(&self, c: char) {
if !self.initialized {
//panic!("Cannot write to a non initialized UART");
}
while self.is_tx_full() {
use super::gpio;
let _ = gpio::set_pin_output_state(20, gpio::PinOutputState::High);
unsafe { asm!("nop") };
}
unsafe { write_volatile(TMP_DATA.get_address() as *mut u32, c as u32) };
}
fn write_fmt(&self, args: fmt::Arguments) -> fmt::Result {
// TODO: use syncronisation here
let mut new_uart = Uart { initialized: self.initialized };
fmt::Write::write_fmt(&mut new_uart, args)
}
fn flush(&self) {
while self.is_busy() {
unsafe { asm!("nop") };
}
}
}
impl Console for Uart {}
static UART: Uart = Uart { initialized: true }; // TODO: use sync
pub fn init() {
let mut uart = Uart::new();
uart.init();
}
// TODO: move?
/// Return a reference to the Uart Output.
pub fn console() -> &'static dyn Console {
&UART
}

@ -10,6 +10,8 @@
#![feature(format_args_nl)]
#![feature(panic_info_message)]
#![allow(dead_code)]
mod traits;
mod bsp;
mod utils;
@ -21,7 +23,8 @@ use core::arch::global_asm;
use core::arch::asm;
// TODO: handle this with features
use crate::bsp::qemu::console::console;
//use crate::bsp::qemu::console::console;
use crate::bsp::rpi3::uart::console;
use crate::bsp::rpi3::gpio;
// TODO: move this to BSP
@ -39,21 +42,39 @@ global_asm!(include_str!("boot.s"));
/// Start the rust part of the kernel
#[no_mangle]
pub unsafe fn _start_rust() -> ! {
// Set TX and RX function for pin 14 and 15
match gpio::set_pin_fonction(14, gpio::PinFunction::AltFunc0) {
_ => (),
}
match gpio::set_pin_fonction(15, gpio::PinFunction::AltFunc0) {
_ => (),
}
// Debut led
match gpio::set_pin_fonction(20, gpio::PinFunction::Output) {
_ => (),
}
match gpio::set_pin_output_state(20, gpio::PinOutputState::Low) {
_ => (),
}
bsp::rpi3::uart::init();
println!("Hello there");
match gpio::set_pin_fonction(21, gpio::PinFunction::Output) {
Ok(()) => println!("Successfully set pin to output"),
Err(err) => println!("Failled to set pin: {err}"),
}
loop {
match gpio::set_pin_output_state(21, gpio::PinOutputState::High) {
Ok(()) => println!("Successfully set pin to HIGH"),
Err(err) => println!("Failled to set pin: {err}"),
Ok(()) => (),
Err(_err) => println!("Failled to set pin 21 to High"),
}
for _ in 0..5000000 {
asm!("nop");
}
match gpio::set_pin_output_state(21, gpio::PinOutputState::Low) {
Ok(()) => println!("Successfully set pin to HIGH"),
Err(err) => println!("Failled to set pin: {err}"),
Ok(()) => (),
Err(_err) => println!("Failled to set pin 21 to Low"),
}
for _ in 0..5000000 {
asm!("nop");

@ -31,3 +31,5 @@ impl Write for DummyConsole {
fn flush(&self) {}
}
impl Console for DummyConsole {}

Loading…
Cancel
Save